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ABSTRACT. Human Resource Allocation (HRA) can be defined as the way professionals are distributed
across the organization’s tasks, given that each individual has his/her own set of characteristics, and that
each task has specific needs. Thus, this paper puts forward a mathematical programming model for allocat-
ing human resources that considers employees’ formal qualifications and experience and the possibility of
employees sharing tasks in each project. The proposed mathematical model was designed and implemented
according to a set of heuristics based on a Greedy Search (GS), a Genetic Algorithm, a Cosine Pigeon-
Inspired Optimizer and an Iterated Local Search (ILS), to solve small, medium and large random instances.
Thus, it was verified which of the heuristics had the best performance according to certain indicators, such
as resolution time and average quality of the solutions found. Finally, they were also compared with the op-
timal solution obtained for small and medium-sized instances, with the best average results to ILS, although
these are not too far from those of the GS.

Keywords: Human resource allocation, mathematical programming, resource sharing, resource
qualification, Project Management

1 INTRODUCTION

Allocating human resources in an organization is one of the most difficult and daily problems for
managers, as this is a combination of scheduling and decision-making problems involving the
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whole team and thus the more that members of the team are appropriately allocated to a particular
project, the more efficiently, it will be developed (KHANIZAD & MONTEZER, 2018).

Human resources play a decisive role in the success of an organization, and managers, aware of
this, look for the most efficient tools to optimize the use and allocation of their available resources
across different services or systems, with the goal of maximizing or minimizing certain functions
related to performance and productivity (BOUAJAJA & DRIDI, 2017).

However, this is not a simple task as there are many different combinations of possible employees
and many often-conflicting factors to consider (such as time, cost, quality). Therefore, managing
personnel selection and allocation without formal procedure can be very difficult and can lead
the manager to forming a team that is not the best for a given situation (SILVA & COSTA, 2013).

Different approaches have been proposed in the literature to make the task of allocating resources
more efficient (ARIAS et al., 2018). However, the different methods for human resource alloca-
tion generally do not take into account aspects such as interactions in the dynamic environment
of the organization and expert knowledge (KHANIZAD & MONTEZER, 2018).

Therefore, this article puts forward a mathematical model for the problem of human resource
allocation in projects, also considering the possibility of staff sharing and workers’ know-how in
each project (multiple aspects). The optimal allocation discussed here is related to minimizing
the total execution time of all projects.

The application of the proposed model was performed on instances of different sizes, using Cbc
Solver v.0.7.1, associated with the JuMP v0.21.6 package, from the Julia v1.6.1 language, for
small and medium instances, as well as meta-based heuristics and a greedy heuristic for solving
small, medium and large random instances implemented in the Julia language.

Two methods for solving combinatorial optimization problems which are well-known in the re-
lated literature were used: the Genetic Algorithm, which is widely applied to solve binary prob-
lems, and the Iterated Local Search (ILS). In addition, an easy-to-implement greedy heuristic was
used to support the ILS because it provides faster computation. Moreover, the Cosine Pigeon-
Inspired Optimizer meta-heuristic, formulated by Alazzam, Sharieh and Sabri (2020), was also
used, as it presented competitive results with state-of-the-art algorithms to solve the binary
problem addressed in this paper. Finally, for comparison purposes, the Cbc Solver, which uses
Branch-and-cut, was applied to solve small and medium instances. It is worth stating that param-
eters were selected empirically in all resolution methods, except for explicit indications. There-
fore, this paper maintained the original heuristics with no hybridization with GRASP (Greedy
Randomized Adaptive Search Procedure). The proposed mathematical model was also applied
to two test scenarios using the Cbc Solver to allocate human resources in an information system
project.

This article is structured in 6 sections. After the introductory section, section 2 conceptualizes
the resource allocation problem. In sections 3, 4 and 5 we present the mathematical modeling,
the methodology of the proposed model and its application, respectively. Finally, in section 6
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we make some final remarks, present some conclusions and make suggestions for future lines of
research.

2 A BRIEF REVIEW OF THE LITERATURE ON RESOURCE ALLOCATION

In this section, the resource allocation problem is briefly conceptualized in subsection 2.1. Then,
the problem of allocating human resources is fully described in subsection 2.2. Finally, some
tools used in this context are presented in subsection 2.3.

