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ABSTRACT. A graph is regular if every vertex is of the same degree. Otherwise, it is an irregular graph.

Although there is a vast literature devoted to regular graphs, only a few papers approach the irregular ones.

We have found four distinct graph invariants used to measure the irregularity of a graph. All of them are

determined through either the average or the variance of the vertex degrees. Among them there is the index

of the graph, a spectral parameter, which is given as a function of the maximum eigenvalue of its adjacency

matrix. In this paper, we survey these invariants with highlight to their respective properties, especially those

relative to extremal graphs. Finally, we determine the maximum values of those measures and characterize

their extremal graphs in some special classes.

Keywords: index of a graph, irregularity measure, extremal graphs.

1 INTRODUCTION

Let G be an undirected graph with n vertices and m edges without loops and multiple edges.
We denote G(n) and H (n), the respective sets of all the graphs (connected or not) and all the
connected graphs with n vertices and, G(n, m) and H (n, m), the respective sets of the graphs

(connected or not) and all the connected graphs with n vertices and m edges. The degree of a
vertex vi , denoted d(vi ), is the number of the incident edges in vi . Since

∑
i=1,n vi = 2m, the

average of vertex degrees can be given as d(G) = 2m
n . A graph is k-regular or, simply regular, if

every degree is equal to k. Otherwise, the graph is said to be an irregular graph.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. They are also respectively
referred as the A-eigenvalue, denoted λ1 ≥ λ2 ≥ . . . ≥ λn . The index of a graph is the maximal
eigenvalue of A(G), that is, λ1(G). The join G1 ∨G2 of (disjoint) graphs G1 and G2 is the graph

obtained from G1 and G2 by joining each vertex of G1 with each vertex of G2.
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Given a graph G, what is the minimal number of edges needed to add to G to get H , a regular

supergraph of G? In this case, which pairs of non adjacent vertices in G should become adjacent
in H? Questions such as these are interesting and in order to try to answer them it seems useful to
know how near or distant any graph is from a regular one. We define as the measure of irregularity

of G, every function F : G �→ R, where G is the set of all graphs and R is the set of all real
number, such that ∀G ∈ G, G is a regular graph if and only if F(G) = 0.

In this paper, we survey all known parameters used as measures of irregularity as well as their
respective properties, mainly those relative to upper and lower bounds and their respective ex-

tremal graphs. Also, we characterize their extremal graphs among all the split complete graphs
and among all path complete graphs with a particular characteristic.

2 KNOWN MEASURES OF IRREGULARITY

In 1957, Collatz & Sinogowitz [8] proved that the index of a graph is greater than or equal to the

average of vertex degrees and the equality holds if and only if the graph is regular. From this fact,
they introduced ε(G) = λ1(G)−d(G) to measure the irregularity of a graph, which we call here,
the spectral measure. Those authors also proved that, for n ≤ 5, the maximum value to ε(G) is√

n − 1 − 2 + 2
n and the maximal is attained for the star Sn . Based on this, they conjectured that

Sn is the most irregular graph among all graphs with n vertices relative to ε(G). In 1988, this
conjecture was refuted by Cvectković & Rowlinson [9].

Some years after, Bell [4] suggested making the variance of the degrees of the vertices of G,

σ(G) = 1

n

n∑
i=1

(d(vi ))
2 − 1

n2

(
n∑

i=1

d(vi )

)2

,

as a measure of the irregularity of G, and we refer to it as the variance measure. Bell charac-
terized the most irregular graphs in the classes G(n), G(n, m) and H (n, m) concerning the both

measures ε(G) and σ(G). In the same paper, he obtained upper and lower bounds of σ(G) as
functions of n and m.

Albertson [2] defined the imbalance of an edge (vi , v j ) by imbvi v j = |d(vi ) − d(v j )| and he
used it to introduce irr (G) = ∑

(vi ,v j )∈E imbvi v j as a measure of the irregularity of G and,

in the same paper, irr(G) < 4n3

27 is proven. In 2000, Hansen et al. [10] presented a bound to
irr(G) as a function of n and m and determined extremal graphs for it. Here, we refer this
invariant as the imbalance measure.

