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ABSTRACT. This paper addresses the change point detection problem in time series. A methodology based

on the Metropolis-Hastings algorithm applied to time series modeled as a process with Beta distribution is

discussed. In order to make this methodology useful in practice, a fuzzy cluster technique is applied to

the initial time series at first, generating a new data set with Beta distribution. Bayesian procedures are

considered for inference and the Metropolis-Hastings algorithm is used to sample from the posteriors. In

the clustering process, a Kohonen neural network is used having as objective to find the best centers of

the time series to be used in the fuzzyfication process. Finally, it will be presented a simulation results in

the series of the electric energy consumption in Brazil, between January of 1976 and December of 2000,

five months before the blackout occurred in 2001. Such result illustrates the efficiency of the proposed

methodology for change point detection in time series.

Keywords: change point, fuzzy clustering, Metropolis-Hastings.

1 INTRODUCTION

Traditional methods of describing a time series behavior are based on models which satisfactorily
explain its dynamics. Some fundamental question must be answered, however, in order to obtaine
a model that reasonably fits to data: Are there switching regimes in the series? Can a single
model, all the time, fit the dynamics behavior? If there are significant changes for the underlying
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time series, it seems natural to find out those change points or change periods before modeling
the whole process.

Change points detection is a problem of interest in many different areas and it has been used to
analyze financial time series (Oh KJ, Roh TH & Moon MS, 2005), ecological time series (Bec-
kage, Joseph, Belisle, Wolfson & Platt, 2007), number of crimes series (Loschi RH, Gonçalves
FB & Cruz FBR, 2005), and many others. The main techniques for change points detection pre-
sented in the literature are based on sequential statistical tests and Bayesian analysis. The most
common statistical test on the change point detection problem is the CUSUM (Cumulative Sum).
The CUSUM test proposed by (Hinkey, 1971) is widely used in the change point detection, and
applications of this method can be found in (Hadjiliadis & Moustakides, 2006), (Lee, Nishiyama
& Yoshida, 2006), and (Lee S, Park S, Maekawa K & Kawai K, 2006), as well as its modificati-
ons and extensions. In the Bayesian approach, inference about the changes are made based on the
posterior for the positions of the change point. In this setting, the MCMC (Markov chain Monte
Carlo) methods are commonly used to approximate the posteriors. The Bayesian analysis context
the reference work for multiple change points detection is the paper of (Barry & Hartigan, 1993)
that introduced the product partition model (ppm) to identify change points in the mean of data
having a Gaussian distribution. In (Loschi RH & Cruz FRB, 2005b) the posterior probability of
any instant being a change point is used as an evidence measure that the behavior of a sequence
of data changes at any moment. The effectiveness of this technique in identifying changes in a
Poisson distribution when compared with the measure proposed by (Hartigan, 1990) is presented
in (Loschi RH & Cruz FRB, 2005a).

However, all the previous approaches necessarily demand some type of prior knowledge about
the time series, namely the type of distribution that models the data behavior. Thus, differently
from former techniques, the method proposed in this paper does not require any prior knowledge
about statistical properties of the time series before the application of the MCMC procedure.
This is made by the introduction of a first step, in which a fuzzy set technique is applied in order
to cluster and to transform the initial time series, about which there is no a priori knowledge of
its distribution, into a time series which can be approximated by a Beta distribution. Specifically
in this first step, the Kohonen network is used to find centers of the clusters, and in the sequel
the fuzzy membership degree is computed for each point of the initial time series, generating a
new time series with beta distribution. This new time series generated in the first step allows
systematically to apply the same strategy to detect the change via Bayesian change point model
with a fixed reference distribution: the Beta distribution. Thus the Metropolis-Hastings algorithm
(Gamerman, 1997) can be used to sample from the posteriors including the one that indicates the
position of the change point.