2.1 Resource Allocation Problems

The resource allocation problem arises during the process of allocating resources across multiple
projects or business units. This process seeks to find an optimal allocation of a limited amount of
resources for a number of tasks. Resources can be people, assets, materials or capital that can be
used to achieve a certain goal. The best solution can mean maximizing profits, minimizing costs
or the best possible quality (LIN & GEN, 2008), or executing projects in the shortest possible
time.

Osman et al. (2005) highlight some typical examples of resource allocation problems, as follows:

• Financing and investments: which involves allocating financial resources for different pur-
poses (accounts receivable, inventory, etc.) over various time periods to maximize interest
gains.

• Capital budgeting: which is related to the allocation of funds to projects that initially
consume money but then generate revenue that maximizes a company’s return on capital.

• Portfolio optimization: involves the allocation of funds to stocks or bonds to maximize
return under a certain level of risk or to minimize risk under a desired rate of return.

• Job shop scheduling: This covers the allocation of time to work orders on different types
of production equipment to minimize delivery time or maximize the use of equipment.

2.2 Human Resource Allocation

Human resource allocation aims to determine which task should be performed by whom (KANG
et al., 2011). This is an area of research that has evolved over time, generating new proposals that
are increasingly applied (ARIAS et al., 2018). This problem has been addressed in the literature
in different applications, which include: software design (E SILVA & COSTA, 2013; KANG et
al., 2011; PARK et al., 2015), in in health services (FAGERSTRÖM, 2009; LANZARONE &
MATTA, 2014) and in a service industry (COROMINAS et al., 2006).

Many companies have been forced to incorporate how best to allocate human resources into their
core strategy due to the dynamism of today’s competitive environment. If allocated successfully,
these can affect process performance, reduce costs and generate better productivity. Thus, the
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adroit allocation of human resources can play a decisive role in the success of an organization
(ARIAS et al., 2018; BOUAJAJA & DIDRI, 2017).

According to Bouajaja & Didri (2017), the problem of human resource allocation is a variation of
the designation (or attribution) problem, which is a special type of linear programming problem
in which the resources designated (machines, people, vehicles, etc.) are suitable for performing
tasks; however, the number of assignees must be equal to the number of tasks because each
assignee may be allocated to only one task. However, if problems do not fully match the model
for an assignment problem (for example, if assignees can be assigned to more than one task or if
a task needs to be performed by multiple assignees), the model must be redesigned (HILLIER &
LIEBERMAN, 2010).

Many studies address the problem of allocating human resources. However, they do not consider
some key factors that impact the applicability of assignments (CHIANG & LIN, 2020). In real
cases, for example, the knowledge of experts in relation to a particular project or activity can
be taken into account, and similarly it can be appropriate for people to share doing the same
activities or projects, as presented in this paper.

Using matching models and graph theory, Numada (2021) developed a model to solve the prob-
lem of allocating human resources to assist in allocating people to emergency shelters following
a disaster. The model seeks to reduce the number of hours worked to the minimum necessary,
allowing for an appropriate rotation of people and a sufficient number of days off, taking into
account a minimum number of people required per shelter each day. It is worth pointing out that
the article does not explicitly consider budget limitations or sharing people between shelters.

Park et al. (2015) propose an approach to solve the problem of human resource allocation in soft-
ware design by using a Genetic Algorithm (GA). In addition to minimizing the project duration,
their approach takes into account practical issues such as the fact that a developer can work on
more than one task at the same time, the assignment of activities that are related to each other,
the size of the task, and the level of the team of developers. However, the skill level of each
developer is not considered for each task specifically.

Chiang & Lin (2020) present a decision model for human resource allocation, dealing with a
project divided into phases. However, it is not considered a scenario with several projects or
simultaneous tasks that allows human resources to be shared. Liu et al. (2021) present a math-
ematical modeling for the human resource allocation problem in several university scientific
research projects using an Improved Pigeon-Inspired Optimization (IPIO) algorithm. However,
it is considered that researchers, after joining a project, cannot withdraw from the original project
and join other projects before completing the tasks. Barreto et al. (2008) conduct an optimization
approach that includes considering when an activity is small enough to be performed by a single
developer.

In this article, the proposed model is intended to address the problem of human resource allo-
cation in one or more projects, with the aim of minimizing the total time for completion. It is
considered that the number of people allocated to each project influences the total time, that the
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more expertise that the members of a project have between them, the better the project will be
developed and that a person can work on more than one project, although there is a penalty re-
lated to multitasking. Finally, the model also considers a financial constraint related to including
each person in each project.