More recently, Nikiforov [13] introduced s(G) = ∑
vi ∈V (G)

∣∣d(vi ) − 2m
n

∣∣ as a new measure of

the irregularity of a graph. Also, he showed several inequalities with respect to s(G), ε(G) and
σ(G). The measure of Nikiforov will be named by the degree deviation measure.

It is easy to see that ε(G), σ(G) and s(G) can be taken by F(G), since ε(G) = σ(G) = s(G) =
0 if and only if G is a regular graph. Although irr (G) is considered in the literature as an

irregularity measure, it can be null even when G is an irregular graph. In this case, irr(G) = 0 if

Pesquisa Operacional, Vol. 33(3), 2013
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and only if G is either regular or a disconnected graph with all the regular components. Figure 1

illustrates this fact.

Figure 1 – Disconnected graphs such that irr(G1) = irr(G2) = irr(G3) = 0.

3 EXTREMAL IRREGULARITY IN GENERAL CLASSES OF GRAPHS

This section is devoted to define the families of graphs where some elements are extremal for

ε(G), σ(G) and irr(G) where G is a graph belonging to one of the most general classes such
as G(n), H (n), G(n, m) and H (n, m). Then, theorems are presented to show the conditions
under which those graphs are extremal for the measures studied. The section ends with a table

summarizing these results.

Definition 3.1. [1] A graph with n vertices and m edges is a quasi-complete graph, denoted
QC(n, m), when it is obtained as follows:

(i) its vertices are labeled 1, . . . , n;

(ii) the integers d and t , 2 ≤ d, 0 ≤ t < d, are defined such that m = (d
2

) + t ;

(iii) the vertices labeled 1, . . . , d form the maximal clique;

(iv) the vertex d + 1 is adjacent to t vertices labeled 1, . . . , t and the n − (d + 1) remaining
vertices are isolated.

Figure 2 displays some examples of quasi-complete graphs.

Figure 2 – Graphs QC(5, 5), QC(6, 7) and QC(6, 13).

Pesquisa Operacional, Vol. 33(3), 2013
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The first result, due to Bell [4], gives the maximum value of the spectral measure, ε(G), where

G is a graph (not necessarily connected) with n vertices. Moreover, it shows that the extremal
graphs to ε(G) are the quasi-complete graphs. Proposition 3.2, also due to Bell, proves that
among all graphs with n vertices and m edges, no necessarily connected, the quasi-complete

graph QC(n, m) is the only one that satisfies the maximal value of the spectral measure.

Proposition 3.1. [4] Given n, write m = (
 1
2 (n+1)�

2

)
and m′ = (
 1

2 (n+1)�+1
2

)
. Then, we have

max{ε(G) : G ∈ G(n)} =

⎧⎪⎪⎨
⎪⎪⎩

1

4
n − 1

2
(n even);

1

4
n − 1

2
+ 1

4n
(n odd).

This maximum is attained uniquely by QC(n, m) if n is odd, and by QC(n, m) and QC(n, m′)
(only) if n is even.

For example, if n = 6, max{ε(G) : G ∈ G(6)} = 1 and G is either QC(6, 3) = K3 ∪ 3K1 or

QC(6, 6) = K4 ∪ 2K1.

Proposition 3.2. [4] Let n and m be given with m ≤ (n
2

)
. Then, max{ε(G) : G ∈ G(n, m)} is

attained uniquely by QC(n, m).

The following result gives the maximum value of the variance measure, σ(G), when G is a graph
with n vertices, and it proves that the maximum is attained where G is a quasi-complete graph.

Proposition 3.3. [4] Given n, write r = 
1
4 (3n + 2)� and m = (r

2

)
. Then, we have max{σ(G) :

G ∈ G(n)} = r
n2 (r − 1)2(n − r), and this maximum is attained by QC(n, m).

For example, if n = 7, max{σ(G) : G ∈ G(7)} = 3, 26 and G is QC(7, 10) = K5 ∪ 2K1.

For specific values of n and m, the quasi-star graphs, defined as follows, give the extremal graph
to the variance measure in the class of the connected graphs with n vertices.

