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Abstract 
 
This paper attempts to provide a more realistic approach to the characterization of system reliability 
when handling redundancy allocation problems: it considers repairable series-parallel systems 
comprised of components subjected to corrective maintenance actions with failure-repair cycles 
modeled by renewal processes. A multiobjective optimization approach is applied since increasing the 
number of redundancies not only enlarges system reliability but also its associated costs. Then a 
multiobjective genetic algorithm is coupled with discrete event simulation and its solutions present the 
compromise between system reliability and cost. Two examples are provided. In the first one, the 
proposed algorithm is validated by comparison with results obtained from a system devised as to allow 
for analytical solutions of the objective functions. The second case analyzes a repairable system 
subjected to perfect repairs. Results from both examples show that the proposed method can be a 
valuable tool for the decision maker when choosing the system design. 
 
Keywords:  availability, redundancy allocation, multiobjective optimization in system design. 
 
 

Resumo 
 
Esse artigo utiliza uma abordagem mais realista para a caracterização da confiabilidade de sistemas em 
problemas de alocação de redundâncias: são considerados sistemas série-paralelo formados por 
componentes sujeitos a ações de manutenção corretiva com ciclos de falha-reparo modelados por 
processos de renovação. É aplicada uma abordagem de otimização multiobjetivo, pois o aumento de 
redundâncias eleva a confiabilidade do sistema e também os seus custos. Assim, um algoritmo genético 
multiobjetivo é integrado com simulação discreta de eventos e suas soluções apresentam o 
compromisso entre confiabilidade e custo do sistema. Dois exemplos são fornecidos. No primeiro, o 
algoritmo proposto é validado através da comparação com resultados obtidos de um sistema criado de 
forma a permitir soluções analíticas das funções-objetivo. No segundo, analisa-se um sistema reparável 
sujeito a reparos perfeitos. Os resultados mostram que o método proposto pode ser uma ferramenta 
valiosa para o decisor no momento da escolha do projeto do sistema. 
 
Palavras-chave:  disponibilidade, alocação de redundâncias, otimização multiobjetivo em 
projeto de sistemas. 
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1. Introduction 

A system is said to be repairable if, after a failure, it can be restored to operation by a 
maintenance procedure that does not consist of its entire substitution. When the time to repair 
is not negligible in relation to the operational time, system’s reliability is measured by its 
availability. System availability can be defined as the probability of the system being 
operational in an arbitrary time instant (Rausand & Hoyland, 2004). 

Customers expect that products (systems) they acquire perform according to the 
specifications informed by the manufacturer. System failures lead to costumer frustration and 
cost increase because of design modifications, changes in production processes, repairs and, 
consequently, warranty cost increase and reduction of sales (Droguett & Mosleh, 2006). 
Thus, the manufacturer goal is to design, develop and market systems in short periods of 
time at minimal cost and yet meet the requirements and customers’ expectations. Reliability 
is therefore an inherent system characteristic that should be taken into consideration in the 
system development process. 

As a result, the design process usually aims at high system availability and low associated 
costs. However, in general, the relation between availability and cost is direct, i.e., the higher 
the availability level, the higher the costs. Hence, the objectives of designing a system with 
high availability and also with low associated costs are normally conflicting. 

To find the best solution of a problem with a single objective, one can make use of 
optimization methods. But, situations of practical interest frequently require the optimization 
of more than one objective – minimum costs, maximum reliability, maximum availability, 
minimum risk, among others – and a solution that simultaneously optimizes all the objectives 
is rarely within reach or it simply does not exist. In these cases, a multiobjective approach 
can be used to obtain a set of potential solutions (instead of one as in single objective 
problems) that are equally optimal from a multiobjective perspective, i.e., nondominated 
solutions (Coello et al., 2002). Once this set has been found, the decision-maker can then 
choose any of the solutions based on his preferences and on the compromise among the 
considered objectives they present. 

Genetic algorithms (GAs – Goldberg, 1989; Michalewicz, 1996) are probabilistic optimization 
techniques based on the natural evolution process that have been used to tackle a variety of 
single and multiobjective problems mainly when some features of the objective function, 
such as differentiability, continuity and convexity, are unknown or finding them is 
impractical. GAs have two important features for the multiobjective case: (i) they consider 
various potential solutions in a single run and (ii) the various objectives can be treated 
separately (Deb, 1999). 

There are many works in literature regarding redundancy allocation problems and genetic 
algorithms. Cantoni et al. (2000) couples GA with Monte Carlo simulation in order to obtain 
an optimal plant design. They tackle a single objective redundancy allocation problem in 
which it is desired to obtain a combination of several repairable components that are 
subjected to imperfect repairs (see Doyen & Gaudoin (2004)) to be placed in a series-parallel 
layout in order to maximize system profit. Although the authors consider relevant aspects of 
system reliability, only a single objective is taken into account. Busacca et al. (2001) use a 
multiobjective GA to solve a redundancy allocation problem in a safety system and the 
objectives are to maximize the net profit drawn from system operation and system reliability 
during mission time. All components are supposed to have constant failure rates. Elegbede & 
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Adjallah (2003) aim to solve an availability allocation problem and describe a methodology 
based on GAs and weighting techniques to optimize the availability and the cost of a series-
parallel repairable system. All components in each subsystem are identical and the authors 
consider an expression of the system asymptotic availability as the objective function 
regarding system availability. Goldbarg et al. (2005) apply GAs to determine the 
configuration of cogeneration systems with natural gas as the energy source and under the 
context of cost minimization. Chiang & Chen (2007) propose a multiobjective GA based on 
simulated annealing (Kirkpatrick et al., 1983) to solve an availability allocation problem of a 
series-parallel repairable system but with the usually non-realistic consideration of 
exponentially distributed inter-arrival times. 

In all the above mentioned works, the components reliability features are essentially the 
same: an underlying Exponential distribution (and hence a constant failure rate) governs the 
system failure process. Although Cantoni et al. (2000) go further in the system reliability 
aspect they also consider that components failure rates are constant from the time they return 
from a maintenance intervention to the time of the very next failure. 

Taboada & Coit (2006) propose a multiobjective approach based on GAs to solve a 
redundancy allocation problem in a series-parallel system in which the objectives are to 
maximize system reliability, minimize system cost and system weight. The authors assume 
non-repairable components with time-independent reliability functions, i.e., the effects of 
component degradation on the system reliability are not taken into consideration. Moreover, 
only acquisition costs are analyzed which, as a result of the previous assumption, are kept 
constant over the system mission time. Later Taboada et al. (2008) also consider a 
redundancy allocation problem with three objectives but, instead of maximizing system 
reliability as it is done in Taboada & Coit (2006), they use the universal moment generating 
function (Levitin, 2005) approach to evaluate the system availability. 