Assuming that p1 is the first operation point, p2 is the second operation point, ε(t) is the noise
signal with π(∙) distribution and m is the position of the change point, throughout the paper, it is
considered the following time series:

f (t) =

{
p1 + 0.1 ∗ ε(t)− 0.1 ∗ ε(t − 1), se t ≤ m ;

p2 + 0.1 ∗ ε(t)− 0.1 ∗ ε(t − 1), se t > m .
(1)
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MARCOS FLÁVIO S.V. D’ANGELO et al. 219

The Figure 1 show the time series behavior with fixed p1 = 1, p2 = 2, m = 30 e ε(t) ∼ U (0, 1)

and 60 samples of time series.

Figure 1 – Time series behavior with fixed p1 = 1, p2 = 2, m = 30 e ε(t) ∼ U (0, 1) and

60 samples of time series.

To establish notation, along this paper, U (0, 1) denotes the uniform distribution in the interval
[0, 1], N (0, 1) denotes the standard Normal distribution with zero mean and unit variance, t (5)

denotes the Students-t distribution with 5 degrees of freedom, gamma(a, b) denotes the Gamma
distribution with scale parameter a and shape parameter b and 0(a) denotes the gamma function
evaluated in a. All the time series, e.g., y(t), denotes a discrete-time sequence.

2 TIME SERIES TRANSFORMATION BY FUZZY SETS

One of the main applications of the fuzzy sets theory (Zadeh, 1965) is for clustering detection, in
which the problem of grouping the data into k separate categories is solved by defining different
pertinences to each element belonging to category.

Thus, in this section, the first step of the proposed formulation to the change point detection
problem is detailed, namely the fuzzy clustering of the initial time series.

Definition. Let y(t) be a time series, and consider a positive integer K . The set

C =
{
Ci |min{y(t)} ≤ Ci ≤ max{y(t)}, i = 1, . . . , k

}
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that solves the minimization problem

min
k∑

i=1

∑

μi (t)∈Ci

‖μi (t)− Ci‖
2 (2)

is called the fuzzy cluster centers set for the time series y(t). The fuzzy membership degree or
fuzzy membership function value of y(t) ∈ Ci (which means y(t) belongs to the cluster Ci ) is
given by

μi (t) , 1− (y(t)− Ci )
2/

k∑

j=1

(y(t)− C j )
2 (3)

Given the set C of cluster centers, it is an easy task to measure the distance between each point
in the time series y(t) and each center Ci . The problem of finding the centers can be solved, for
instance, via k-means (Kaufman & Rousseeuw, 1990), C-means (Bezdek, 1981), and Kohonen
network (Kohonen, 2001). In this paper, the Kohonen network technique is used.

The proposed fuzzy clustering to transform a given time series into a new one is described below:

1. Input the time series y(t);

2. Find the set of k centers C = {Ci |min{y(t)} ≤ Ci ≤ max{y(t)} , i = 1, 2}, that minimizes
the Euclidean distance given in (2) and that is illustrated in Figure 2, considering, for
example, the time series (1). For the proposal of this paper, it is considered k = 2 centers.

3. Compute the fuzzy membership degree given in (3), for each sample of the time series,
y(t), with respect to each center Ci (as illustrated in Figure 3 considering, for example,
the time series (1)).

Since the idea is to find just one change point, only two centers are found. The function μ1(t)
defines a new time series, in which the change point is detected.

From Figure 3, it is noticeable that the fuzzy membership degree is concentrated around 1 (one)
for the first 30 values observed before the change point (see also the histogram in Figure 4),
and is concentrated around zero for the last 30 values observed after the change point (see also
the histogram in Figure 5). Furthermore, the distribution of μ1(t), defined according to (3), is
confined into the interval [0, 1], as shown below:

if y(t) −→ C1 then μ1(t) −→ 1− ;

if y(t) −→ C2 then μ1(t) −→ 0+ ;

if C1 −→ C2 then μ1(t) −→ 1/2 ;

if y(t) −→ [C1, C2] then μ1(t) −→ [0, 1] .