Definition 3.2. [1] A quasi-star, denoted QS(n, m), is a graph with n vertices and m edges when
it is obtained as follows:

(i) its vertices are labeled 1, . . . , n;

(ii) the integers d and t , 2 ≤ d, 0 ≤ t < d, are defined such that m = (n
2

) − (d
2

) − t ;

(iii) the first n − d − 1 vertices are adjacent to all others vertices of the graph;

(iv) the vertex n − d is adjacent to vertices labeled 1, . . . , n − t .

The Figure 3 shows quasi-star graphs with 5 and 6 vertices.

The next result is an immediate consequence of Proposition 3.4 and it was presented in [4] as its
corollary. Proposition 3.5 shows that among all graphs with n vertices and m edges, the extremal

Pesquisa Operacional, Vol. 33(3), 2013
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Figure 3 – Graphs QS(5,5), QS(6,7) and QS(6,13).

ones relative to the variance measure are quasi-stars QS(n, m), when they are sparse graphs;
otherwise, the extremal graphs are quasi-complete QC(n, m).

Proposition 3.4. [4] Given n, write r = 
1
4 (3n + 2)� and m = (n

2

) − (r
2

)
. Then, we have

max{σ(G) : G ∈H (n)} = r
n2 (r − 1)2(n − r), and this maximum is attained by QS(n, m).

For example, if n = 7, max{σ(G) : G ∈H (7)} = 3, 26 and G is QS(7, 11) = K1 ∨ K1,5.

Proposition 3.5. [4] Let n and m be given, with m ≤ (n
2

)
. Then, the max{σ(G) : G ∈ G(n, m)}

is attained by QC(n, m) if m > 1
2

(n
2

) + n
2 , and by QS(n, m) if m < 1

2

(n
2

) − n
2 .

For example, if n = 6 and m = 11, max{σ(G) : G ∈ H (6, 11)} = 1, 55 and G is QC(6, 11) =
K1 ∨ (K4 ∪ K1). If n = 6 and m = 4, max{σ(G) : G ∈H (6, 4)} = 1, 55 and G is QS(6, 4) =
S5 ∪ K1.

Definition 3.3. [7] Let 0 ≤ k ≤ n − 3 and let Hn,k be a connected graph with n + k edges. Hn,k

is obtained as follows:

(i) label the vertices from 1 to n;
(ii) add n − 1 edges from the vertex labeled 1 to 2, . . . , n (a star Sn with center in 1);

(iii) add k edges from the vertex 2 to each vertex 3, . . . , k + 3.

The graphs Hn,k result from the following join Hn,k = K1 ∨ (K1,k+1 ∪ K n−k−3). Similar to

them, Definition 3.4 introduces the graphs Gn,k . For a large enough n, the first graphs satisfy the
maximum value to the spectral measure among all connected graphs with n vertices and n + k
edges; the second graphs satisfy the maximum values of the variance measure among all non

sparse connected graphs with n vertices. Some examples of graphs Hn,k are shown in Figure 4.

Proposition 3.6. [4] For fixed k ≥ 3, and n sufficiently large (depending on k), max{ε(G) : G ∈
H (n, n + k)} is attained uniquely by Hn,k .

Pesquisa Operacional, Vol. 33(3), 2013
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388 MEASURES OF IRREGULARITY OF GRAPHS

Figure 4 – Graphs H8,3, H9,4 and H10,5.

Definition 3.4. [9] For k ∈ Z such that 0 ≤ k < n(n−3)
2 , Gn,k results of the join of K1 and

QC(n − 1, k), that is, Gn,k = K1 ∨ QC(n − 1, k).

See some examples of graphs Gn,k in the Figure 5.

Figure 5 – Graphs G6,0, G7,1 and G7,2.

Proposition 3.7. [4] If n and m = n + k are such that n − 1 ≤ m ≤ (n
2

)
, then max{σ(G) : G ∈

H (n, m)} is attained by Gn,k if m > 1
2

(n
2

) + n − 1, and by QS(n, m) if m < 1
2

(n
2

)
.

Definition 3.5. [3] Given n and q integers such that 0 ≤ q ≤ n, a pineapple graph, denoted by

P A(n, q), is a graph with n vertices consisting of a clique on q vertices and a stable set on the
remaining n − q vertices in which each vertex of the stable set is adjacent to a unique and the
same vertex of the clique.