Although the work of Marseguerra & Zio (2000) is not in the context of redundancy allocation, 
they combine GAs with Monte Carlo simulation with the aim of optimizing maintenance and 
repair policies of already defined systems, i.e., they do not consider system design. They take 
into account a system gain function involving several costs and profit from plant operation as 
the single objective function to be evaluated by their binary-coded GA. Besides, in the 
context of spare parts allocation, Marseguerra et al. (2005) also integrate Monte Carlo 
simulation method and GAs for determining the optimal spare parts considering the 
objectives of maximizing net profit and minimizing total system volume. System availability 
is not taken into account as an objective itself, but it is included in net profit calculations. 
The authors use a ranking strategy to evaluate solutions and maintain the nondominated ones 
in a fixed length archive that is updated during the execution of the algorithm. In addition, all 
components are supposed to have exponentially distributed times between failures. 

This paper attempts to overcome some of the limitations in the system reliability 
characterization and modeling in the context of redundancy allocation optimization. Indeed, 
a series-parallel repairable system is formed by components that are supposed to have 
failure-repair cycles modeled by renewal processes with Weibull distributed times between 
failures and Exponential repair times. Hence, the underlying stochastic process of the 
system’s failure-repair process is not a renewal process and there is no analytical expression 
to the system availability. Moreover, for a given slot in a subsystem of the series-parallel 
system, multiple components capable of performing the same function but with different 
reliability and costs characteristics are considered. In order to obtain a more realistic 
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representation of the system dynamic behavior, the system availability is obtained via Monte 
Carlo simulation techniques, namely the discrete event simulation (DES) method (Banks 
et al., 2001). The flexibility provided by the DES permits the introduction of many real 
aspects in problem modeling and is especially useful in situations where an analytical 
treatment is prohibitive. Furthermore, a multiobjective GA is proposed to treat redundancy 
allocation problems involving repairable systems with two conflicting objectives: maximize 
system availability and minimize system cost. The proposed multiobjective GA algorithm is 
then coupled with the discrete event simulation in order to simultaneously optimize the 
system mean availability and the system overall cost. The latter objective corresponds not 
only to the acquisition costs related to individual components, but also it takes into 
consideration corrective maintenance costs, i.e., costs incurred in repairing and bringing back 
into operation a particular failed component. As a result, the decision maker can choose any 
of the obtained system designs based on its own preferences and also on the provided 
information about the system dynamic behavior during its lifetime cycle. Such information is 
a valuable aid in the strategic choice of the system design. 

This paper is organized as follows. Section 2 introduces some aspects of renewal processes, 
alternating renewal processes, and availability concepts. Section 3 reviews traditional 
multiobjective methods and some relevant evolutionary multiobjective approaches. The 
proposed multiobjective GA is presented in Section 4. Section 5 discusses the basic ideas 
underpinning the coupling of the proposed multiobjective GA algorithm with the discrete 
event simulation algorithm for quantifying repairable systems availability. The subsequent 
sections discuss in detail two application examples. In Section 6 the proposed approach is 
validated by comparison with the results obtained from a system devised as to allow for 
analytical solutions of the objective functions. Then, in Section 7, the redundancy allocation 
problem of series-parallel repairable systems is discussed by means of a more realistic case 
in which it is desired to maximize system availability and minimize system cost. Section 8 
presents some concluding remarks. 

 
2. Preliminaries 

2.1 Renewal Processes and Alternating Renewal Processes 

According to Rigdon & Basu (2000), a counting process is a Renewal Process (RP) if the 
times between events X1, X2, …  are independent and identically distributed. It is assumed 
that the times to repair are negligible if compared to the system operational time. In addition, 
repair actions are considered as perfect repairs, which mean that after a failure the system is 
returned into operation in an “as good as new” condition. When times to repair are not small 
if compared to the system operational time, they might be considered in the analysis of the 
system failure-repair process. In these cases, this process can be modeled using Alternating 
Renewal Processes (ARP). 

Indeed, in an ARP, the times between failures X1, X2,…  are independent and identically 
distributed. After a failure, the system becomes unavailable due to repair action. The times to 
repair D1, D2,…  are independent and identically distributed. It is also assumed that Xi + Di, 
i = 1, 2, 3,…  are independent random variables. The binary state variable X(t) indicates the 
system state in time t. Figure 1 illustrates the behavior of a system that has a failure-repair 
process modeled by an ARP. 
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Figure 1 – Alternating renewal process. 

 
When the system is configured in series and all of its components are modeled by 
Homogeneous Poisson Processes (HPPs), the superimposed process is also an HPP (Rausand 
& Hoyland, 2004). However, in general, an ARP is not a RP and the stochastic process that 
characterizes the failure-repair process of the system is unknown or it does not have an 
analytical solution. As a consequence, the reliability metrics of interest, such as the time to 
the rth failure, cannot be evaluated analytically. In these situations, the discrete event 
simulation can be used as an alternative. 

 
2.2 Availability 

The availability is a metric related to repairable systems. There are usually four availability 
metrics associated to repairable systems: instantaneous availability, limit availability, 
average availability and limit average availability (Rausand & Hoyland, 2004). In this paper, 
the following metrics are of interest: 

• Instantaneous availability that is defined as the probability of the system being 
operational in an arbitrary instant of time. It also can be interpreted as the mean value 
of the binary random variable X(t): 
A(t) = P[X(t) = 1] = E[X(t)], t ≥  0 (1) 

• Average availability that indicates the expected time proportion of (0, t] in which the 
system is operational: 

Aav(t) = 
0

1 ( )
t
A d

t
τ τ∫  (2) 

 
3. Multiobjective Optimization and Genetic Algorithms 

Real situations frequently demand the simultaneous achievement of multiple objectives. 
Minimal costs, maximal reliability/availability, minimal risks are some of the objectives 
usually desired in reliability field. In addition, some of these objectives might be conflicting. 

The general formulation of a multiobjective optimization problem is: 

Maximize z = [f1(x), f2(x),… , fk(x)] 
x  

Subject to gi(x) = 0, i = 1,… , p 
 hi(x) ≤ 0, i = p + 1,… , m 

(3) 
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where z is the vector formed by k objective functions, x is the n-dimensional vector of 
decision variables, p is the number of equality constraints gi(x), and m – p is the number of 
inequality constraints hi(x). 

