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ABSTRACT. Recent empirical results show that forecast combinations and cross-learning schemes are
winning approaches in the time series field. Although many competition-winning combination methods —
with cross-learning or not — use static weights along the forecasting horizon, we could not find extensive
work about the effects of using horizon-optimized weights. This paper proposes a forecast combination
framework and provides a considerably sizeable empirical investigation into the use of horizon-optimized
weights, i.e., weights that may vary over the forecasting horizon. We build on cross-learning, time series
clustering and cross-validation to form Horizon-Optimized Convex Combinations (HOC?2) of forecasts from
five methods: Automated exponential smoothing, Automated ARIMA, Theta, TBATS, and Seasonal naive.
Our combinations were tested with data from the previous M1, M3 and M4 forecast competitions, compris-
ing 104,004 time series with different frequencies and lengths. The results shall be helpful to support future

research on how horizon-optimized weights can be used interchangeably with static ones.

Keywords: forecast combinations; convex combinations; cross-learning; time series clustering;

cross-validation; M competitions.

1 INTRODUCTION

The time series forecasting field is known to be vast and relevant (Petropoulos et al., 2021),
with applications ranging from solar radiation prediction (Teixeira Junior et al., 2015), energy
optimization (Oliveira et al., 2015), (Souza et al. 2012), (da Silva, Cyrino Oliveira & Souza,
2019) to optimal planning of intensive medical care medical units (Angelo et al., 2017). Among
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2 HORIZON-OPTIMIZED WEIGHTS FOR FORECAST COMBINATION WITH CROSS-LEARNING

this rather important topic in statistics and machine learning, this paper focus on the study and
development of novel forecast combination techniques.

Forecast combinations have been around for nearly 50 years now, since the seminal work of Bates
and Granger (1969). Up-to-date results from the latest M4 competition (Makridakis, Spiliotis &
Assimakopoulos, 2020) confirm its practical success: out of the six best results — a cluster of
results that were statistically distinguished in the leaderboard — 5 used combinations. Moreover,
out of the 17 methods that were better than the benchmarks, 12 used combinations. Makridakis
et al. (2020) concluded:

“The higher numerical accuracy of combining, coupled with the poor performances
of pure statistical/ML methods, confirms the findings of the previous three M Com-
petitions, as well as those of other competitions/empirical studies. It implies that
no single method can capture the time series patterns adequately, whereas a com-
bination of methods, each of which captures a different component of such pat-
terns, is more accurate because it cancels the errors of the individual models through
averaging.”

Other than reassuring that combining time series forecasts is a winning approach (as it is less
risky than selecting a single method), the M4 results also show that cross-learning — the use of
information derived from some cluster of time series to forecast the individual time series — is a
novelty from the Machine Learning field that is worth studying, as both 1st and 2nd best-ranked
methods used this concept.

When combining forecasts from many models — forming ensembles — the success of the approach
will not only rely on the quality of the pool of forecasts being combined (Atya, 2020), but also
on the combination weights (Timmermman, 2006). Based on our experience, we here classify
the weighting methods in two broad types:

e With no optimization procedure: mean, trimmed mean, median etc. E.g.: Petropoulos and
Svetunkov (2020), Jaganathan and Prakash (2020);

* With some sort of (in-sample) optimization. E.g.: Pawlikowski, Chorowska, and Yanchuk
(2020), Fiorucci and Louzada (2020); Montero-Manso, Athanasopoulos, Hyndman, and
Talagala (2020).

Regardless of their nature, most of the published weighting methods generate and use static
weights along the forecast horizon. That is why we decided to provide a considerably extensive
empirical investigation into the use of horizon-optimized weights, i.e., weights that may vary
over the prediction steps.

We propose a forecast combination framework (Section 2) joining cross-learning, time series
clustering and cross-validation. For each time series, it selects the most suitable (in-sample)
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horizon-optimized weighting matrix and performs an out-of-sample convex combination of
forecasts derived from a pre-defined pool of methods.

Our empirical investigation comprises 104,004 time series with several frequencies and lengths,
extracted from the previous M1 (Makridakis et al., 1982), M3 (Makridakis & Hibon, 2000) and
M4 (Makridakis, Spiliotis & Assimakopoulos, 2020) forecast competitions.

It is worth saying that many attempts to determine optimal combination weights have ended
up worse than simply using static-equal weights (i.e., simple average) — that fact has become
known as the “forecast combination puzzle” (Smith & Wallis, 2009). In other words, the simple
(arithmetic) average of forecasts is often “hard to beat” (Timmermman, 2006). Nevertheless,
recent results and discussions in the field point out that more sophisticated combination schemes,
eventually applying new concepts like cross-learning and up-to-date hybrid methods, may lead to
better forecasting accuracies (Makridakis, Spiliotis & Assimakopoulos, 2020; Fry & Brundage,
2020). The use of horizon-optimized weights may also benefit from such advances.

The remainder of the paper is organized as follows. Section 2 describes the proposed method-
ology. Section 3 presents the setup of experiments and test results using the M Competitions
datasets. Section 4 concludes the work with final comments and suggestions for future research.

2 METHODOLOGY

The ensemble framework proposed here — Horizon-Optimized Convex Combinations (HOC2) —
is based on the convex combination of forecasts (Section 2.1), with optimized weights that may
vary over the forecasting horizon.