2.3 Tools for Human Resource Allocation

Different methods of Operational Research are proposed in the literature to solve the prob-
lem of human resource allocation. To find an ideal solution, exact methods are used, including
Branch and Bound techniques, dynamic programming, and the Hungarian method (BOUAJAJA
& DIDRI, 2017).

The Hungarian method is an algorithm used to solve the classic assignment problem, where each
assignee must perform a task. In the case where there is no balance between the number of as-
signees and tasks, assignees or ghost tasks are created so that this number is equal (HILLIER
& LIEBERMAN, 2010). Branch and Bound has two main ingredients: branching and bound-
ing. Branching refers to the way the search space of the solution is divided (tree-shaped), while
bounding refers to the process of using valid boundaries to discard subsets of the search space
without compromising optimization (PARRAGH & TRICOIRE, 2018). Dynamic programming
is a useful mathematical technique for creating a sequence of interrelated decisions. It provides
a procedure for determining a combination of optimal decisions (HILLIER & LIEBERMAN,
2010).

However, the human resource allocation problem is classified as an NP-hard combinatorial op-
timization problem (KHANIZAD & MONTEZER, 2018). Assigning tasks to employees in the
context of production management is a difficult challenge mainly due to certain human factors
and also because the allocation of human resources is associated with scheduling problems. In
project management, such allocation is also difficult, as it is associated with time management
and involves planning to ensure that resources are available when needed (BOUAJAJA & DIDRI,
2017).

Therefore, exact methods are not able to provide solutions for large instance problems within a
reasonable time. Consequently, heuristic or metaheuristic methods are often chosen to solve real
and practical problems and obtain a good, but not obligatory, optimal solution (BOUAJAJA &
DIDRI, 2017).

To solve complex combinatorial optimization problems, metaheuristics are considered the most
practical and efficient methods to provide good solutions in a reasonable computational time.
These include Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS), Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO) (BOUAJAJA & DIDRI,
2017).

Tchomté & Gourgand (2009) use an extension and adaptation of the PSO to solve the combi-
natorial optimization problem with precedence constraints in general and the project scheduling
problem with resource constraints in particular. Deng et al. (2010) present a hybrid ant colony
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optimization (HACO) approach to solving the problem of resource-constrained project planning.
Park et al. (2015) use a GA to solve the problem of human resource allocation in a software
project. Kang et al. (2011) optimize the scheduling of human resource allocations using a vari-
ation of SA. Al-Shourbaji and Zogaan (2021) propose the use of the Imperialist Competitive
Algorithm to solve the human resource allocation problem in a cloud-based e-commerce service.

This paper uses the GA, the Cosine Pigeon-Inspired Optimizer (CPIO), the Iterative Local Search
(ILS) and a greedy heuristic to solve the proposed problem. A GA is a meta-heuristic based on the
Theory of Evolution proposed by Darwin, which is widely used in the context of Combinatorial
Optimization (GOLDBARG et al., 2016). A GA has an initial population of individuals, who are
subjected to an artificial process, similar to natural selection, dictated by genetic operators which
will define how the selection of individuals will occur, their crossover and possible mutation
of the generated individuals. The Pigeon-Inspired Optimizer (PIO) meta-heuristic, according to
Alazzam, Sharieh and Sabri (2020), is a cloud intelligence heuristic based on the behavior of
pigeons returning to their nests, which can be mimicked with a Map and by using Compass and
Landmark operators. PIO is adapted to solve continuous variable problems, while CPIO is an
adaptation of PIO to solve binary problems.

Finally, Lourenço, Martin and Stützle (2010) state that ILS is a method that, instead of searching
through the entire space, seeks solutions based on solutions obtained from other methods, in
general from a local search. This meta-heuristic can be summarized in 4 steps: creation of an
initial solution, local search in an established neighborhood structure, perturbation of the current
solution and setting and using criteria for accepting the solution.

3 PROPOSED MATHEMATICAL MODEL FOR HUMAN RESOURCE ALLOCA-
TION

The mathematical model proposed in this article aims to define how best to allocate the available
staff to projects, in order to minimize the total execution time.

This model also considers the possibility of sharing human resources between projects. This
enables an improvement in the overall project execution time as more people may be involved in
it. However, the attention of staff will be divided between more than one activity, so individual
work on different projects will be done less efficiently than an exclusive dedication to a single
project.