The concepts of dominance and nondominance are essential to multiobjective optimization 
and they are introduced in next section. 

 
3.1 Dominance and Nondominance 

In single objective optimization, one unique solution is obtained – the optimal solution. 
However, when multiple conflicting objectives are considered, finding a single solution is 
very difficult to obtain or it might even not exist. Under this circumstance, it is desired to 
obtain a set of nondominated solutions. This set is also known as optimal Pareto set, in 
regard to the italian economist Vilfredo Pareto, who generalized the “optimal” concept in 
multiobjective context (Coello et al., 2002). 

A dominance/nondominance relation can be verified for each pair of solutions. A solution x1 
dominates a solution x2, with x1 ≠ x2, if for all objectives, it has a performance at least as 
good as the performance of x2 and, at least for one of the objectives, its performance 
overcomes the performance of x2. In summary: 

x1 ;  x2   ⇔    fh(x1) ≥  fh(x2), ∀ h   and    fh(x1) > fh(x2), for some h, (4) 

where ;  denotes dominance and x2 is a dominated solution for a maximization problem. If a 
minimization problem is considered, the signs ≥  and > in (4) are replaced by ≤  and < 
respectively. On the other hand, if one of the conditions in the right side of (4) is not satisfied, 
x1 is said to be nondominated in relation to x2 (and vice-versa). That is, for a quantity of 
objectives, x1 overcomes the performance of x2 and, for the remaining objectives, x2 
overcomes the performance of x1. The nondominance relation is also observed when x1 = x2. 

The concepts of local and global optimality in single optimization are replaced by local 
optimal Pareto set and global optimal Pareto set, respectively, in the multiobjective case 
(Deb, 1999; Zitzler, 1999). To define these concepts, let X be the set of all x that satisfies the 
constraints in (3), i.e., the feasible set: 

• Local optimal Pareto set (P): for all x∈P, there is no solution x’∈X satisfying ||x’ – x|| < ε  
which dominates any member of P (||·|| is the distance between two points and ε  > 0). 
The solutions in P constitute the local optimal Pareto set. 

• Global optimal Pareto set ( P ): for all x P∈ , there is no x’∈X such that x’; x. 

Deb (1999) emphasizes that a set of nondominated solutions is defined in the context of a 
sample of the feasible search space. On the other hand, a global optimal Pareto set is a set of 
nondominated solutions whose sample is equal to the entire feasible search space. 

Applying the solutions of P  in the objective functions, it is obtained the global Pareto front 
F P (see (5)). Following the same reasoning for the solutions of P, the local Pareto front FP 
(see (6)) is found: 

F P = {f = (f1(x), f2(x),… , fk(x)), ∀ x P∈ } (5) 

F P = {f = (f1(x), f2(x),… , fk(x)), ∀ x P∈ } (6) 
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3.2 Traditional Multiobjective Methods 

The traditional methods of multiobjective optimization are the Weighted Sum Method and 
the ε -Perturbation Method (Coello et al., 2002; Deb, 1999). Both of them handle single 
objective optimization problems. The Weighted Sum Method uses weights to aggregate all 
the objective functions into a single objective-function. The weights do not represent the 
relative importance among objectives: they are only factors that may be altered to locate 
different points in the optimal Pareto set. In the ε -Perturbation Method, in turn, an objective 
chosen arbitrarily (or the one considered as the most important) is optimized and the others 
become constraints that must satisfy acceptable levels previously defined. Different Pareto 
optimal solutions are found by varying the acceptable levels. 

One of the main drawbacks of the Weighted Sum Method is the fact that it cannot find 
solutions in non-convex regions of the Pareto front if the Pareto front is non-convex (Messac 
et al., 2000). In the case of the ε -Perturbation Method, the choice of the acceptable levels 
demands a preliminary analysis since inappropriate values can result in empty feasible sets 
(see Deb (1999)). In addition, both traditional methods not only require multiple runs in 
order to obtain different optimal Pareto solutions (it is expected that they are indeed optimal 
Pareto solutions), but also a considerable knowledge of the problem is a must. 

Alternatively, evolutionary algorithms such as GAs can be used to resolve multiobjective 
problems. These algorithms overcome some of the drawbacks in the abovementioned 
traditional methods. Evolutionary algorithms handle with many potential solutions 
simultaneously, which allows the achievement of different Pareto solution in a single 
execution of the algorithm. Also, they do not impose any requirement regarding the 
convexity of the Pareto front. 

 
3.3 Genetic Algorithms 

Genetic algorithms computationally simulate the natural evolution process. They are mainly 
directed toward the optimization of problems that have some features not tolerable by 
traditional mathematical programming methods as discussed above. In the following, the 
nomenclature and the steps of a single objective GA are briefly described. 

Firstly, it is required a representation for the decision variables vectors (the potential 
solutions). A binary, an integer or a real representation may be used. Each coded decision 
variable is named gene and the set of genes forms the genotype. When the genotype is 
decoded into its original form, one obtains the phenotype. If either the integer or the real 
representation is chosen, then the genotype is equal to the phenotype. An individual is a 
potential solution which has a related genotype and phenotype. A set of individuals 
constitutes a population. The most common genetic operators are selection, crossover and 
mutation. 

The selection of individuals is based on their fitness. The fitness for an individual is obtained 
by substituting its phenotype in the fitness function that frequently is, in numerical 
optimization problems, the same as the objective function (Coello et al., 2002). The fittest 
individuals have more chances to be selected. When it is considered a constrained 
optimization problem, if the individual does not satisfy the constraints a penalization is 
incorporated to its fitness. In maximization problems, an individual’s fitness is reduced by a 
certain value, whereas it is increased in case of minimization problems. In these situations, 
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the individual selection is anchored in its penalized fitness. The main purposes of the 
selection are to restrict the search to some regions of the search space and to improve the 
average quality of the population. 

Some of the selected individuals are chosen to participate in the crossover according to an 
established crossover probability. In the crossover step, the individuals (parents, often taken 
in couples) exchange parts of their genotype to generate the children. Subsequently, the 
population and the children are subjected to mutation, that is, parts of the genotype of some 
individuals are modified in accordance with a predefined mutation probability. Both 
crossover and mutation aim to generate new solutions in the search space by the variation of 
the existing ones. 

Most of the algorithms have a population composed by a fixed number of individuals. In 
these cases, some individuals must be discarded, since the population is increased after the 
crossover phase. The substitution of individuals is called replacement. Two well-known 
replacement techniques are children replace parents and elitist replacement. In the former, 
the parents are discarded and their positions are filled with their respective children. In the 
latter, after the mutation, the fitness of each individual (from population and children) is 
evaluated and then the individuals are ordered. The first N individuals form the new 
population, where N is the fixed size of the population. 