Aouchiche et al., in [3], conjectured that, among all connected graphs with n vertices, the max-

imal relative to the spectral measure are the pineapple graphs such that the size of the maximal
clique is one or two unities more than the size of the maximal stable set.

Conjecture 3.1. [3] The most irregular graph to ε(G), where G is a connected graph on n

(n ≥ 10) vertices, is a pineapple P A(n, q)) in which the clique size q is equal to 
n
2 � + 1.

Finally, it follows the definition of the family of graphs which are maximal to the imbalance
measure.

Definition 3.6. [3] Given n, k and t integers such that t ≤ k ≤ n, a fanned complete split
graph, denoted by FCS(n, k, t), is a graph with n vertices obtained from a complete split graph
CS(n, k) by connecting a vertex from the stable set by edges to t other vertices of the stable set.

Pesquisa Operacional, Vol. 33(3), 2013
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Theorem 3.1. [10] For any graph G with n vertices, m edges and irregularity irr (G),

irr(G) ≤ k(n − k)(n − k − 1) + t (t − 2k − 1)

where

k =
⌊

n − 1

2
−

√(
n − 1

2

)2 − 2m

⌋

and
t = m − (n − k)k − k(k − 1)/2.

Moreover, this value is attained if and only if G is a fanned complete split graph.

The Figure 6 shows the extremal fanned complete split graph with 8 vertices and 15 edges for
imbalance measure, where irr (FC S(8, 2, 2)) = 54.

Figure 6 – Graph FCS(8, 2, 2).

Table 1 shows, in each line of the third column, the extremal graph among all graphs in the class
on the correspondent line of the second column. Each extremal graph is relative to the irregularity
measure displayed in the same line of the first column. The last column gives the references that
support those results.

4 EXTREMAL IRREGULARITY IN PCn,p,1 AND SC(n, k) GRAPHS

The results presented in this section come originally from [14] and approach the following
connected graphs with order n: the graphs PCn,p,1 = K1,n−p−1 ∪ pK1, which are special case

of path complete graphs (see Definition 4.1, [5], [12]) and the complete split graphs SC(n, k),
special cases of the well known split graphs, (see Definition 4.2 and [6]).

Definition 4.1. Let n, m, p, t ∈ N, with 1 ≤ t ≤ n − 2 and 1 ≤ p ≤ n − t − 1. A graph with n
vertices and m edges such that

(n − t)(n − t − 1)

2
+ t ≤ m ≤ (n − t)(n − t − 1)

2
+ n − 2

is called path-complete graph, denoted PCn,p,t , if and only if

Pesquisa Operacional, Vol. 33(3), 2013
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(i) the maximal clique of PCn,p,t is Kn−t ;

(ii) PCn,p,1 has a t -path Pt+1 = [
v0, v1, v2, . . . , vt

]
such that v0 ∈ Kn−t ∩ Pt+1 and v1 is

joined to Kn−t by p edges;

(iii) there are no other edges.

In the case where t = 1, we have PCn,p,1 is also a split graph. The first two theorems give lower

and upper bounds to the degree deviation and the variance measures of PCn,p,1 . Moreover, it
characterize extremal graphs that attained those bounds. The third theorem gives the lower and
upper bounds to the imbalanced measure.

Theorem 4.1. For n ≥ 4 and ∀p, 1 ≤ p ≤ n − 2, we have 4(n−2)
n ≤ s(PCn,p,1) ≤ 2(n−2)2

n . The

lower bound is attained by PCn,n−2,1 and the upper bound is attained by PCn,1,1 .

Proof. Let PCn,p,1 and PCn,p+1,1 be two path complete graphs. Through a simple algebraic
manipulation, we obtain

s(PCn,p,1) − s(PCn,p+1,1 ) ≥ (n−p−1)(2n−4)
n + (n−p−2)(−2n+4)

n .

Consequently, s(PCn,p,1 ) − s(PCn,p+1,1) ≥ 2n−4
n . Since n > 2, s(PCn,p,1) − s(PCn,p+1,1) ≥

0, we conclude that ∀p, 1 ≤ p ≤ n − 3, s(PCn,p,1) > s(PCn,p+1,1). �

Theorem 4.2. For n ≥ 4 and 1 ≤ p ≤ n − 2, we have 2(n−2)

n2 ≤ σ(PCn,p,1 ) ≤ (n−2)(n2−5n+8)

n2 .
The lower bound is attained by PCn,n−2,1 and the upper bound by PCn,1,1 .