Expert knowledge is also assessed in the model. It is considered that an employee who special-
izes in a particular activity will perform his/her work more effectively, thereby reducing his/her
completion time. On the other hand, lesser know-how will hinder making progress with the
project.

Therefore, the model proposed in this article extends the proposal of Silva & Costa (2013) by
considering two aspects: (i) the specific knowledge of people at the time of a project and (ii) the
possibility of an employee being assigned to more than one project.
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The model has the following decision variables:

• xij: binary variable that takes the value 1 if employee i is allocated to project j, and 0
otherwise.

• y j: secondary variable that indicates the number of professionals allocated to the project j.
This variable is obtained according to Equation (1), where NE refers to the total number
of employees available and n to the total number of projects.

y j =
NE

∑
i=1

xij, j = 1,2, . . .,n (1)

In addition to the NE and n parameters already shown, the model also uses the following
parameters:

• cij: Costs of employee i in project j, i.e., how much the company pays for a given
professional to work on a certain project.

• kij: time penalty (in months) in relation to the know-how of professional i in project j, i.e.,
the lower the know-how in a given project, the greater the value of kij, thus increasing the
project completion time. On the other hand, the more skilled the professional is in a certain
project, the lower the value of kij, can be until the null value, without any prejudice to the
project.

• L: budget limit that the company has for human resources in all projects.

• R j(y j): Refers to the time (in months) to complete project j using y j professional. The
use of this parameter is based on the study by E Silva & Costa (2013).

• ti: time penalty (in months) for professional i, if involved in more than one project. If this
occurs, the worker divides his or her attention into more than one project, and this leads to
a drop in employee efficiency.

The proposed mathematical model is shown below:

minZ =
n

∑
j=1

R j (y j)+
NE

∑
i=1

[(
n

∑
j=1

xi j−1

)
∗ ti

]
+

NE

∑
i=1

n

∑
j=1

xi j ∗ ki j (2)

n

∑
j=1

xij≥1, i = 1,2, . . .,NE (3)

y j≥1, j = 1,2, . . .,n (4)
NF

∑
i

n

∑
j

cijxij≤L (5)

xij∈{0,1}, i = 1,2, . . .,NE; j = 1,2, . . .,n (6)
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Equation (2) is the Objective Function to be minimized, which is divided into three portions. The
first refers to the time of completion of all projects by using a certain number of professionals in
each project. The second portion deals with the penalty for sharing resources between projects. In
this portion, the term ∑

n
j=1 xij evaluates how many projects employee i is allocated to. If he/she

is allocated to only one project, the expression results in zero for this employee and there is no
time penalty as this employee will be dedicated exclusively to one project. If he/she is allocated
to two projects, for example, there will be a ti penalty, if allocated to three, the penalty will be
2 ti and so on. This will be evaluated for each employee i, so there is also the sum in i. The third
and last portion refers to the time penalty in terms of know-how, i.e., the lower the professional
know-how in a given project, the greater the time penalty.

Constraints (3) ensure that each professional is allocated to at least one project. Inequality occurs
due to the possibility of sharing human resources. Constraints (4) ensure that at least one person
must be allocated to each project. Constraint (5) prevents staff costs on projects from exceeding
the budget limit L that the company has for human resources on all projects. Finally, Constraints
(6) deal with the nature of the variables.

4 METHODOLOGY

In this section, adaptations in the proposed human resources allocation model for the use of the
Cbc Solver are described, in addition to addressing the meta-heuristics used, namely a Genetic
Algorithm (GA), an Iterated Local Search (ILS), a Cosine Pigeon-Inspired Optimizer (CPIO),
and a Greedy Search (GS). It is worth mentioning that methods for adjusting parameters were
not used to make the algorithms more effective, parameters being selected empirically in all
resolution methods, except when explicitly indicated.

4.1 Adaptations to the Model

To carry out the computational tests, Cbc Solver was used, an Open-Source Solver that uses
Branch-and-Cut to solve mixed integer programming problems. Because the function R j(y j) is
possibly non-linear, it was necessary to replace it with equation (7) in the objective function (2)
in order to solve the problem with a linear method.

n

∑
j=1

NE

∑
i=1

zij ∗ ftij (7)

y j≥i∗ zij, j = 1,2, . . .,n (8)
NE

∑
i=1

zij = 1, j = 1,2, . . .,n (9)

zij∈{0,1}, i = 1,2, . . .,NE; j = 1,2, . . .,n (10)
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The constants ftij were introduced, which are equivalent to the project duration j when i employ-
ees are allocated. In addition, binary variables zij were added, which assume a value of 1 if i
employees are allocated to project j, and 0 otherwise. This requirement is defined in constraints
(8). Constraints (9) oblige exactly one option for the number of employees to be chosen, and
constraints (10) are relative to the nature of the variables zij.