The simulation of the evolution starts with a random generation of the initial population 
(or according to a predefined strategy). Afterward, the (penalized) fitness evaluation is 
performed. Then, selection, crossover, mutation and replacement are applied. In this way, a 
new population is created and an iteration of the algorithm, named generation, is ended. All 
the other steps (except the initial population generation) are repeated until a stop criterion is 
reached. An usual stop criterion is the number of generations. 

 
3.4 Multiobjective Genetic Algorithms 

In addition to the fact that more than one objective is taken into account, the main difference 
between the single objective GA and the multiobjective GA is the selection phase. In the 
multiobjective case, the concept of dominance is directly or indirectly incorporated in that 
step. The main multiobjective methodologies involving evolutionary algorithms are listed in 
Table 1. 

 
Table 1 – Main methods of multiobjective optimization via evolutionary algorithms. 

Method Author(s) and Date 

Vector Evaluated Genetic Algorithms (VEGA) Schaffer (1985) 
Multiobjective Genetic Algorithm (MOGA) Fonseca & Fleming (1993) 
Niched-Pareto Genetic Algorithm (NPGA) Horn et al. (1994) 

Nondominated Sorting Genetic Algorithm (NSGA) Srinivas & Deb (1994) 
Strength Pareto Evolutionary Algorithm (SPEA) Zitzler & Thiele (1999) 

Nondominated Sorting Genetic Algorithm II (NSGA-II) Deb et al. (2002)  
Multiobjective Evolutionary Algorithm Based on 

Decomposition (MOEA/D) Zhang & Li (2007) 
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In multiobjective GAs, it is often used an “elaborated fitness” that is capable of incorporating 
all features presented by an individual in all objectives. In MOGA and NSGA-II the 
“elaborated fitness” can be, for example, based on the number of solutions which dominates 
each individual such that nondominated individuals have a better fitness value, whereas the 
individual dominated by the largest number of solutions has the worst fitness value. In 
NSGA-II, in addition to the fitness based on dominance and nondominance, it is also 
employed a “distance fitness”, which is calculated according to distances among individuals. 
Solutions with larger “distance fitness” are preferred in order to increase the exploration of 
the Pareto front. 

In the context of reliability, Marseguerra et al. (2005) apply GAs combined to Monte Carlo 
simulation to define the number of spare parts in a safety system. They use a ranking strategy 
of the population based on the number of solutions that dominates each individual, a 
procedure similar to MOGA. During search, nondominated solutions are stored and updated 
in an archive with predefined size. In each generation, the current nondominated solutions 
are compared to the ones already stored in the archive where the following rules must be 
satisfied: 

• If a new solution dominates individuals in the archive, these individuals are discarded 
and the new solution is added to the archive. 

• If a new solution is dominated by individuals of the archive, it is not stored in the 
archive. 

• If a new solution neither dominates nor is dominated by solutions in the archive: 
• If the archive is not full, the new solution is stored. 
• If the archive is full, the new solution replaces the most similar solution in 

archive (this similarity is evaluated by the euclidean distances between fitness 
values presented by the individuals). 

 
Taboada & Coit (2006) developed an evolutionary algorithm based on NSGA-II to tackle 
redundancy allocation problems, namely MOEA-DAP (Multiple Objective Evolutionary 
Algorithm for Solving Design Allocation Problems). The algorithm uses two elaborated 
fitness metrics: the first one is anchored in the euclidean distance that an individual presents 
in relation to the others in the objective space, and the other considers the number of 
solutions that an individual dominates. These two metrics are combined to form the 
“aggregated fitness”. At each generation, the dominated solutions are discarded such that the 
population is only composed by nondominated solutions. Furthermore, infeasible individuals 
cannot be generated, thus individual penalization is not required. It is also used an elitist 
strategy to construct a new population – a percentage of the best individuals goes further in 
next generation – and so individuals are ranked in accordance to the aggregated fitness they 
present. The next section discusses the proposed multiobjective GA. 

 

4. Proposed Multiobjective Genetic Algorithm 

This section presents the proposed multiobjective GA. As discussed earlier, the proposed 
method is based on some features presented by Marseguerra et al. (2005) and by Taboada & 
Coit (2006). 

Similarly to Marseguerra et al. (2005), the proposed GA algorithm makes use of the strategy 
of storing nondominated individuals of each generation in an auxiliary population which is 
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updated at every generation. On the other hand, while Marseguerra et al. (2005) predefines 
the size of the nondominated individuals archive, the auxiliary population in the developed 
GA algorithm has not a fixed size. In this way, all nondominated solutions generated during 
the execution of the algorithm are stored in the auxiliary population. In addition, The 
proposed method eliminates dominated individuals at every generation, as in the method in 
Taboada & Coit (2006). Using this approach, the individuals are likely to be closer to the 
Pareto front. However, differently from Taboada & Coit (2006), the proposed algorithm 
allows for the generation of infeasible individuals during the evolution process. Hence, a 
penalization function is used to penalize the individuals that do not satisfy the problem 
constraints. By means of this approach, it is expected an increase of the population 
variability, which permits a more comprehensive exploration of the search space and 
consequently of the Pareto front. 

It is important to note that the proposed algorithm does not make use of individuals ranking. 
Thus, there is no need to create fitness metrics as is the case, for example, in Fonseca & 
Fleming (1993), Deb et al. (2002), Marseguerra et al. (2005), Taboada & Coit (2006) and 
Taboada et al. (2008). In this way, each individual has a number of fitness values equal to 
the number of considered objectives. The next section describes the steps of the proposed 
multiobjective GA to handle redundancy allocation problems. 

 
4.1 Steps of the Proposed Multiobjective Genetic Algorithm 

Let N be the fixed size of population P, Paux the auxiliary population that stores 
nondominated individuals at each iteration, and x the n-dimensional vector of decision 
variables (components quantities). The steps taken in the proposed algorithm are as follows 
(see Figure 6-a): 
 
1) Individual Representation 
The type of redundancy allocation problems considered in this paper has integer-valued 
decision variables. Therefore individual integer coding was chosen, since it is a more natural 
way of representation. For the sake of illustration of individual representation, consider a 
system formed by two subsystems S1 and S2 in series. Each one of these subsystems can have 
at least 1 and at most 4 components in parallel. Also, suppose that S1 has 3 component 
options S11, S12 and S13 (represented by the variables x1, x2 and x3, respectively) and S2 has 4 
component options S21, S22, S23 and S24 (characterized by the variables x4, x5, x6 and x7, in this 
order). Figure 2 depicts the phenotype of an individual modeled according to these 
assumptions. The phenotype is a vector composed by 7 variables, where the first 3 
correspond to S1, and the remaining ones correspond to S2. The value of each variable 
indicates the number of each type of component. This individual phenotype representation 
has also been used by Taboada & Coit (2006). 