Proof. From the definition of the variance measure, it is easy to reach PCn,p,1 as follows,

σ(PCn,p,1 ) = (n − p − 1)[(n − 4)(n − p) + 4]
n2

.

So, we have, σ(PCn,p,1) − σ(PCn,p+1,1 ) = 2(n−p−1)(n−4)+4
n2 > 0. Since the difference above

is strictly positive, we obtain ∀p, 1 ≤ p ≤ n − 3, σ(PCn,p,1 ) > σ(PCn,p+1,1), σ(PCn,1,1 ) =
(n−2)(n2−5n+8)

n2 and σ(PCn,n−2,1 ) = 2(n−2)

n2 . �

Theorem 4.3. Let n ≥ 4 and 1 ≤ p ≤ n − 2. The maximal value to irr (PCn,p,1 ) is attained by
p = n−1

2 , if n is odd, and by p = n−2
2 or p = n

2 , if n is even.

Proof. Under the conditions of n and p given by the hypothesis of the theorem, consider the
graph PCn,p,1 . From the definition of the imbalanced measure, we get irr (PCn,p,1) = 2 pn −
2 p − 2 p2. Let f (p) = 2 pn − 2 p − 2 p2. It also immediate to prove that the maximal value of

f (p) is obtained when p = n−1
2 . Since p is an integer number, then n has to be odd. Otherwise,

f (�p�) = f (n/2) = f (
p�) = f ((n − 2)/2) = (n2 − 2n)/2 and the maximal value of f (p) is
satisfied by f (�p�) and f (
p�). �

Pesquisa Operacional, Vol. 33(3), 2013
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Figure 7 – PC7,3,1, PC8,3,1 and PC8,4,1.

The Figure 7 shows extremal graphs PCn,p,1 with n = 7 and 8 vertices, where irr (PC7,3,1) =
18 and irr(PC8,3,1 ) = irr(PC8,4,1 ) = 24.

Although we still have been unable to determine a simple algebraic expression for the spectral
measure even for a small family of graphs such as G = PCn,p,1 , we can show some properties

of the index of this graph as illustrated in Lemmas 4.1 and 4.2 which can be helpful in the future.

Lemma 4.1. Let n ≥ 4 and 1 ≤ p ≤ n − 2. The spectrum of a path complete graph PCn,p,1 is
given by −1 with algebraic multiplicity n − 3 and the remaining eigenvalues are the roots of the
following polynomial p(x) = x3 + (3 − n)x2 − (n + p − 2)x − 2 p + np − p2.

Proof. For convenient n and p, the adjacency matrix of PCn,p,1 is as follows:

A(PCn,p,1 ) =

⎡
⎢⎢⎣

(J − I )p×p Jp×(n−p−1) Jp×1

J(n−p−1)×p (J − I )(n−p−1)×(n−p−1) O(n−p−1)×1

J1×p O1×(n−p−1) O1×1

⎤
⎥⎥⎦ ,

where J denotes an all-one-matrix and I is the identity matrix. For 1 ≤ i ≤ n, let ei ∈ Rn be
the i-th vector of the canonical basis. It is not too difficult to see that ∀ i, 2 ≤ i ≤ n − 2, if

v = ei − en−1, then Av = −v. So, v is an eigenvector correspondent to the eigenvalue −1 with
algebraic multiplicity at least n − 3.