4.2 Solution and Fitness Function

All heuristics handle only the xij, variables, assuming them as they are, an array of binary vari-
ables. Thus, it is possible that non-viable solutions may arise because of constraints (3), (4) and
(5). As the meta-heuristics used here, in their basic versions, are not adapted to deal with restric-
tions, a penalty was used in all of them based on the number of violated restrictions, and also on
the percentage of violation for the restriction case (5) of costs.

P =
n

∑
j=1

R j (1) (11)

p3 =
NE

∑
i=1

max

[
1−

n

∑
j=1

xi j,0

]
(12)

p4 =
n

∑
j=1

max [1− y j,0] (13)

p5 =

(
1.0+

(
∑

NF
i ∑

n
j ci jxi j−L

)
L

)
∗u

(
NF

∑
i

n

∑
j

ci jxi j−L

)
(14)

F = Z +P∗ (p3 + p4 + p5) (15)

Where u is the unit step function:

u(y) =

{
1,y > 0
0,y≤0

}
(16)

In equation (11), the P value prevents the heuristics from considering non-feasible solutions
better than the viable solutions. However, P can restrict the search space, especially because it
was defined empirically, and not according to a minimum penalty norm addressed by Coello
(2002).

Equations (12) and (13) calculate how many restrictions of groups (3) and (4), respectively, were
violated. Equation (14), in turn, in addition to returning at least 1.0 when the solution is violated,
this being verified with the help of the step function of equation (16), calculates the violated
percentage as a way to differentiate small from large variations in the budget. Finally, these
equations are united, together with Z (2), in (15), in the fitness function F, common to all meta-
heuristics, and the result of equations (12), (13) and (14) is multiplied by P to penalize unfeasible
solutions.
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4.3 Genetic Algorithm

The Genetic Algorithm (GA), illustrated in algorithm 1, consists of selection, crossover, mutation
and update operators, which are applied in a population of solutions, in order to mimic natural
selection.

Algorithm 1 Genetic Algorithm.

1: Initialize population
2: while termination condition has not been met do
3: Select parents
4: Crossover
5: Mutate
6: Renew population
7: end while

To initialize the population, Reeves (2010) recommends the generation of M random solutions,
with M defined by equation (17) for binary problems:

P∗2 =
(

1− (1/2)M−1
)l

(17)

P∗2 = 99.9, is assumed herein, as discussed by the author, where l is the number of binary variables
of the instance to solve.

For the problem of the proposed model, the chosen operators were:

• Tournament Selection. In Select, n individuals from the population are chosen at random
to participate in a tournament, and the most suitable tournament participant is selected. In
the problem under analysis, n is equal to 20% of the size of the population.

• Two Point Crossover. In Crossover, the Two Point Crossover is undertaken, i.e., two points
in the interval i = 1,2, ..., NE, are generated randomly: from the beginning of the solution
to the first point and from the second point to the end of the solution, the son inherits ge-
netic information from father 1 for all projects, while, among the points, the child inherits
from father 2, generating one son. In the construction of the solution algorithm, it was
determined that the number of children generated is the same as the population size.

• Bitwise mutation. All of the individual’s genes are susceptible to mutation, with a proba-
bility p of occurring, occurring in Mutate. For the model in question, p = 1/l , being one
of the ways addressed by Reeves (2010).

The population is updated in Renew according to the elitist technique, keeping 60% of the fittest
individuals of the father generation and 40% of the fittest children. The population is restarted
exactly one time if a better solution is not found after 20 generation, with 40% of the fittest
individuals being retained.
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Therefore, because of the effort to maintain population diversification, and because parameter
adjustment methods are not used to define the maximum number of generations, the established
stopping rule was based on the fitness function (REEVES, 2010). In this article, the GA will stop
if the number of generations without finding a better solution is equal to 40.

4.4 Cosine Pigeon-Inspired Optimizer (CPIO)

The CPIO meta-heuristic mimics the behavior of pigeons returning to their nests using the Map
and Compass and Landmark operators, illustrated in algorithm 2.