In practice, there is no guarantee that horizon-optimized weights outperform static-equal ones,
but “some time-variation or adaptive adjustment in the combination weights (or perhaps in the
underlying models being combined) can often improve forecasting performance” (Timmermann,
2006). In Valle dos Santos and Vellasco (2015) the authors tested a horizon-optimized weights
approach with data from the late NN-3 competition (Crone, Hibon & Nikolopoulos, 2011),
achieving good results, but for a minimal number of series.

For each time series being analyzed, HOC2 strategies firstly rely on the individual forecasts
produced by the pre-defined pool of methods — in our case, five forecasting methods implemented
in the R programming language (Section 2.2).

After that, comes the idea of cross-learning, which is a standard machine learning procedure
but a trending topic in the time series field: to use information derived from a large dataset of
time series to aid the forecasting of the individual time series. The name ‘“cross-learning” was
recently used in the context of time series by Smyl (2020) and then by Makridakis, Spiliotis,
and Assimakopoulos (2020), but a synonym could be “global models” (as opposed to “local
models”), as used by Fry and Brundage (2020). Bandara, Bergmeir, and Smyl (2020) applied the
same idea, using the term “cross-series information”.

Pesquisa Operacional, Vol. 41, 2021: e245564



4 HORIZON-OPTIMIZED WEIGHTS FOR FORECAST COMBINATION WITH CROSS-LEARNING

Cross-learning presumes two significant steps: (i) a training (learning) phase, when information
is learned from a set of (training) time series, and (ii) a test phase, when each individual series
(in the whole set of available time series) is forecasted, not only using its own in-sample infor-
mation, but also the (in-sample) information learned from the training phase. It is desirable that
the time series in a cross-learning process are somewhat similar, in the sense that they can learn
meaningful information from each other. That is why most cross-learning frameworks present
some sort of time series clustering (aggregation) before its training phase — at least, the series are
aggregated by frequency: yearly, quarterly, monthly, etc. Bandara, Bergmeir, and Smyl (2020)
explore the concept of time series clustering before the training phase.

The HOC2 framework performs a cross-learning process with a previous clustering step (Sec-
tion 2.3). In the training phase (Section 2.4), we define a cluster-wise training set, i.e., a set
of (training) time series that evenly represents the predefined clusters. As it will be seen, the
training set is a variable portion of the whole time series dataset. The learning process consists
of a cross-validation procedure that considers in-sample predictions from the established pool
of methods to determine horizon-optimized weights for each time series in the training set. As
a final step in this learning phase, a mean weighting matrix (Section 2.1) for each cluster is
calculated. Moving on to the test phase (Section 2.5), for each time series being analyzed, the
framework establishes the most suitable weighting matrix learned from the training phase, by
means of some selection/inference strategy, e.g.: if the time series was in the training set, uses its
optimized convex weights; if not, use the mean weighting matrix for the series’ cluster (which
is also convex). Each time, the selected weighting matrix is used to perform the convex combi-
nation (weighted average) of the individual forecasts available, and the results are measured by
performance metrics.

The main components of the framework are summarized in Figure 1. Sections 2.2 to 2.5 bring
further details.

2.1 Convex combinations

The convex combination of K forecasts at time 7+h, estimated using the available data at time ¢:

K
C ~ ~
Yegne = Z Witht kYt+hlt k> (1)
k=1

subject to

M=

Wipppk =1 and Wy x>0, )

k=1

where )7t+h‘,yk is the k-th forecast being combined and W,Jrh‘,’k its respective weight. The con-
straints in Equation (2) turn the unconstrained linear combination in Equation 1 into a (con-
strained) convex combination. Convex combinations have great practical interest for two rea-
sons: (i) guarantee that the combined forecast is unbiased if the underlying forecasts are unbi-
ased and (ii) make weight interpretations straightforward, as weights can be seen as ordinary
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Figure 1 - HOC2 framework conceptual diagram.

Cross-learning

percentages (Valle dos Santos & Vellasco, 2015; Timmermman, 2006; Diebold, 1988; Granger

& Ramanathan, 1984).

Given a pool of K methods, the set of convex weights estimated at time ¢ for the forecasting
horizon #+1, t+2, ..., t+H can be organized as a weighting matrix Wf”( of size H x K, where each

line-vector sums to one and has positive components:
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6 HORIZON-OPTIMIZED WEIGHTS FOR FORECAST COMBINATION WITH CROSS-LEARNING

In the most general case, when the weights are horizon-optimized, the weighting (line-) vectors
at r+h vary over the forecasting horizon (h =1, 2, ..., H).

2.2 Pool of methods

The forecasts to be combined rise from the 5 methods listed below, with their respective R pro-
gramming language functions and bibliographic references given in parentheses. All functions
are implemented over the forecast package in R (Hyndman et al., 2018). As an assumption for
automation, all methods were used in their default form and no further treatment was applied.

* Automated exponential smoothing — ETS (ets) (Hyndman & Khandakar, 2008);

* Automated ARIMA — AutoARIMA (auto.arima) (Hyndman & Khandakar, 2008);

L]

Theta (thetaf) (Assimakopoulos & Nikolopoulos, 2000; Hyndman & Billah, 2003);

TBATS (thats) (De Livera, Hyndman & Snyder, 2011);

* Seasonal naive (snaive): an ARIMA (0,0,0)(0,1,0),, model where m is the seasonal period.

2.3 Clustering

In the clustering phase, we first aggregate the time series per frequency (yearly, quarterly,
monthly, etc.) and then consider an extra level of aggregation: by fitted ETS model form.