Using the Kullback-Leibler divergence (Kullback & Leibler, 1951) one may conclude that the
distributions of μ1(t) before and after the change point can be approximated by Beta distributions
with different input parameters, say, for t ≤ m, one assumes a beta(a, b) distribution, and for
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Figure 2 – Time series centers considering the Figure 1: × – before of Kohonen network

learning and ◦ – after of Kohonen network learning.

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

μ
1
(t) μ

2
(t)

Figure 3 – μ1(t) and μ2(t).
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t > m it is assumed the beta(c, d) distribution. For example, in the case in which there is
a change point in the time series, the parameter a is greater than the parameter in the Beta
distribution of μ1(t) if t ≤ m, and the parameter c is smaller than the parameter d in the Beta
distribution of μ1(t) if t > m. Figures 6-8 presents an illustration of the distributions of μ1(t) for
the time series in (1) with sample size n = 200. It is assumed that the change point took place at
the position m = 100. This empirical test has been performed starting from several time series,
with different probability distributions for ε(t), say, U (0, 1) in Figure 6, N (0, 1) in Figure 7,
and t (5) in Figure 8. In all these cases, the behavior of the transformed time series, obtained by
applying the clustering technique, was well described by Beta distributions with similar shapes.

Figure 4 – Histogram of μ1(t) for ≤ 30.

Figure 5 – Histogram of μ1(t) for > 30.

Since the clustering technique assures the same type of probability distribution function for
the new time series, μ1(t) this fixed statistical model can be assumed in the Bayesian formu-
lation to detect the change point in the transformed time series. In this paper, the Metropolis-
Hastings algorithm is used to sample from the posteriors, since it is a powerful and simple stra-
tegy to do it.
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Figure 6 – Histograms of μ1t for ε(t) ∼ U (0, 1).
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Figure 7 – Histograms of μ1t for ε(t) ∼ N (0, 1).
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Figure 8 – Histograms of μ1t for ε(t) ∼ t (5).

3 METROPOLIS-HASTINGS FORMULATION

The goal of the Metropolis-Hastings algorithm (Gamerman, 1997) is to construct a Markov chain
that has a specified equilibrium distribution π that in the paper is the posterior distribution of all
parameters in the change point model.

Define a Markov chain as follows. If Xi−1 = xi−1, then generate a candidate value x∗ = y from
a reference distribution with density fX∗|X (y) = q(xi−1, x∗). The candidate value x∗ is then
accepted or rejected as a sample of π . The acceptance probability is

α(x, y) = min
(

1,
π(x∗)

π(xi−1)

q(x∗, xi−1)

q(xi−1, x∗)

)
(4)

which defines the transition kernel of the chain. If the candidate is accepted, then set Xi = x∗,
otherwise, set Xi = xi−1. It is possible to show that under general conditions the sequence
X0, X1, X2, . . . is a Markov chain with equilibrium distribution π .

In practical terms, the Metropolis-Hastings algorithm can be specified by the following steps:

1. Choose a starting value x0, the number of iterations, R, and set the iteration counter r = 1;

2. Generate a candidate value y ∼ q(xi,∙);

3. Calculate the acceptance probability (4) and generate u ∼ U (0, 1);
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4. Compute the new value for the current state:

xt+1 =

{
y , if α(x, y) > u

xt , otherwise

5. If r < R, return to step 2. Otherwise stop.

As discussed in the previous section, the clustering technique generates a transformed time series
with the following distribution

y(t) ∼ beta(a, b) , for t = 1, . . . , m
y(t) ∼ beta(c, d) , for t = m + 1, . . . , n

where a, b, c, d and the change point m are the parameters to be estimated. To complete the
model specification, prior distributions are elicited for the parameters. As usually done when-
ever there is no prior information available, in this paper the following non-informative prior
distributions are assumed:

a ∼ gamma (0.1, 0.1)

b ∼ gamma (0.1, 0.1)

c ∼ gamma (0.1, 0.1)

d ∼ gamma (0.1, 0.1)

m ∼ U [1, . . . , n] , with p(m) = 1/n .