 

 
Figure 2 – Integer-coded individual. 
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The system represented by the individual of Figure 2 is illustrated in Figure 3. 
 

 
Figure 3 – System configuration of the individual in Figure 2. 

 
2) Generation of the Initial Population 
In order to create the initial population, N individuals are randomly constructed. Each 
individual decision variable j is generated according to a uniform distribution defined in 
[lj, uj]. If an individual P[i] is composed by x, its random generation is described by the 
algorithm presented in Figure 4: 
 
procedure INDRAND(l1, u1, l2, u2,… , ln, un) 

for j = 1…n do 
xj ←  RAND({lj, lj + 1,… , uj}) � uniform random choice of an integer in [lj, uj]

return x1, x2,… , xn � returns a random individual

Figure 4 – Algorithm to randomly generate an individual 

 
3) Calculating Fitness, Violation and Individual Penalization 
Individual fitness values must be calculated for each objective function f1, f2,… , fk. Then, 
individuals’ feasibility is verified by assessing the corresponding violation. The notation vi(x) 
represents the individual violation formed by x in relation to the ith constraint and is given by: 

vi(x) = max {0, |gi(x)| ε− },  if 1 ≤ i≤ p (7) 

vi(x) = max {0, |hi(x)|},  if p + 1≤ i ≤m (8) 

where m is the total number of constraints, p is the number of equality constraints, m – p is 
the number of inequality constraints, and ε  is the equality constraint precision. The 
expression in equation (8) must be used in constraints with ≤  or <. If a constraint has ≥  or > 
signs, it may be modified to a ≤  or < constraint, before evaluating equation (8). 

Violations are used in penalty calculations. A dynamic penalization function is adopted 
(Joines & Houck, 1994): 

pen(x) = (c · gen)α 
1

m

i
i

v
=
∑ (x) β (9) 

where c = 0.5, α = β = 2, m is the number of constraints, and gen is the current generation. 
This penalty function is said to be dynamic because it depends on the number of the current 
generation. At the start of the evolution process, it is suitable to allow larger violations, as 
infeasible individuals can generate feasible ones in subsequent generations and they also 
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permit a greater exploration of the search space (Martorell et al., 2000). However, as the 
algorithm proceeds, it is desirable to increase the penalties for infeasible individuals in order 
to obtain the maximum number as possible of feasible individuals at the end of the 
optimization process. 

The penalized fitness values of an individual P[i] (considering a maximization problem) are 
defined as follows: 

pen
jf (x) = fj(x) – pen(x), j = 1, 2,… , k, if P[i] is infeasible (10) 

pen
jf (x) = fj(x)  j = 1, 2,… , k, if P[i] is feasible (11) 

 
4) Selection 
Firstly, in the selection step, the relation of dominance among individuals in the current 
population is evaluated according to their penalized fitness values. The dominated solutions 
are eliminated from P. On the other hand, the nondominated individuals continue in P and 
are candidate solutions that may be stored in Paux. Afterward, the Paux updating takes place in 
accordance with the following rules: 

• If P[i] is a candidate solution and is dominated by already stored individuals in Paux, 
P[i] is discarded. 

• If P[i] is a candidate solution and dominates individuals in Paux, then such dominated 
solutions are eliminated from Paux and a copy of P[i] is inserted into Paux. 

• If P[i] is a candidate solution and neither dominates nor is dominated by solutions in 
Paux, a copy of P[i] is stored in Paux. 

 
Since the dominated individuals are eliminated from P, its size is reduced to Nr (Nr ≤N). In 
order to maintain the population with N individuals, N – Nr solutions are randomly selected 
from Paux and inserted into P. It is important to emphasize that Paux has not a predefined size 
and that it may contain infeasible solutions. 
 
5) Crossover 
After selection, a random number is generated for each individual in P. If this number is less 
than the crossover probability pc for a certain P[i], this individual will participate in the 
crossover. 

In this paper, it is used a crossover procedure for integer variables based on an adaptation 
of the BLXα crossover for real variables (see Herrera et al. (1998)). Indeed, for each pair of 
individuals (parents), m positions are defined in their phenotypes by the generation of 
random numbers in [1, n], where n is the total number of variables (genotype/ 
phenotype length). For exemplifying, suppose that 1 1 1 1

1( ,..., ,..., )P P P
j nParent x x x= , that 

2 2 2 2
1( ,..., ,..., )P P P

j nParent x x x=  and that only the jth variable is subjected to crossover 
(m = 1). Two random numbers r1 and r2 are generated in the interval 

min max min max max min[ ( ), ( )]j j j j j jI x x x x x xα α= − ⋅ − + ⋅ − , where min 1 2min( , )P P
j j jx x x=  and 

max 1 2max( , )P P
j j jx x x= . Subsequently, the jth variable of Child 1 and of Child 2 are set 

respectively as 1
1

C
jx r= ⎢ ⎥⎣ ⎦  and 2

2
C
jx r= ⎢ ⎥⎣ ⎦ , where ⋅⎢ ⎥⎣ ⎦  means the round-down integer. If any 
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of the values 1C
jx  or 2C

jx  exceeds one of the original jth variable bounds lj or uj, then such 

value is set equal to the bound it has just surpassed. For example, if 2C
j jx l< , then 2C

j jx l= . 

Note that when α = 0, then min max[ , ]j jI x x= , that is, the region where children are generated is 
limited by their parents variable values. If α < 0, then I becomes smaller and the algorithm 
tends to have a population with low diversity levels and can also converge prematurely. On 
the other hand, if α > 0, children can have variable values beyond the interval made up by 
their parents and the search space can have a more comprehensive exploration. For real-
coded GAs, a recommended value of α is 0.5. However, in the proposed integer-coded 
multiobjective GA, it is used α = 1. 

 
6) Replacement 
The adopted replacement strategy is children replace parents. According to this approach, 
after crossover, the parents can be immediately replaced by their corresponding children. In 
this case, the mutation is applied in P and after the replacement step. If an elitist replacement 
were to be assumed, the mutation must be employed in P and in the resulting individuals of 
the crossover, thus, before the replacement step. 