As thoroughly discussed by Petropoulos, Hyndman, and Bergmeir (2018) and Meira, Cyrino
Oliveira, and Jeon (2021), the output of the ets function is a model form consisting of three
terms: Error, Trend and Seasonality — abbreviated as ETS. The error term can be additive (A) or
multiplicative (M). The trend and seasonal terms can be none (N), additive (A) or multiplicative
(M). At the same time, if the trend component exists, this can be damped (d) or not — for example,
ETS(M,Ad,N) refers to a model form with multiplicative error, additive damped trend and no
seasonality. By default, the ets function excludes models with multiplicative trends from the
search of an optimal model, and models with multiplicative seasonality must have multiplicative
errors in order to avoid numerical instability. As so, by default, there are 15 different possible
model forms and, thus, 15 possible time series clusters per frequency.

We established the aggregation of time series per fitted ETS model form as a proxy to clustering
time series by its common features. There are 36 classes of features that can be extracted from
a time series (Hyndman, Wang, Kang & Talagala, 2018), leading to many possible choices of
aggregations (which may be explored in future works).

2.4 Training

Training is the core phase in the HOC2 framework. Its first step is to determine a training (sub)set
of time series, by taking a g% sample out the complete set of time series available for the data
frequency being studied. The percentage ¢, 0 < ¢ < 100, is a framework “s hyperparameter.

Pesquisa Operacional, Vol. 41, 2021: e245564



RAFAEL DE O. VALLE DOS SANTOS et al. 7

In learning processes, it is highly desirable that the training set is representative of the full scope
of analysis. On that matter, it is essential that the training set is cluster-wise, i.e., evenly represents
the 15 clusters of the previous clustering phase: this is done in a straightforward way, by forming
the training set as the union of g% samples over each cluster “s subset of time series.

For each time series in the training set, the learning process considers a set of in-sample predic-
tions derived from the pool of methods and calculates horizon-optimized weights for the pool s
convex combination. In our case, the optimization procedure is to set the time series weights
as the inverse of some pre-defined error function (e.g., symmetric absolute percentage error),
based on a rolling origin cross-validation scheme. We use a cross-validation scheme derived
from the GROE method proposed by Fiorucci, Pellegrini, Louzada, and Petropoulos (2015).
(The GROE method stands for Generalized Rolling Origin Evaluation and is a general process
for cross-validation on time series forecasting methods.)

The cross-validation/optimization procedure considers p successive in-sample forecasts for each
lag A in the desirable forecasting horizon (h = 1, 2, ..., H). It works as follows: for each time
series in the training set, for each method k in the pool of methods (k =1, 2, ..., K), compute p
different in-sample forecasts y; ), x Withrolling origins ¢ =T-h, T-h-1, ..., T-h-p, where T is the
series " last in-sample point (in other words, compute Y7|7_p k> Y7—1|T—h—1k> - > YT—p|T—h—pik)-
After that, each out-of-sample weight at point % can be estimated by Equation 4:

wranrk = [P/ Y, GGrinin)]/S )
P

where: R
|)’t+h — Yethltk |

CGhronrs) =2 - 100 5)
Oritd) = 2 o (
N
S=Y[p/Y.GCGrinpi) (©6)
k=1 p

Yetnjex 18 the actual value of the series at time t+h and the function G() is set here to be the
symmetric Absolute Percentage Error (SAPE), the building block of the SMAPE performance
metric (Section 3.1). The denominator S guarantees that the weighting vector at 7+ is convex
(Section 2.1).

The desirable number of rolling origins, p, is a framework “s hyperparameter. Practically speak-
ing, it is crucial to notice that the training series may not always be long enough for the compu-
tation of p different in-sample forecasts for the requested H (maximum horizon length). To deal
with cases like that, we may consider another hyperparameter: the minimum number of rolling
origins to be accepted, pi,. For instance, if p,;, cannot be reached, the series is considered
small, and a simple average (static-equal) weighting matrix may be linked to the series. For per-
formance matters, we observe that this learning procedure may generate up to p x H x K different
predictions per training series.
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8 HORIZON-OPTIMIZED WEIGHTS FOR FORECAST COMBINATION WITH CROSS-LEARNING

The final step in the training process is to take the mean weighting matrices for each cluster, based
on the per-series individual horizon-optimized matrices from the cross-validation procedure. This
is a very straightforward computation: for each cluster, its mean weighting matrix is the mean of
the weighting matrices of its valid (rolling origins > pp,i,) components time series — the mean
of all convex matrices is also convex. The clusters’ weighting matrices will be useful in the test
phase, to infer combining weights for time series that were not in the training set (in the machine
learning jargon, inference is also called generalization.)

2.5 Test

The test phase is the final step in the framework, where all time series must generate out-
of-sample forecasts and go through performance metrics, both for point forecasts and predic-
tion intervals. It is interesting to notice that, as opposed to the usual (cross-section) regres-
sion/classification applications in machine learning, here the test and training sets are not dis-
joint. On the contrary, the test set encompasses all the available time series, including the ones in
the training set, and the training set can also be a 100% sample from the whole set of series. This
is so because in the time series context the difference between training and test lies in the fact the
training set deals with in-sample forecasts, while the test set deals with out-of-sample forecasts.

For each time series to be tested, different strategies can be set to select or infer its out-of-
sample weighting matrix, always based on what was learnt in the training phase. We propose the
following unified three-way strategy:

1. If the time series was in the training set and had an acceptable number rolling origins 7 (r
> pmin): Use the series own weighting matrix, as optimized in the training phase;

2. If the series was not in the training set or had a limited number of rolling origins r (1 < r
< Pmin): use the mean weighting matrix for the series cluster;

3. If the series was too small (e.g., < 2.H) for reliable calculations (r = 0): use a simple
average (static-equal) weighting matrix (in our experiments, this case only happens over
the M1 competition dataset).