These non-informative gamma prior distributions, with parameters 0.1, have been chosen with
the purpose of spreading the whole parametric space.

Since the posteriors do not have a close form, the Metropolis-Hastings algorithm is used to
sample from them. Its formulation is given by the pseudo-code in the Table 1, and the reference
distributions

π(a∗)

π(ai−1)

q(a∗, ai−1)

q(ai−1, a∗)
,

π(b∗)

π(bi−1)

q(b∗, bi−1)

q(bi−1, b∗)
,

π(c∗)

π(ci−1)

q(c∗, ci−1)

q(ci−1, c∗)
,

π(d∗)

π(di−1)

q(d∗, di−1)

q(di−1, d∗)
and

π(m∗)

π(mi−1)

q(m∗, m)

q(mi−1, m∗)

are presented in the Appendix A. The change point m is obtained as the mode of its posterior
distribution. It is approximated by the maximum value in the histogram for the R simulations
of the pseudo-code in Table 1, with the exception of the border points of the distribution. The
Figure 9 illustrates the convergence of parameter m for p1 = 1, p2 = 2, ε(t) ∼ U (0, 1), R =
100 and m = 30.

Table 2 shows the results for 100 replications of the time series assuming different values of the
parameters p2 and ε(t). It is clear from Table 2 that the proposed methodology has presented
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Table 1 – Pseudo-code of the Metropolis-Hastings algorithm.

Read number of simulations R

a0 ← Gamma(0.1, 0.1)

b0 ← Gamma(0.1, 0.1)

c0 ← Gamma(0.1, 0.1)

d0 ← Gamma(0.1, 0.1)

m0 ← U [1, . . . , n]

For i = 1 to R Go

a∗ ← Gamma(0.1, 0.1)

b∗ ← Gamma(0.1, 0.1)

c∗ ← Gamma(0.1, 0.1)

d∗ ← Gamma(0.1, 0.1)

m∗ ← U [1, . . . , n]

If min
(

1,
π(a∗)

π(ai−1)
q(a∗,ai−1)
q(ai−1,a∗)

)
> U (0, 1)

ai ← a∗

Else

ai ← ai−1

End If

If min
(

1,
π(b∗)

π(bi−1)
q(b∗,bi−1)
q(bi−1,b∗)

)
> U (0, 1)

bi ← b∗

Else

bi ← bi−1

End If

If min
(

1,
π(c∗)

π(ci−1)
q(c∗,ci−1)
q(ci−1,c∗)

)
> U (0, 1)

ci ← c∗

Else

ci ← ci−1

End If

If min
(

1,
π(d∗)

π(di−1)
q(d∗,di−1)
q(di−1,d∗)

)
> U (0, 1)

di ← d∗

Else

di ← di−1

End If

If min
(

1,
π(m∗)

π(mi−1)
q(m∗,mi−1)
q(mi−1,m∗)

)
> U (0, 1)

mi ← m∗

Else

mi ← mi−1

End If

End For
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MARCOS FLÁVIO S.V. D’ANGELO et al. 227

Figure 9 – Convergence of parameter m.

100% of correctness in detecting the change point in almost all situations. However, in the case
when the time series changes from point p1 = 1 to point p2 = 1.1, the proposed approach has
detected points in the neighborhood of m = 30, including it. In Table 2, the sign ‘XX’ indicates
that the percentage of correctness was not conclusive. This fact is illustrated in the Figure 10,
where a test was performed assuming p1 = 1, p2 = 1.1, ε(t) ∼ U (0, 1), R = 1000 and m = 30.
This behavior is due to the fact that both the noise and the signal change have the same amplitude.