 
7) Mutation 
The mutation step consists in changing the value of a variable in an individual phenotype. 
For each position of an individual phenotype is generated a random number. If this random 
number is less than or equal to the mutation probability pm, the content of the corresponding 
position j, is changed by a random number generated in [lj, uj]. The mutation is applied in all 
population. 

The algorithm is repeated Ngen times, where Ngen is the number of generations, which also 
corresponds to the stop criterion. At the end, a last update in Paux takes place and the 
proposed algorithm returns the nondominated individuals of Paux that are feasible solutions. 
The proposed multiobjective GA is shown in Figure 5 where the selection phase is further 
detailed. 

 
procedure MULTIOBJECTIVEGA (N, Ngen, l1, u1,… , ln, un, f1,… , fk, g1,… , gp, hp + 1,… , hm, pc, pm) 
 � generate initial population 
 for i = 1…N do 
  P ←  P . INDRAND(l1, u1,… , ln, un)  
 end for  
 for g = 1…Ngen do 

� initialize vectors of nondominated and dominated individual indexes of P in relation to 

1 , ,pen pen
kf f… , respectively JB and JR 

  JB ← , JR←  
  for i = 1…N do 
   if P[i] is nondominated in P in relation to 1 , ,pen pen

kf f…  then 
    JB ←  JB . i  
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    � update Paux  
    if P[i] is dominated by solutions already stored in Paux then 
     � P[i] does not enter in Paux 
    else  
     if P[i] dominates solutions in Paux then 
      � eliminate dominated individuals from Paux 
     Paux ←  Paux

. [ ]P i  
   else JR ←  JR . i  
  end for 
  � perform crossover and replace parents by children 
  � perform mutation 
 end for 
 � update Paux 
 return feasible individuals from Paux that are nondominated in relation to f1,… ,fk 
end procedure 

 
Figure 5 – Proposed multiobjective GA pseudocode. 

 
Although the proposed multiobjective GA is quite straightforward, the integer representation 
associated with the auxiliary population updating at every generation improves the quality of 
the obtained solutions. Indeed, this was observed due to the fact that essentially the same 
algorithm was implemented with a binary representation and without the auxiliary population 
updating and the final results were considerable worse than the ones obtained by the 
multiobjective GA discussed in this paper. 

 

5. Coupling the Discrete Event Simulation with the Multiobjective Genetic Algorithm 

This paper couples the multiobjective genetic algorithm proposed in the previous section 
with Monte Carlo simulation for a more realistic representation of the dynamic behavior of a 
system. This technique is costly in terms of computation effort, but its application may be 
justified by a problem modeling closer to real world situations and/or by the possibility of 
handling non-analytical problems. In particular, discrete event simulation is used to analyze 
the behavior of a system, which consists in generating random discrete events during 
simulation time with the aim of creating a “typical” scenario for a system as to allow for the 
evaluation of some of its features that are of interest for the calculation of the objective 
functions of an individual P[i] defined in Section 4. Both algorithms were implemented in 
C++ by the authors. 

As depicted in Figure 6, the coupling takes place at the fitness evaluation step. For a given 
generation in the genetic algorithm evolution process, the availability objective function is 
estimated for every individual in the candidate solutions vector P[i], i = 1,…, N, via the 
discrete event simulation algorithm. For a predetermined mission time, tn, the ith individual 
(a candidate system) undergoes stochastic transitions between its possible states which, for 
the problem of interest, correspond to available and unavailable (under repair) states. The 
system availability estimation is based on its components, i.e., the system evolves through 
states of availability and unavailability depending on the components states: available or 
unavailable due to corrective maintenance. 
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Figure 6 – Proposed multiobjective GA+DES. 

 
Indeed, the availability quantification for the ith individual starts by subdividing the mission 
time tn into n time steps. For a given iteration, say tk, with k = 1,…, n, it is evaluated the 
current state for each component, as shown in Figure 6-b. In order to determine the system 
state from its components states at tk, one needs to construct the relationship characterizing 
the system logic as a function of the components. In the proposed approach, this is achieved 
by means of Binary Decision Diagrams – BDD (Rauzy, 2001). Thus, in order to keep track 
of the simultaneous evolutions of all components of the ith individual as well as of the 
system itself during the mission time, the observed realizations of the following random 
variables are recorded: number of failures/repairs of each component, number of times the 
system fails, the time intervals for which each component is under repair (corrective 
maintenance), and the time intervals during which the system is in the available state. The 
DES is replicated several times such that independent realizations of these random variables 
are obtained and then used to estimate the point availability, A(t), for the ith system over the 
mission time. Then, one obtains estimates for the two objective functions, namely the system 
average availability A , and the system total cost, where both metrics are estimated over the 
mission time. These results are then fed back to the GA algorithm, as illustrated in Figure 6. 

 
6. Example Application 1: Validating the Proposed Multiobjective Genetic Algorithm 

In this first numerical example, the proposed approach is validated by comparison with 
results obtained from a system devised as to allow for analytical solutions of the objective 
functions. In fact, it is considered a series-parallel non-repairable system adapted from 
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Taboada & Coit (2006), where one wants to maximize system reliability and minimize 
system cost. 

The non-repairable system is composed by 3 subsystems S1, S2 and S3. Components 
reliabilities are supposed to be constants during mission time and only the acquisition costs 
are considered in the system cost calculation. Each subsystem must have at least 1 
component and at most 8 components. S1 and S3 have each one 5 component options, and S2 
has 4 component options. The general mathematical formulation is presented as follows:  

Maximize 
1 1

1 (1 )
i xij

ms

ij
i j

r
= =

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
∏ ∏  (12) 

Minimize 
1 1

ims

ij ij
i j

c x
= =
∑∑   (13) 

Subject to max

1

im

ij i
j

x n
=

≤∑ , i = 1, 2,… , s 

 
1

1
im

ij
j

x
=

≥∑ , i = 1, 2,… , s 

 xij +∈Ζ , 

where s is the number of subsystems, xij is the quantity of the jth component in subsystem i, 
mi is the total number of components in ith subsystem, max

in  is the maximum number of 
components in subsystem i, rij and cij are, respectively, the reliability and the acquisition cost 
of the jth component of ith subsystem. In the present example, s = 3, max

in = 8, i = 1, 2, 3 and 
components features are shown in Table 2. Note that (12) is nonlinear and that (13) is linear. 

 
Table 2 – Components reliabilities and costs (adapted from Taboada & Coit (2006)). 