There is an orthogonal basis of Rn formed by the eigenvectors of A(PCn,p,1 ). So, there are the
eigenvectors as yt = (a, · · · , a︸ ︷︷ ︸

p

, b, · · · , b︸ ︷︷ ︸
n−p−1

, c). Then, the remaining 3 eigenvalues of A(PCn,p,1 )

are the same ones of the matrix

B =
⎡
⎢⎣ p − 1 n − 1 − p 1

p n − p − 2 0
p 0 0

⎤
⎥⎦ ,

which are exactly the roots of PB (x) = x3 + (3 − n)x2 − nx − (p − 2)x − 2 p + np − p2. �

Lemma 4.2. For all p, 1 ≤ p ≤ n − 3, we have ε(PCn,p,1 ) − ε(PCn,p+1,1) = λ1(PCn,p,1 )−
λ1(PCn,p+1,1) + 2

n .
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Proof. It is well known that if H is a subgraph of G, their indices attained the inequality

λ1(H ) ≤ λ1(G). The strict inequality holds if G is a connected graph and H is a proper subgraph
of G. As PCn,p,1 ⊂ PCn,p+1,1 , consequently, for 1 ≤ p ≤ n − 3, we have λ1(PCn,p,1 ) <

λ1(PCn,p+1,1). Let m PCn,p,1 and m PCn,p+1,1 be the number of edges of those graphs, respectively.

It is obvious that m PCn,p+1,1 = m PCn,p,1 + 1 and, as d(PCn,p,1 ) = 2m P Cn,p,1
n , we easily have

∀ j , 1 ≤ j ≤ n − 3, d(PCn, j+1,1 ) = d(PCn, j,1 ) + 2
n . So, ε(PCn,p,1 ) − ε(PCn,p+1,1) =

λ1(PCn,p,1 ) − λ1(PCn,p+1,1) + 2
n . �

Numerically, with the aid of the software AGX, see [11], we found that the difference between

the indices of the graphs PCn,p+1,1 and PCn,p,1 is at most 2
n . The experiments were done with

graphs up to n ≤ 25 vertices. Based on these, we establish the following conjecture.

Conjecture 4.1. For n ≥ 4 and 1 ≤ p ≤ n−3, we have 0 < λ1(PCn,p+1,1)−λ1(PCn,p,1 ) < 2
n .

From now on we will investigate the irregularity on the complete split graphs.

Definition 4.2. Let k and n be integer numbers such that 0 ≤ k ≤ n. A graph S(n, k) is a split
graph if there is a partition of its vertex set into a clique of order k and a stable set of order n −k.

A complete split graph, CS(n, k), is a split graph such that each vertex of the clique is adjacent
to each vertex of the stable set.

The next two theorems characterize the most irregular complete split graphs relative to
s(CS(n, k)) and irr(C S(n, k)), respectively. As one will see, both extremal graphs are the

same. Besides, the theorems show the expression of the respective measures.

Theorem 4.4. Let k ∈ N and 0 ≤ k ≤ n. If G = CS(n, k) is a complete split graph then
s(G) = 2

n k(n − k)(n − 1 − k). Besides, among all complete split graphs, the most irregular one
by s(G) has to attend the following conditions on k:

k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

3
, if n mod (3) = 0;

n − 1

3
, if n mod (3) = 1;

n − 2

3
and

n + 1

3
, if n mod (3) = 2.

Proof. Consider G = CS(n, k). From the definition of the deviation measure, we have s(G) =
2
n k(n − k)(n − 1 − k). For a given n, define f (k) = 2

n k(n − k)(n − 1 − k). The maximal
value of f (k) is obtained by k = 2

3n − 1
3

√
n2 − n + 1 − 1

3 . Since k is an integer, we have to
determine �k� and 
k�. Let p, r ∈ Z+ and 0 ≤ r ≤ 2 such that n = 3 p + r. So, n2 − n + 1 =
9 p2 + 6 pr + r2 − 3 p − r + 1. Let r = 0, and rewrite n2 − n + 1 = 9 p2 − 3 p + 1. Thus,
(3 p + 1)2 − 9 p = (3 p − 1)2 + 3 p and 3 p − 1 ≤ √

n2 + n − 1 ≤ 3 p + 1. Therefore, we reach
n
3 − 1 < k ≤ n

3 if n mod (3) = 0. Similarly, for r = 1 and r = 2, we get n−1
3 ≤ k < n+2

3 , if n

mod (3) = 1 and, n−2
3 < k < n+1

2 , if n mod (3) = 2.
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From the results above, the conditions on 
k� and �k� follow:


k� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

3
− 1, if n mod (3) = 0;

n − 1

3
, if n mod (3) = 1;

n − 2

3
, if n mod (3) = 2;

�k� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

3
, if n mod (3) = 0;

n + 2

3
, if n mod (3) = 1;

n + 1

3
, if n mod (3) = 2.