Table 2 – Results of change point detection.

p1 p2 m Noise size

% of correct % of correct % of correct

detection detection detection

ε(t) ∼ U (0, 1) ε(t) ∼ N (0, 1) ε(t) ∼ t (5)

1 2 30 0.1 100 100 100

1 1.9 30 0.1 100 100 100

1 1.8 30 0.1 100 100 100

1 1.7 30 0.1 100 100 100

1 1.6 30 0.1 100 100 100

1 1.5 30 0.1 100 100 100

1 1.4 30 0.1 100 100 100

1 1.3 30 0.1 100 100 100

1 1.2 30 0.1 100 100 100

1 1.1 30 0.1 XX XX XX

1 1 30 0.1 100 100 100
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Figure 10 – Convergence of parameter m.

4 A CASE STUDY

The energy crisis faced by Brazil in early 2001 triggered a process of energy rationing in the
country. This phenomenon was responsible for modifying habits and behaviors taken so far
as standards when it came to consumption of electricity in Brazil. Since this fact has been
occurred more useful studies to predict the electricity sector make necessary. In this case study
the proposed methodology is used to assess the change in the trend at a particular time series
that characterizes the energy consumption only in the Southeast Brazil (industry trade) in the
period January 1976 to December 2000 (five months before the blackout in 2001), as presented
in Figure 11, available at (IPEA).

Since such time series can experienced a change in its trend in the analyzed period, it is important
to find this change point before modeling more precisely the entire process as discussed in the
introduction section. Before applying the proposed methodology, the series was decomposed
into a time series trend and a time series of cycles, (Hodrick & Prescott, 1997). The trend time
series is illustrated in Figure 12. One can notice changes in the rate of growth of consumption
between points 200 and 250, and points 250 and 300. The process of detection of change points
in the time series trend, in Figure 12, was found by the taking its time-derivative and is illustrated
in Figure 13. The result of the proposed methodology for the change point detection in Figure 13
is illustrated in Figure 14, which shows the effectiveness of this technique. Notice that the results
in Figure 14 have been obtained after 1000 simulations of the pseudo-code in Table 1.
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Figure 11 – Time series that characterizes the energy consumption only in the

Southeast Brazil (industry trade) in the period January 1976 to December 2000.

Figure 12 – Time series trend.

Further this methodology cannot be used as “blackout detector”, but as an auxiliary tool in the
forecasting process in this time series to be used in the planning of the expansion in the energy
sector.
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   Figure 13 – Time-derivative of the time series trend.

Figure 14 – Response of the proposed methodology.
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5 CONCLUSIONS

In this paper a novel fuzzy/Bayesian methodology for change point detection in time series was
proposed. The methodology is based on a two step formulation. Firstly, a fuzzy clustering
generates a transformed time series with Beta distribution to be used in the second step. In the
second step, a Bayesian modeling is used for change point detection in the transformed time
series. The Metropolis-Hastings algorithm is used to sample form the posteriors and the position
of the change point is thus obtained taking the posterior mode as it estimation.
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A Appendix

In this appendix is presented the acceptance probability for the posterior distribution of the pa-
rameters a, b, c, d and m described in the Metropolis-Hastings algorithm. The reference distri-
butions used in the work are the prior distributions gamma(0.1, 0.1).

The reference distribution in Metropolis-Hastings is computed by likelihood function:

f (y|a, b, c, d, m) ∼
m∏

i=1

0(a + b)

0(a)+ 0(b)
ya−1

i (1− yi )
b−1

m∏

i=m+1

0(c + d)

0(c)+ 0(d)
yc−1

i (1− yi )
d−1

1. For the parameter a:

π(a∗)

π(ai−1)

q(a∗, ai−1)

q(ai−1, a∗)

=
π(a∗)

π(ai−1)

f (y|a∗, bi−1, ci−1, di−1, mi−1)π(a∗)π(bi−1)π(ci−1)π(di−1)π(mi−1)

f (y|ai−1, bi−1, ci−1, di−1, mi−1)π(ai−1)π(bi−1)π(ci−1)π(di−1)π(mi−1)