 S1 S2 S3 

Component rij cij rij cij rij cij 
1 0.94 900 0.97 1200 0.96 1000 
2 0.91 600 0.86 300 0.89 600 
3 0.89 600 0.70 200 0.72 400 
4 0.75 300 0.66 200 0.71 300 
5 0.72 200 – – 0.67 200 

 

In this example, the solution consisted in testing all the 816,975,224 possible alternatives of 
the search space, and then obtaining the nondominated solutions. The exact global Pareto 
front is formed by 221 different solutions. The example was also resolved by the proposed 
method and, in order to evaluate the algorithm behavior, it was replicated 30 times. The 
parameters for the multiobjective GA are exposed in Table 3. 

 



Lins & Droguett – Multiobjective optimization of availability and cost in repairable systems design via genetic algorithms and discrete event simulation 

Pesquisa Operacional, v.29, n.1, p.43-66, Janeiro a Abril de 2009 59 

Table 3 – Multiobjective GA parameters for example 1. 

Parameter Value 
Population size 100 
Number of generations 200 
Probability of crossover 0.95 
Number of variables for crossover 7 
BLX parameter 1 
Probability of mutation 0.01 

 
The execution of the algorithm resulted in 30 Pareto fronts that were compared to the real 
front by a distance metric. Firstly, for each point in an obtained front, it was calculated the 
minimum euclidean distance from it to one of the 221 points in the real front. Then, with the 
purpose of finding a mean distance representing an entire front ( id , i = 1,…,30), say the ith 
front, all the minimum distances were summed up and divided by nsi (number of obtained 
solutions in the ith front, i = 1,…,30). Next, it was calculated the following weighted mean: 

i i
i

i
i

d ns
D

ns

⋅
=
∑
∑

, i = 1,… ,30 (14) 

that attempts to summarize the convergence of the obtained front in one single number. 
However, note that in this procedure there is loss of information since the solution is the 
entire front and not only one single point. Table 4 presents id , the variance of the minimum 
distances (vari) and nsi for each one of the 30 Pareto fronts. The metric D was 1.30 · 10-3. 
 

Table 4 – Mean and variance of minimum distances for 30 obtained Pareto fronts. 

i id  vari nsi  i id  vari nsi 

1 1.43 . 10-3 1.11 . 10-4 80  16 1.35 . 10-3 2.93 . 10-5 72 
2 2.29 . 10-3 1.62 . 10-4 93  17 1.73 . 10-6 5.27 . 10-11 76 
3 2.66 . 10-4 3.49 . 10-6 83  18 4.77 . 10-4 9.32 . 10-6 78 
4 3.71 . 10-6 7.38 . 10-10 74  19 8.19 . 10-6 1.82 . 10-10 71 
5 3.50 . 10-4 7.63 . 10-6 90  20 1.64 . 10-3 1.00 . 10-4 90 
6 1.52 . 10-5 1.17 . 10-8 89  21 2.18 . 10-6 1.81 . 10-11 64 
7 1.04 . 10-5 1.21 . 10-9 75  22 2.52 . 10-3 9.19 . 10-5 87 
8 1.29 . 10-3 7.63 . 10-5 92  23 2.24 . 10-6 2.34 . 10-11 67 
9 1.58 . 10-6 1.22 . 10-11 76  24 1.18 . 10-2 1.08 . 10-3 89 
10 8.15 . 10-4 4.65 . 10-5 70  25 7.56 . 10-4 1.55 . 10-5 94 
11 3.21 . 10-4 7.23 . 10-6 71  26 1.99 . 10-3 1.31 . 10-4 84 
12 9.60 . 10-6 1.89 . 10-10 80  27 3.13 . 10-6 5.27 . 10-11 72 
13 9.38 . 10-4 1.66 . 10-5 81  28 1.36 . 10-5 7.24 . 10-9 89 
14 2.15 . 10-6 1.42 . 10-11 76  29 1.29 . 10-6 9.31 . 10-12 66 
15 1.57 . 10-3 1.31 . 10-4 75  30 6.04 . 10-3 3.00 . 10-4 90 
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In addition, it can be observed from Table 4 that 24d  and 29d  are, respectively, the highest 
and the lowest mean distance. Figure 7 shows the true Pareto front and the obtained fronts 24 
and 29. In particular for the front 29, 49 of its 66 solutions were from the true Pareto front. 
Note that the proposed multiobjective GA is able to find solutions on and near the real Pareto 
front. The system designs represented by the selected solutions in Figure 7 are pictured in 
Figure 8. 
 

 
Figure 7 – Real Pareto front and estimated Pareto fronts. 

 

 
Figure 8 – Selected solutions from Pareto front in Figure 7. 

 

7. Example Application 2: The Case of Repairable Systems 

Consider now a repairable series-parallel system comprised of components that undergo 
operating/failure/repair cycles. Moreover, the components times between failures are 
assumed to follow Weibull distributions, whereas the times to repair are exponentially 
distributed. Under these more realistic assumptions, the availability of each candidate system 
is estimated via discrete event simulation, and the integrated multiobjective GA+DES 
discussed in the Section 5 is used to tackle this problem. 

The system is supposed to have four subsystems in series S1, S2, S3 and S4. Each one of them 
must have at least 1 component. Table 5 shows the maximum number and the quantity of 
alternative components for each subsystem. In this example, the search space is constituted 
of 726,750 possible combinations among components. 

An example of phenotype for an individual, which is a vector formed by 14 decision 
variables, is pictured in Figure 9. 
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Table 5 – Subsystems features. 

 S1 S2 S3 S4 

Maximum number of components 3 2 5 3 

Number of alternative components 4 3 4 3 
 

 
Figure 9 – Example of an individual phenotype (example 2). 

 
The two considered objectives are the system mean availability maximization and the system 
cost minimization. However, the corrective maintenance cost is also taken into account along 
with the acquisition cost in the estimation of the total system cost. The acquisition cost is 
defined as follows: 

CA = 
1 1

ims
a
ij ij

i j
c x

= =
∑∑ , (15) 

where a
ijc  is the acquisition cost of one unit of the jth component of subsystem i. The 

corrective maintenance cost is: 

CCM = 
1 1 1

iji xms
cm
ij ijk

i j k
c n

= = =
∑∑∑ , (16) 

where ijkn  is the mean number of repairs of the kth unit of the jth component type of the ith 

subsystem during simulation time and cm
ijc  is the repair cost of a component of type j of ith 

subsystem. Therefore, the system total cost is defined as follows: 

CS = 
1 1 1

iji xms
a cm
ij ij ij ijk

i j k
c x c n

= = =

⎡ ⎤
+⎢ ⎥
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∑∑ ∑  (17) 

Table 6 presents the Weibull distributions (α is the scale parameter and β is the shape 
parameter) for the components times between failures, and the Exponential distributions 
(with parameter λ) for the repair times. Table 6 also lists the acquisition and corrective 
maintenance costs of every possible component in each subsystem. The multiobjective GA 
parameters are listed in Table 7. 