Finally, after comparing f (
k�) with f (�k�) in all previous cases, we reach the following maxi-

mal values of f (k),

i) �k� = n

3
, if n mod (3) = 0;

ii) 
k� = n − 1

3
, if n mod (3) = 1 and

iii) 
k� = n − 2

3
and �k� = n + 1

3
, if n mod (3) = 2. �

The Figure 8 shows extremal graphs CS(n, k) with n = 5 and 6 vertices, where s(CS(5, 1) =
s(CS(5, 2)) = 4, 8 and CS(6, 2) = 8.

Figure 8 – CS(5, 1), CS(5, 2) and CS(6, 2).

Based on the results before and through the several numerical experiments done with the aid of
AGX (see [14]), we propose the conjecture below.

Conjecture 4.2. Let H (n) be the set of all connected graphs G with n vertices. So, maxG∈H (n)

s(G) = s(CS(n, k)) where

k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

3
, if n mod (3) = 0;

n − 1

3
, if n mod (3) = 1;

n − 2

3
and

n + 1

3
, if n mod (3) = 2.
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Theorem 4.5. Let k ∈ N, and 0 ≤ k ≤ n. If G = CS(n, k) is a complete split graph, then

irr (G) = k(n − k)(n − 1 − k). Besides, among all complete split graphs, the most irregular one
relative to irr(G) has to satisfy the following conditions on k:

k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

3
, if n mod (3) = 0;

n − 1

3
, if n mod (3) = 1;

n − 2

3
and

n + 1

3
, if n mod (3) = 2.

Proof. Since CS(n, k) has k vertices with degrees n − 1, and n − k vertices with degree k, we
have irr (G) = k(n − k)(n − 1 − k). From Theorem 4.4, irr(C S(n, k)) = n

2 s(CS(n, k)), and
the result holds. �

Among all complete split graphs relative to the variance measure, Theorem 4.6 provides the most
irregular one.

Theorem 4.6. Let k ∈ N and 0 ≤ k ≤ n. If G = CS(n, k) is a complete split graph, we have
σ(SC(n, k)) = 1

n2 (k − n + 1)2 (n − k) k. Besides, among all complete split graphs, the most
irregular one relative to s(G) satisfies the following conditions on k:

k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

4
, if n mod (8) = 0 or 4;

n − 1

4
, if n mod (8) = 1 or 5;

n − 2

4
, if n mod (8) = 2 or 6 and

n + 1

4
, if n mod (8) = 3 or 7.

Proof. If G = CS(n, k), from the definition of the variance measure, we get σ(SC(n, k)) = 1
n2

(k − n + 1)2 (n − k) k. Let n be given. Define f (k) = 1
n2 (k − n + 1)2 (n − k) k.

By elementary algebraic manipulation, we have k = 5
8 n − 1

8

√
9n2 − 4n + 4 − 1

4 as the maximal

value to f (k). Similarly the proof of theorem before, the result holds. �

Theorem 4.7. The eigenvalues of CS(n, k) are 1
2 (k − 1) ± 1

2

√
4kn − 2k − 3k2 + 1 each one

with simple multiplicity; 0 with multiplicity n − k − 1 and, −1 with multiplicity k − 1.

Proof. Let J be the all-one-matrix and I be the identity matrix. The adjacency matrix of
CS(n, k) can be written as follows,

A(C S(n, k)) =
[

(J − I )k×k Jk×(n−k)

J(n−k)×k O(n−k)×(n−k)

]
.
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For 2 ≤ i ≤ k, v = e1 − ei , where ei , is the i-th vector of the canonical basis, is an eigenvector

of A(CS(n, k)) corresponding to the eigenvalue −1. Its multiplicity is at least k − 1. Besides,
note that 0 is an eigenvalue of A(SC(n, k)) to the eigenvectors x = e j − en , k + 2 ≤ j ≤ n. In
the last case, its multiplicity is at least n − k − 1. The matrix A(CS(n, k)) has an eigenvector

with the form yt = (a, · · ·a,︸ ︷︷ ︸
k

b, · · ·b︸ ︷︷ ︸
n−k

). Thus, we conclude that their remaining 2 eigenvalues are

equal to the ones of

B =
[

k − 1 n − k
k 0

]
.