=

[
0(a∗+bi−1)

0(a∗)0(bi−1)

]mi−1 [
0(ci−1+di−1)

0(ci−1)0(d)

]n−mi−1 ∏mi−1

j=1

[
ya∗−1

j (1− y j )
bi−1−1

]

[
0(ai−1+bi−1)

0(ai−1)0(bi−1)

]mi−1 [
0(ci−1+di−1)

0(ci−1)0(di−1)

]n−mi−1 ∏mi−1

j=1

[
yai−1−1

j (1− y j )bi−1−1
]

×

∏n
j=mi−1+1

[
yci−1−1

j (1− y j )
di−1−1

]

∏n
j=mi−1+1

[
yci−1−1

j (1− y j )di−1−1
]

[
0.10.1[0(0.1)]−1a∗

0.1−1
e−0.1a∗

]2

[
0.10.1[0(0.1)]−1ai−10.1−1e−0.1ai−1

]2

=

[
0(a∗+bi−1)

0(a∗)

]mi−1 ∏mi−1

j=1 ya∗−1
j

{[
ai−1

a∗

]0.9
e−0.1(a∗−ai−1)

}2

[
0(ai−1+bi−1)

0(ai−1)

]mi−1 ∏mi−1

j=1 yai−1−1
j
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MARCOS FLÁVIO S.V. D’ANGELO et al. 233

2. For the parameter b:

π(b∗)

π(bi−1)

q(b∗, bi−1)

q(bi−1, b∗)

=
π(b∗)

π(bi−1)

f (y|ai , b∗, ci−1, di−1, mi−1)π(ai )π(b∗)π(ci−1)π(di−1)π(mi−1)

f (y|ai , bi−1, ci−1, di−1, mi−1)π(ai )π(bi−1)π(ci−1)π(di−1)π(mi−1)

=

[
0(ai+b∗)
0(ai )0(b∗)

]mi−1 [
0(ci−1+di−1)

0(ci−1)0(d)

]n−mi−1 ∏mi−1

j=1

[
yai−1

j (1− y j )
b∗−1

]

[
0(ai+bi−1)

0(ai )0(bi−1)

]mi−1 [
0(ci−1+di−1)

0(ci−1)0(di−1)

]n−mi−1 ∏mi−1

j=1

[
yai−1

j (1− y j )bi−1−1
]

×

∏n
j=mi−1+1

[
yci−1−1

j (1− y j )
di−1−1

]

∏n
j=mi−1+1

[
yci−1−1

j (1− y j )di−1−1
]

[
0.10.1[0(0.1)]−1b∗

0.1−1
e−0.1b∗

]2

[
0.10.1[0(0.1)]−1bi−10.1−1 e−0.1bi−1

]2

=

[
0(ai+b∗)

0(b∗)

]mi−1 ∏mi−1

j=1 (1− y j )
b∗−1

{[
bi−1

b∗

]0.9
e−0.1(b∗−bi−1)

}2

[
0(ai−1+bi−1)

0(bi−1)

]mi−1 ∏mi−1

j=1 (1− y j )bi−1−1

3. For the parameter c:

π(c∗)

π(ci−1)

q(c∗, ci−1)

q(ci−1, c∗)

=
π(c∗)

π(ci−1)

f (y|ai , bi , c∗, di−1, mi−1)π(ai )π(bi )π(c∗)π(di−1)π(mi−1)

f (y|ai , bi , ci−1, di−1, mi−1)π(ai )π(bi )π(ci−1)π(di−1)π(mi−1)

=

[
0(ai+bi )

0(ai )0(bi )

]mi−1 [
0(c∗+di−1)

0(c∗)0(di−1)

]n−mi−1 ∏mi−1

j=1

[
yai−1

j (1− y j )
bi−1

]