After running the coupled multiobjective GA+DES algorithm for a mission time of 100 time 
units, 55 nondominated solutions were obtained (Figure 10). Systems corresponding to the 
solutions indicated in the Pareto front in Figure 10 are illustrated in Figure 11. Solutions A 
and E (extreme solutions) have, respectively, mean availabilities equal to 0.5625 and 0.9860, 
with associated costs of 3,262.87 and 10,862.25 monetary units. 
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Table 6 – Components features. 

 Component fX(x) fD(d) a
ijc  cm

ijc  

1 Weibull(25; 1.5) Exp(0.20) 730 55 
2 Weibull(27; 1.7) Exp(0.30) 650 45 
3 Weibull(40; 1.4) Exp(0.20) 1000 85 

S1 

4 Weibull(35; 1.2) Exp(0.50) 850 78 
1 Weibull(25; 1.4) Exp(0.25) 700 50 
2 Weibull(28; 1.3) Exp(0.20) 760 65 S2 
3 Weibull(24; 1.2) Exp(0.20) 650 70 
1 Weibull(20; 1.2) Exp(0.30) 670 60 
2 Weibull(40; 1.8) Exp(0.20) 1100 90 
3 Weibull(32; 1.6) Exp(0.50) 1215 95 

S3 

4 Weibull(29; 1.3) Exp(0.20) 950 90 
1 Weibull(33; 1.6) Exp(0.20) 920 87 
2 Weibull(31; 1.3) Exp(0.20) 870 76 S4 
3 Weibull(19; 1.2) Exp(0.40) 400 35 

 

Table 7 – Multiobjective GA parameters for example application 2. 

Parameter Value 
Population size 50 
Number of generations 100 
Probability of crossover 0.95 
Number of variables for crossover 7 
BLX parameter 1 
Probability of mutation 0.01 

 

 
Figure 10 – Results for example application 2. 
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Figure 11 – Selected solutions from the obtained Pareto front (example application 2). 

 
7.1 Return of Investment Analysis 

Since all nondominated solutions are equivalent according to the multiobjective approach, 
the performance of these solutions can be investigated by means of a return of investment 
analysis. This analysis consists in verifying the gain in availability in relation to the required 
investment in system design: 

ROI = (Ai – Aj) / (Ci – Cj) , i ≠ j (18) 

where i and j are solutions in the Pareto front, and Ai, Aj, Ci and Cj are their respective 
availabilities and costs. It is desired a large value in the numerator of equation (18) and a 
small difference Ci – Cj in order to obtain a large ROI. 

Consider, for instance, solutions B, C, D and E (Figure 10). Table 8 shows their corresponding 
availability, cost and ROI. From Table 8, note that for an increase in system availability of 
0.0366, it is required 164.67 monetary units, whereas for improving system availability from 
0.9852 to 0.9860, it is necessary to invest 897.80 monetary units on system design. Therefore, 
the gain in availability is sometimes very small in relation to the required investment. In 
addition, the ROI in the first case is about 249 times the ROI in the second case. 
 

Table 8 – Return of investment of some solutions of example 2. 

Solution Availability Cost ROI 
B 0.8705 5,688.75 
C 0.9071 5,853.42 

2.22 . 10-4 

D 0.9852 9,964.45 
E 0.9860 10,862.25 

8.91 . 10-7 

 

8. Concluding Remarks 

This paper proposed a multiobjective genetic algorithm for the treatment of redundancy 
allocation problems involving repairable systems under the conflicting objectives of 
maximizing system mean availability and minimizing system cost (acquisition and corrective 
maintenance costs). The work attempted to overcome some of the limitations in the system 
reliability modeling. In fact, it was considered a series-parallel topology comprised by 
components supposed to have failure-repair cycles modeled by renewal processes with 
Weibull distributed times between failures and Exponential repair times. Under these 
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conditions, the resulting system’s failure-repair cycles are not characterized by a renewal 
process and therefore no analytical solution to system availability is provided. Moreover, 
it was also considered multiple alternative components for a given slot in a subsystem with 
different reliability and cost characteristics. For these more realistic assumptions regarding 
the system dynamic behavior, system availability was estimated through DES. The 
integration between the multiobjective GA with DES takes place at the fitness evaluation 
step, i.e., the availability is estimated via DES for every individual in a given generation of 
the evolution process in the GA algorithm. The DES permits the incorporation of real world 
features in problem modeling, but also demands a considerable computation effort. In this way, 
its application is indicated when the analysis of the system dynamic behavior is mandatory 
and/or when there is no analytical characterization of the problem under consideration. 

The proposed approach was illustrated by means of two application examples. In the first 
one, a simple problem consisting of a non-repairable system with time independent failure 
probabilities was considered in order to validate the multiobjective GA. The results showed 
that the proposed algorithm, even being quite straightforward, was able to find solutions near 
and on the true Pareto front. According to the explained distance metric, even the furthest 
encountered front is very close to the real one. The second example consisted in a more 
realistic situation regarding the system dynamic behavior. The coupled multiobjective GA 
with discrete event simulation was used to obtain the Pareto front corresponding to the 
maximization of system mean availability and minimization of system cost. The results from 
both application examples indicate that the proposed method can be a valuable tool for the 
decision maker particularly in situations where the true Pareto front is unknown. In this way, 
one can obtain good solutions even if those solutions are not the optimal ones. 

However, the assumption of perfect repair might be unrealistic for some problems of 
practical interest. In this context, the integrated multiobjective GA+DES can be extended to 
deal with systems and components subjected to imperfect repairs. Therefore, the redundancy 
allocation problem can be addressed for situations, for example, where components failure-
repair processes are modeled via generalized renewal processes (Moura et al., 2007). 
Moreover, other maintenance policies such as preventive maintenance and inspection with 
resource restrictions such as spare parts and maintenance crew availability can be also taken 
into account by extending the proposed method. Besides, additional improvements in the 
multiobjective GA (such as the coupling with local search algorithms) can enhance its 
performance and these are current research topics by the authors. 
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