Consequently, 1
2(k − 1) ± 1

2

√
4kn − 2k − 3k2 + 1 are eigenvalues of A(CS(n, k)). �

From Theorem 4.7, the spectral measure of complete split graphs with n vertices and a clique of
size k is

ε(CS(n, k)) = 1

2n
(2k − n − 3kn + 2k2 + n

√
4kn − 2k − 3k2 + 1).

Although Theorem 4.7 has characterized the eigenvalues to any complete split graph, three of
them were implicitly determined. It follows that, the maximum of the spectral measure func-
tion is not a simple task. The numerical experiments with done (see [14]) show that, among all

connected graphs with n vertices, the complete split graphs are the most irregular to the spectral
measure. More specifically, they are the stars Sn = CS(n, 1), for 4 ≤ n ≤ 11, and CS(n, 2), for
12 ≤ n ≤ 15.

Tables 2 and 3 summarize our results relative to extremalities concerning PCn,p,1 and SC(n, k)

graphs respectively.

Table 2 – The most irregular path complete graphs to s(G), irr(G), σ(G) and ε(G).

Measures of irregularity Extremal graphs in PCn,p,1 References

s(PCn,p,1 )

= 1
n ((n − p − 1)(n + 2 p − 2 + |n − 2 p − 2|)

PCn,1,1 Theorem 4.1

σ(PCn,p,1 )

= 1
n2 ((n − p − 1) [(n − 4)(n − p) + 4])

PCn,1,1 Theorem 4.2

irr(PCn, p,1 )

= k(n − k)(n − 1 − k)

PC
n, n−1

2 ,1
if n is odd;

PCn, n
2 ,1 or PC

n, n−2
2 ,1

if n is even.

Theorem 4.3

ε(PCn,p,1 ) PCn,1,1 Conjecture 4.1
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Table 3 – The most irregular split complete graphs to s(G), irr(G), σ(G) and ε(G).

Measures of irregularity Extremal graphs in SC(n, k) References

s(SC(n, k))

= 2
n k(n − k)(n − 1 − k)

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n
3 , if n mod (3) = 0;
n−1

3 , if n mod (3) = 1;
n−2

3 and n+1
3 , if n mod (3) = 2.

Theorem 4.4

irr(SC(n, k))

= k(n − k)(n − 1 − k)

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n
3 , if n mod (3) = 0;
n−1

3 , if n mod (3) = 1;
n−2

3 and n+1
3 , if n mod (3) = 2.

Theorem 4.5

σ(SC(n, k))

= 1
n2 (k − n + 1)2(n − k)k

k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
4 , if n mod (0) = 0 or 4;
n−1

4 , if n mod (8) = 1 or 5;
n−2

4 , if n mod (8) = 2 or 6;
n+1

4 , if n mod (8) = 3 or 7.

Theorem 4.6

ε(SC(n, k))

= 1
2n

(
2k − n − 3kn + 2k2

+ n
√

4kn − 2k − 3k2 + 1

)
Sn = SC(n, 1), if 4 ≤ n ≤ 11;
Sn = SC(n, 2), if 12 ≤ n ≤ 15.

Tests AGX, [14]

5 CONCLUSION

Among all graphs with n vertices and concerning all the measures of irregularity investigated, the

quasi complete graphs are amongst the most irregular ones. However, such an observation is not
enough to allow us to identify which irregularity measure is more accurate. Therefore, we have
decided to investigate the irregularity in more restricted classes of graphs, such as path complete

graphs Pn,p,t (in t = 1 cases) and complete split graphs SC(n, k), where k is the size of the
maximal clique of the graph (see Section 4). This investigation allows us to state that:

(i) as it was said before, the imbalance measure does not satisfy the definition of the function
F given in Introduction. In fact, in the particular case of PCn,p,1 graphs, the behavior of

the invariant irr(PCn,p,1 ) does not work as it would be expected (see the third line of
Table 2);

(ii) the other three measures, ε(G), s(G) and σ(G), are not comparable. In other words, none

of them is more accurate that the other.
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