[
0(ai+bi )

0(ai )0(bi )

]mi−1 [
0(ci−1+di−1)

0(ci−1)0(di−1)

]n−mi−1 ∏mi−1

j=1

[
yai−1

j (1− y j )bi−1
]

×

∏n
j=mi−1+1

[
yc∗−1

j (1− y j )
di−1−1

]

∏n
j=mi−1+1

[
yci−1−1

j (1− y j )di−1−1
]

[
0.10.1[0(0.1)]−1c∗

0.1−1
e−0.1c∗

]2

[
0.10.1[0(0.1)]−1ci−10.1−1 e−0.1ci−1

]2

=

[
0(c∗+di−1)

0(c∗)

]n−mi−1 ∏n
j=mi−1−1 yc∗−1

j

{[
ci−1

c∗

]0.9
e−0.1(c∗−ci−1)

}2

[
0(ci−1+di−1)

0(di−1)

]n−mi−1 ∏n
j=mi−1+1 yci−1−1

j

4. For the parameter d:

π(d∗)

π(di−1)

q(d∗, di−1)

q(di−1, d∗)
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=
π(d∗)

π(di−1)

f (y|ai , bi , ci , d∗, mi−1)π(ai )π(bi )π(ci )π(d∗)π(mi−1)

f (y|ai , bi , ci , di−1, mi−1)π(ai )π(bi )π(ci )π(di−1)π(mi−1)

=

[
0(ai+bi )

0(ai )0(bi )

]mi−1 [
0(ci+d∗)
0(ci )0(d∗)

]n−mi−1 ∏mi−1

j=1

[
yai−1

j (1− y j )
bi−1

]

[
0(ai+bi )

0(ai )0(bi )

]mi−1 [
0(ci+di−1)

0(ci )0(di−1)

]n−mi−1 ∏mi−1

j=1

[
yai−1

j (1− y j )bi−1
]

×

∏n
j=mi−1+1

[
yci−1

j (1− y j )
d∗−1

]

∏n
j=mi−1+1

[
yci−1

j (1− y j )di−1−1
]

[
0.10.1[0(0.1)]−1d∗

0.1−1
e−0.1d∗

]2

[
0.10.1[0(0.1)]−1di−10.1−1e−0.1di−1

]2

=

[
0(c∗+di−1)

0(c∗)

]n−mi−1 ∏n
j=mi−1−1

[
(1− y j )

d∗−1
] {[

di−1

d∗

]0.9
e−0.1(d∗−di−1)

}2

[
0(ci−1+di−1)

0(di−1)

]n−mi−1 ∏n
j=mi−1+1

[
(1− y j )di−1−1

]

5. For the parameter m:

π(m∗)

π(mi−1)

q(m∗, m)

q(mi−1, m∗)

=
π(m∗)

π(mi−1)

f (y|ai , bi , ci , di , m∗)π(ai )π(bi )π(ci )π(di )π(m∗)

f (y|ai , bi , ci , di , mi−1)π(ai )π(bi )π(ci )π(di )π(mi−1)

Sendo π(m(∙)) ∼ U (0, 1), então:

π(m∗)

π(mi−1)

q(m∗, m)

q(mi−1, m∗)

=
f (y|ai , bi , ci , di , m∗)

f (y|ai , bi , ci , di , mi−1)

=

[
0(ai+bi )

0(ai )0(bi )

]m∗[
0(ci+di )

0(ci )0(di )

]n−m∗∏m∗
j=1

[
yai−1

j (1− y j )
bi−1

]∏n
j=m∗+1

[
yci−1

j (1− y j )
di−1

]

[
0(ai+bi )

0(ai )0(bi )

]mi−1[
0(ci+di )

0(ci )0(di )

]n−mi−1∏mi−1

j=1

[
yai−1

j (1− y j )
bi−1

]∏n
j=mi−1+1

[
yci−1

j (1− y j )
di−1

]
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