Once the weighting matrices are defined, the computation of out-of-sample point forecasts is
straightforward, by the convex combination of the available forecasts from the pool of methods.

The framework also computes prediction intervals in a rather straightforward way, solely based
on the prediction intervals generated by the ETS procedure (Hyndman, Koehler, Ord & Snyder,
2008, p. 22-23 and 88). For each time series, we take the absolute deviations between the ETS
forecasts and each of its upper and lower prediction bounds. Both deviations are then applied ac-
cordingly to the HOC?2 point forecasts, forming its own prediction bounds. To ensure even com-
parisons, the same prediction-interval procedure is applied to the simple average combination
experiments, placed in this work as benchmarks for HOC2 combinations.
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3 EMPIRICAL INVESTIGATION

The M competitions — time series forecasting competitions organized by Spyros Makridakis since
the early eighties — have been gradually challenging academic researchers, software vendors and
business companies as a benchmark to test new models and methods (Hyndman, 2020). As so,
we tested the methodology presented in Section 2 with time series data from the three most cited
competitions to date: M1 (Makridakis et al., 1982), M3 (Makridakis & Hibon, 2000) and M4
(Makridakis, Spiliotis & Assimakopoulos, 2020) competitions.

Table 1 depicts the complete set of time series used in this paper. It shows the number of series
per competition and frequency, and points out the required forecasting horizon (H) in each case.
Together, our experiments comprise 104,004 time series.

Table 1 — The complete set of time series used in this paper.

Frequency | MI-Competition ~M3-Competition M4-Competition Total H
yearly 181 645 23,000 23,826 6
quarterly 203 756 24,000 24,959 8
monthly 617 1,428 48,000 50,045 18
weekly - - 359 359 13
daily - - 4227 4,227 14
hourly - - 414 414 48
other - 174 - 174 8
Total 1,001 3,003 100,000 104,004 -

H is the forecasting horizon.

Throughout the experiments, HOC2 predictions are mostly measured against two benchmarks:
(i) the simple average of the forecasts being combined (AVG) and (ii) the individual forecasts
alone. The performance comparisons were all carried out following the M4 competition’s way:
direct accuracy metric confrontation up to the third decimal digit.

3.1 Performance metrics for point forecasts

Two accuracy metrics are used here to score point forecasts (PFs) performances: the symmetric
mean absolute percentage error (SMAPE) and the mean absolute scaled error (MASE). Those
metrics have been commonly used over recent publications in the field, as discussed by Makri-
dakis, Spiliotis, and Assimakopoulos (2020). The lower they are (and the closer to zero), the
better:

n+h Y 72
SMAPE = 1100 )
A (% + 7))
Zn+h Y, _/Y\
1 t=n+1 |1 t
MASE = - —— 8)
h n—-m Zt:erl |Yt - Yf*m|
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1 0 HORIZON-OPTIMIZED WEIGHTS FOR FORECAST COMBINATION WITH CROSS-LEARNING

where Y is the true value of the time series at point ¢, Y ; is the forecasted value at point t, / is the
forecasting horizon, n is the length of the sample, and m is the time interval between successive
observations considered for each data frequency (or the number of periods within a season): 12
for monthly data, 4 for quarterly data, 24 for hourly data, and 1 for yearly, weekly and daily data.
The numerator in Equation 8 is scaled by dividing its value with the mean absolute seasonal
difference of the series.

It is worth highlighting that SMAPE and MASE are originally computed per time series. Thus,
practically speaking, when considering a set of time series — as in the forecast competitions
mentioned here — the overall performance of a method will be the average metric calculated over
the entire set.

A third valuable metric, introduced by the M4 competition, is the overall weighted average
(OWA):

OWA =

1 ( SMAPE  MASE
( >, )

2 \ sMAPE, + MASE,
where sSMAPE}, and MASE,, are benchmarking performances from some pre-defined method.

The OWA metric was the official ranking measure for PFs in the M4 competition, and “Néive
2” — a random walk model applied to seasonally adjusted data — was set by the organizers as
the benchmarking method for the relative performance computations (Makridakis, Spiliotis &
Assimakopoulos, 2020). As stated by the competition team: (...) if Method X displays a MASE
of 1.6 and an SMAPE of 12.5% across the 100,000 series of M4, while Naive 2 displays a MASE
of 1.9 and an SMAPE of 13.7%, the relative MASE and sSsMAPE of Method X would be equal to
1.6/1.9 = 0.84 and 12.5/13.7 = 0.91, respectively, resulting in an OWA of (0.84 + 0.91)/2 = 0.88,
which indicates that, on average, the method examined is about 12% more accurate than Naive 2,
taking into account both MASE and sMAPE. Note that SMAPE and MASE are first estimated for
each series by averaging the error computed for each forecasting horizon, then averaged again
across all time series to compute the average value for the entire dataset. On the other hand, OWA
is computed only once at the end of the evaluation process for the whole sample of series”.

3.2 Performance metric for prediction intervals

The first M competition to (optionally) ask for predictions intervals (PIs) — other than just point
forecasts — was the M4 competition. Following this path, we here calculate PIs for all our
experiments.

To evaluate PIs performances, we use the mean scaled interval score (MSIS):

wisgs — L Eimn (U= L)+ & (L= Y)1(Y < L) + § (% = U1 (Y, > Uy)
h ﬁz?=m+l |Yt _Yf—ml

) (10)

where U, and L, are respectively the upper and lower bounds for the prediction intervals, Y, are
the future observations (true values), « is the significance level (0.05 here) and I is the indicator
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function, its value being 1 if its argument is TRUE and 0 otherwise. The denominator in Equation
10 is the same scale element as in Equation 8; n is the length of the training set and m is the
number of periods within a season.

The MSIS metric is an average that penalizes the width of the prediction interval and the points
there are outside the specified bounds, considering how far they are of the bound. The numer-
ator, called Interval Score (IS), is scaled by dividing its value with the mean absolute seasonal
difference of the series.

Like other metrics, MSIS is originally computed per time series. Thus, when considering forecast
competitions, the overall performance of a method will be the average metric calculated over the
complete set of series. The lower the metric, the better.

3.3 HOC2 hyperparameters

Table 2 shows the frameworks”~ hyperparameters (Section 2) used in our experiments, aggre-
gated by competition dataset. It also shows the total number of time series in each (cluster-wise)
training set (V).

Table 2 — User-defined HOC2 hyperparameters.

Dataset q% P | Pmin Nt
Ml 100% | 10 5 1,001
M3 100% | 10 5 3,003
M4 10% 10 5 10,030

H is the forecasting horizon. Nt is the number of time
series in the training set.

There are a few observations to be made at this point. First, as discussed in Section 2.4, our
framework may produce up to p x H x K different predictions per training series, i.e., p X H X K x
Nt predictions per competition dataset. Although these computations may be directly parallelized
by time series cluster — as the training set is cluster-wise — they can still be very time-consuming
(Section 3.5). That is why we set the training set for the M4 competition to be only 10% (q =
10) of the available data (which still led to more than 2x the number of time series for both M1
and M3 datasets together). This ¢ number was defined after some preliminary tests and brought
results that we considered fair to our purposes. Of course, future work may deal with different
values of g for the M4 dataset.

Finally, we call attention to that the number 10,030 is not exactly 10% of 100,000 series of the
M4 competition. This explained by the effect of rounding in the cluster-wise formation of the
training sets.
3.4 Results
Tables 3-5 show the individual datasets results, including HOC2 and selected benchmarks — the

simple average of the forecasts being combined (AVG) and the individual forecasts alone. Results
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12 HORIZON-OPTIMIZED WEIGHTS FOR FORECAST COMBINATION WITH CROSS-LEARNING

are grouped by performance metric: average SMAPE and average MASE for point forecasts
(PFs), and average MSIS for prediction intervals (PIs).

Particularly for the M4 dataset, Table 6 shows values for the OWA performance metric (Sec-
tion 3.1), the official ranking measure for point forecasts in the M4 competition. The table also
indicates SMAPE,, and MASE,, for “Naive 2”, the pre-defined benchmarking method for the
OWA computation — the M4 s performance data is available in a spreadsheet file (“Evalua-
tion and Ranks.xIsx”) that can be downloaded from the M competitions repository at GitHub
(https://github.com/Mcompetitions/M4-methods).

Our first comment on the results is that, concerning total performances for every experiment and
accuracy metric (including OWA), the HOC?2 strategy consistently outperform the benchmarks,
with only 1 exception out of 10 possible winning positions: MSIS for the M3 dataset, where AVG
wins (Table 4). Breaking the overall results by PFs (sMAPE, MASE and OWA metrics) and PlIs
(MSIS metric), HOC2 has a 7/7 (100%) winning performance for PFs and a 2/3 (67%) winning
performance for Pls.

Breaking the results by data frequency, the framework outperforms the benchmarks on 23 out
of 32 winning positions for PFs (72%), the 9 exceptions being the following (winning methods
are given in parentheses): M1 dataset - MASE (ARIMA) and sMAPE (ARIMA) for yearly data;
M3 dataset — MASE for yearly (AVG) and other (ETS) data; M4 dataset — MASE for monthly
data (ARIMA), sMAPE for weekly data (TBATS), and sMAPE (TBATS), MASE (ARIMA) and
OWA (ARIMA) for hourly data. Concerning PIs, HOC2 has a 7/13 (54%) winning performance,
the 6 exceptions being: M3 dataset — MSIS for yearly (AVG) and other (ETS) data; M4 dataset —
MSIS for monthly (ETS), weekly (TBATS), daily (TBATS) and hourly (ARIMA) data. Table 7
summarizes the winning methods, showing that HOC?2 is the overall less risky approach, partic-
ularly when compared to simple average (AVG), which presented only one winning position for
PFs and other for PIs (both for yearly series).

Finally, we point out that HOC2 results are especially remarkable for the M4 dataset, not only by
the fact that this dataset is much larger than the others, but also due to the training percentage used
in HOC2 experiments: just 10% of the total amount of time series (¢ = 10). Another interesting
fact related to the M4 results, the winning OWA results are much aligned with the best results in
the original M4 competition, outperforming all the competition s benchmarks.

3.5 Processing time

The relevant time-consuming phase in the HOC?2 framework is the training phase, where we pro-
duce up to p x H x K x Nt predictions per competition dataset — p is the number of required rolling
origins, H is the maximum forecasting horizon, K is the number of methods in the pool and Nt
is the amount of training series in the dataset. Building on the out-of-sample predictions from
the pool of methods phase, the framework’s clustering and test phases are somewhat immediate
calculations (Section 2).
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Table 3 — M1 dataset — average performances.

Yearly = Quarterly Monthly  Total

H 6 8 18 -
Nf 181 203 617 1,001
sMAPE

HOC2 17.974  15.507 14.375  15.255
AVG 18.281 15.718 14.385  15.360
ETS 18.613 17.464 14971  16.135
ARIMA | 17.230 17.375 16.026  16.517
THETA 20.174 16.352 16.527  17.151
TBATS 17.418 16.653 15.127  15.851
SNAIVE | 22.431 18.944 17.299  18.560
MASE

HOC2 3.717 1.540 1.027 1.617
AVG 3.790 1.578 1.029 1.640
ETS 3.771 1.657 1.074 1.680
ARIMA 3.467 1.706 1.124 1.666
THETA 4.189 1.702 1.091 1.775
TBATS 3.499 1.694 1.117 1.665
SNAIVE | 4.893 2.078 1.314 2.116
MSIS

HOC2 58.587  18.871 8.811 19.852
AVG 60.028 19.162 8.882 20.215
ETS 59.784 21.318 9.625 21.066
ARIMA | 62.631 24.094 11.333  23.197
THETA 69.263 24.507 9.809 23.540
TBATS 63.970 24.369 11.971  23.887
SNAIVE | 87.971 25.082 10.359  27.379

H is the forecasting horizon. Nf is the number of time series per data
frequency. The scores on the last column — Total — are the weighted av-
erages of the previous columns with Nf as weight. Best results per fre-
quency and metric are bold-faced.
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Table 4 — M3 dataset — average performances.

Yearly = Quarterly Monthly  Other Total

H 6 8 18 8 -
Nf 645 756 1428 174 3,003
sMAPE
HOC2 15.750 9.020 13.296 4343  12.228
AVG 15.791 9.054 13.339 4.401 12.269
ETS 17.003 9.684 14.139 4372 13.067

ARIMA 17.104 10.011 14.904 4.513 13.543
THETA 16.756 9.203 13.856 4.922 12.790
TBATS 17.370 10.223 13.844 4.354 13.140
SNAIVE | 17.880 11.065 17.234 6.302 15.186

MASE

HOC2 2.695 1.072 0.838 1.824 1.353
AVG 2.686 1.075 0.840 1.904 1.357
ETS 2.860 1.170 0.865 1.814 1.425

ARIMA 2.959 1.189 0.867 1.841 1.454
THETA 2.774 1.117 0.864 2.271 1.419
TBATS 3.127 1.256 0.861 1.848 1.504
SNAIVE | 3.172 1.425 1.146 3.089 1.764

MSIS
HOC2 29.371 10.158 6.276 13.962  12.659
AVG 28.907 10.227 6.289 14.343  12.605
ETS 30.616 10.717 6.342 13.428  13.068

ARIMA | 40.807 12.535 7.052 15.288  16.160
THETA 31.234 10.907 7.195 16.031  13.805
TBATS 44.186 13.502 7.086 14495  17.099
SNAIVE | 39.976 11.906 8.605 21.860 16.942

H is the forecasting horizon. Nfis the number of time series per data frequency. The
scores on the last column — Total — are the weighted averages of the previous columns
with Nf as weight. Best results per frequency and metric are bold-faced.
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Table 5 — M4 dataset — average performances.

Yearly  Quarterly Monthly ~Weekly  Daily = Hourly Total
H 6 8 18 13 14 48 -
Nf 23,000 24,000 48,000 359 4,227 414 100,000
SMAPE
HOC2 13.715 9.926 12.590 8.431 2969 13.106  11.790
AVG 13.754 9.997 12.680 8.408 2971 13.440 11.861
ETS 15.356 10.291 13.525 8.727 3.046 17307  12.725
ARIMA 15.153 10.413 13.496 8.594 3.185 14.088  12.686
THETA 14.564 10.313 13.012 9.089 3.053 18138  12.307
TBATS 14.918 10.188 12.950 8.405 3.003 12.414 12.301
SNAIVE | 16.342 12.521 15.988 9.161 3.045 13912  14.657
MASE
HOC2 3.066 1.149 0.937 2.450 3.212 1.154 1.580
AVG 3.084 1.165 0.946 2.469 3.213 1.229 1.593
ETS 3.444 1.161 0.948 2.527 3.253 1.824 1.680
ARIMA 3.401 1.166 0.931 2.541 3399  0.949 1.665
THETA 3.375 1.231 0.970 2.639 3.262 2.455 1.695
TBATS 3.437 1.186 1.053 2.486 3.274 1.235 1.733
SNAIVE | 3.974 1.602 1.260 2777 3.278 1.193 2.057
MSIS
HOC2 31.343 9.342 9.149 20.722  29.269 17.123  15.225
AVG 31.607 9.454 9.159 21.062 29.288 16.955  15.319
ETS 34.897 9.452 8.297 20.386  29.700 17.487  15.678
ARIMA | 45.071 11.090 8.762 19.525 32312  7.49%4 18.701
THETA 44.451 11.624 9.546 24.096 32557 21.053  19.145
TBATS 40.263 9.782 13.123  18.140 28.978 11.552  19.245
SNAIVE | 56.554 13.346 10.846  26.358 32552  9.054 22.925

H is the forecasting horizon. Nf is the number of time series per data frequency. The scores on the last column
— Total — are the weighted averages of the previous columns with Nf as weight. Best results per frequency

and metric are bold-faced.
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Table 6 — M4 dataset — OWA performances.

Yearly ~ Quarterly Monthly Weekly Daily  Hourly Total

H 6 8 18 13 14 48 -

Nf 23,000 24,000 48,000 359 4,227 414 100,000
OWA
HOC2 0.805 0.870 0.877 0901 0977 0.597 0.848
AVG 0.809 0.879 0.884 0903 0978 0.622 0.854
ETS 0.903 0.891 0.915 0931 099  0.852 0.908

ARIMA 0.892 0.898 0.905 0927 1.041 0.581 0.903
THETA 0.870 0917 0.907 0971  0.999 1.006 0.897
TBATS 0.889 0.895 0.944 0.906 0993  0.596 0.907
SNAIVE 1.000 1.153 1.147 1.000  1.000  0.628 1.078
SMAPE, | 16.342 11.012 14.427 9.161 3.045 18.383 13.564
MASE, 3.974 1.371 1.063 2771 3278 2.395 1.912

H is the forecasting horizon. Nf is the number of time series per data frequency. As initially done by the
competition s organizers, the OWA scores on the last column — Total — are NOT the weighted averages of
the previous columns: they are computed directly with the total sMAPE and MASE for the methods and the
total SMAPE}, and MASE;, for the benchmarking. Best results per frequency are bold-faced.

Table 7 — Number of winning positions per method.

Yearly — Quartely Monthly ~ Weekly — Daily Hourly Other Total

Point forecasts
HOC2 4 7 6 2 3 1 2
AVG 1
ETS 1
ARIMA 2 1 2
THETA
TBATS 1 1 2
SNAIVE
Prediction intervals
HOC2 2 3 2
AVG 1
ETS 1 1
ARIMA 1
THETA
TBATS 1 1 2
SNAIVE

w

[, -

—_— N =

Best results per frequency are bold-faced.

The simple average of the forecasts in the pool of methods relies on a total of H x K x Nt
predictions per competition dataset. Thus, theoretically speaking, if AVG has a total processing
time of 7, HOC2 will present processing time around pt. However, HOC2 training algorithm
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may be directly parallelized by time series cluster, which may bring the total processing time
down to the largest-cluster processing time.

As practical example, Table 8 shows processing times collected from the M3 dataset experi-
ments, both for HOC2 and AVG. (See Section 3.7 for a complete report about clusters ~ lengths.)
Considering the parallel version of the training algorithm, HOC2 may take, overall, 40% more
processing time than AVG. With the non-parallel version, processing time can take up to 8.9
times the benchmarking (which is in line with our theoretical considerations).

Table 8 — Processing times.

Yearly  Quarterly Monthly  Other  Total
H 6 8 18 8 -
Nf 645 756 1428 174 3,003
Largest cluster % size (cMax) | 32.9% 18.8% 15.0% 34.5% -

Processing times (hour)

HOC2,, (non-parallel) 0.4 2.7 18.1 0.2 214
HOC?2,;, (parallel) 0.1 0.5 2.7 0.1 34
AVG 0.1 0.3 2.0 0.0 24
HOC2,,/AVG 6.0 9.5 8.9 10.1 8.9
HOC2,/AVG 2.0 1.8 1.3 3.5 1.4

H is the forecasting horizon. Nf is the number of time series per data frequency. HOC2,, = HOC2,;, x cMax.
These experiments were carried out with an Intel Core i7© / 16GB RAM machine running Microsoft Win-
dows© 10.

3.6 Test phase statistics

In this section we provide statistics about the type of weighting matrices selected in the test
phases of our experiments. Those matrices can be of 3 types (Section 2.5):

W1. Individually optimized for the time series, if the time series was in the training set and was
considered to be of good length to have an acceptable number rolling origins 7 (r > ppin);

W2. Cluster optimized, if the series was not in the training set or had a limited number of rolling
origins (1 < r < ppin);

W3. Static-equal (simple average) matrix, if the series was too small (< 2.H) for reliable
calculations (r = 0).

Tables 9 to 11 show test phase statistics per dataset. Notice that W3-type matrices only happens
over the M1 competition dataset.
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Table 9 — M1 dataset — test phase statistics.

Yearly Quarterly Monthly  Total
H 6 8 18
Nf 181 203 617 1,001
%W 1 48% 86% 92% 83%
QW2 | 46% 1% 2% 10%
%W 3 6% 13% 5% 7%

H is the forecasting horizon. Nf is the number of time series
per data frequency. The percentages are rounded (they sum

to 100%).

Table 10 — M3 dataset — test phase statistics.

Yearly  Quarterly Monthly  Other  Total
H 6 8 18 8 -
Nf 645 756 1428 174 3,003
%W1 70% 93% 100% 100%  92%
JoW?2 30% 7% 0% 0% 8%
%W3 0% 0% 0% 0% 0%

H is the forecasting horizon. Nf is the number of time series per data
frequency. The percentages are rounded (they sum to 100%).

Table 11 — M4 dataset — test phase statistics.

Yearly  Quarterly Monthly Weekly  Daily  Hourly Total
H 6 8 18 13 14 48 -
Nf 23,000 24,000 48,000 359 4,227 414 100,000
9% W 1 9% 10% 10% 11% 10% 12% 10%
JoW?2 91% 90% 90% 89% 90% 88% 90%
%W 3 0% 0% 0% 0% 0% 0% 0%

H is the forecasting horizon. Nf is the number of time series per data frequency. The percentages are
rounded (they sum to 100%).

3.7 Additional reports

We end the experiments section with some additional reports about the framework operation.
Figures 2 to 7 depict cluster distributions and respective mean weighting matrices (in a time-
series fashion). For simplicity’s sake, we chose to show only the largest clusters~ weights (but

there are, in fact, one possible weighting matrix per cluster).
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Figure 2 — M1 dataset — ETS model-form clusters distributions. For visual reference, largest and smallest
(non-empty) clusters are numbered with their lengths. The largest clusters are highlighted.
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Figure 3 — M1 dataset — Largest clusters * mean weighting matrices, in a time-series fashion. The graphs
show how the method “s weights evolve along the forecasting horizon. The training set here was based on
100% (g = 100) of the total time series dataset.
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Figure 4 — M3 dataset — ETS model-form clusters distributions. For visual reference, largest and smallest

(non-empty) clusters are numbered with their lengths. The largest clusters are highlighted.

o™ L -~
& ~.
o - Pr.
e o
= &
o .-
T I L PO
&
g = £
5 5
o N e |
B w s o 2% -
= - - e
o ra B
— — efs i N | — efs
— e i - - arima e ‘o= | == arima
- H e ---- theta =2 s -+ theta
= 4 o tbats o " thats
o -—- snaive - -—=- snaive
T T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6 T 8
horizon horizon
¥
S
a8 o
o -
o
S e = ] 4
o o
{ g @«
. i Yo gt i e
5 @ e A ot
LS -5 - = 2o
2 5 S "~
; =
© o — \~.__ — efs
=i ’ T els T~ - - arima
. - - arima o~ SoRal - theta
/ ce-o theta = T t——— tbats
/ tbats = -—- snaive
T | -—- snaive
5 . ; | T T T T T T
5 10 15 1 a2 (3§ w5 46 8
horizon horizon

Figure 5 — M3 dataset — Largest clusters’ mean weighting matrices, in a time-series fashion. The graphs
show how the method “s weights evolve along the forecasting horizon. The training set here was based on
100% (g = 100) of the total time series dataset.
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Figure 6 — M4 dataset — ETS model-form clusters distributions. For visual reference, largest and smallest
(non-empty) clusters are numbered with their lengths. The largest clusters are highlighted.
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Figure 7 — M4 dataset — Largest clusters * mean weighting matrices, in a time-series fashion. The graphs
show how the method “s weights evolve along the forecasting horizon. The training set here was based on
10% (g = 10) of the total time series dataset.
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4 CONCLUSION

This paper proposes a forecast combination framework that considers horizon-optimized
weights, i.e., weights that may vary over the forecasting horizon. The framework — named
Horizon-Optimized Convex Combinations (HOC2) — builds on cross-learning, time series clus-
tering and cross-validation to form convex combinations of forecasts from 5 methods — Auto-
mated exponential smoothing, Automated ARIMA, Theta, TBATS and Seasonal naive. It was
tested with 104,004 time series from the past M1, M3 and M4 competitions.

Concerning overall results both for point forecasts (PFs) and prediction intervals (PIs), HOC2
presented performance gains over its five underlying forecasting methods alone and over their
simple average combination (AVG) in 9 out of 10 possible winning positions. Also, the frame-
work presented somewhat competitive results for the M4 dataset, a 100,000 time-series dataset
that served the original M4 competition.

Breaking the results by data frequency, the framework outperformed the benchmarks on 23 out of
32 winning positions (72%) for point forecasts (PFs) and had a 7/13 (54%) winning performance
for PIs. More important, it is the most winning approach for both PFs (23 x 5 ARIMA winnings)
and PIs (7 x 2 ETS/TBATS winnings). In other words, it was the overall less risky approach, par-
ticularly when compared to simple average (AVG), which presented only one winning position
for PFs and other for PIs.

Considering the M4 dataset alone, we highlight that the presented results were based on a 10%
training set, wisely sampled from the original dataset. We see this as an interesting fact in two
ways: (i) as an element to reduce processing complexity (by learning and generalization), and
(ii) as something that leaves room for future performance improvements, together with the usage
of the cluster-parallel training procedure (that leads to much shorter processing times).

Considering the extensive analysis and presented performances, our results shall be helpful to
support future research on how horizon-optimized weights can be used interchangeably with
static ones. Here are some improvement ideas to follow:

e Deeper analysis of the framework’s operation, with further investigation of its
hyperparameters and introduction of other benchmarks;

* Study of alternative methods for time series clustering, before the cross-learning training
phase;

e Better care of the pool of methods being combined. For instance, straightforward exer-
cises would be to use pruned and treated models generated by the ETS function (Meira,
Cyrino Oliveira, and Jeon, 2020) or to replace the Theta model by its optimized versions
(Fiorucci and Louzada, 2020): the Dynamic Optimized Theta model (DOTM) or the Op-
timized Theta model (OTM). For automation purposes, our approach intentionally relied
on the use of methods in their default form, but working on the pool shall bring improve-
ments, as pointed out by Atiya (2020): (i) “Forecast combination should be a winning
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strategy if the constituent forecasts are either diverse or comparable in performance” and
(i1) “One should exclude forecasts that are considerably worse than the best ones in the
pool, unless they are very diverse from the rest”. Those points agree with many previ-
ous recommendations discussed in the literature (Armstrong, 2001; Timmermann, 2006;
Kourentzes, Barrow & Petropoulos, 2019);

Association of HOC2 s horizon-optimized weights with more complex cross-learning
schemes, possibly joining statistics and machine learning techniques, as done, for instance,
by Montero-Manso, Athanasopoulos, Hyndman, and Talagala (2020).

The source code for HOC?2 is available at https://github.com/rvsantos2000/hoc2.
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