Algorithm 2 Cosine Pigeon-Inspired Optimizer (CPIO).

1: Receive Nc1, Nc2
2: Initialize pigeons
3: MapAndCompass (pigeons, Nc1)
4: Landmark (pigeons, Nc2)

Initially, this procedure generates the set of solutions, or pigeons, at random, as described by
Alazzam, Sharieh and Sabri (2020). In the present paper, it was established that there are M
pigeons, with the same M representing the GA population size.

In MapAndCompass, in each iteration, in a total of Nc1 iterations, the Xg position of the best
pigeon is searched, so that the speed vp of each pigeon p can be calculated using equation (18),
and then one proceeds to update the Xp position of each pigeon with equation (20). The sigmoid
function, shown in equation (19), is used to calculate the position.

vp = Cosine Similarity(Xg,Xp) =
Xg ∗Xp∣∣∣∣Xg
∣∣∣∣∗ ∣∣∣∣Xp

∣∣∣∣ (18)

S (vp (t)) =
1

1+ e(
−vp

2 )
(19)

X (t)(i,p) [i] =

{
X (t−1)p [i] ,se(S (vp (t))> r)

X (t−1)g [i] ,c.c.

}
(20)

Where t is the current iteration, t-1 the past iteration, i is the index in the position of Xp to be
changed, or not, and r a generated value of uniform distribution [0, 1).

At this stage, there is the possibility of changing repeated solutions in 20% of their current state,
according to Alazzam, Sharieh and Sabri (2020). Therefore, in addition to searching for solutions
equal to the end of each MapAndCompass iteration, a random number with a uniform distribution
[0, 1) will be generated and, if it is greater than 0.5, the repeated solutions will be modified.

Finally, the Landmark operator will be executed, which will halve the number of pigeons in
each iteration, with this division being rounded in this paper. Thereafter, Xc, corresponding to
the central position, will be calculated based on the remaining population according to equation
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12 PROPOSITION OF A MATHEMATICAL PROGRAMMING MODEL FOR ALLOCATING HUMAN RESOURCES

(21), being duly rounded, and thus, all pigeons and their Xp positions will be updated according
to equations (18), (19) and (20), with Xc as Xg.

Xc (t) =
[

∑Xi (t)∗F (Xi (t))
Np ∗∑F(Xi(t))

]
(21)

Similarly to GA, Nc1 was changed to correspond to the number of iterations without improve-
ments, being established 60 for this parameter. Nc2 was established for the Landmark operator
to finish with 1 pigeon.

4.5 Greedy Search (GS)

The chosen GS, illustrated in algorithm 3, initializes the solution s with all values of xij i equal
to 0. According to the fitness function F of equation (15), SearchForBestFitness searches for the
best option among the os xij = 0 in s to receive value 1, returning the solution s* with exclusively
this position changed in relation to s.

Thereafter, it is checked if s* is better than solution s. If so, the solution s will receive the values
of s*, otherwise, the loop will be ended with the aid of the variable o.

Algorithm 3 Greedy Search.

1: Initialize s
2: o = 0
3: while o = 0 do
4: s*� SearchForBestFitness (s)
5: if F (s*) < F(s) then
6: s� s*
7: else
8: o = 1
9: end if

10: end while

4.6 Iterated Local Search (ILS)

The ILS meta-heuristic formally consists of steps of initial solution generation, local search,
perturbation and acceptance criteria, illustrated in algorithm 4, below.

Initialize a solution s, using a neighborhood structure to search for the best solution s* from the
neighborhood of s, usually in a LocalSearch process. In kmax iterations, at each iteration, aiming
to distance the search from local optimal solutions, a Perturbation is applied to s, generating a new
solution s’, which will be submitted to LocalSearch to find s*’, which in turn, will be evaluated to
determine if it will become the best solution s* with the help of the AcceptanceCriterion. Finally,
s will receive s*’ for carrying out the perturbation on top of the best variable of the iteration.
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ÍTALO RUAN BARBOSA DE AQUINO et al. 13

Algorithm 4 Iterated Local Search.

1: Initialize s, k� 0
2: s* = LocalSearch (s)
3: while k < kmax do
4: s’=Perturbation (s)
5: s*’=LocalSearch (s’)
6: s*=AcceptanceCriterion (s*, s*’)
7: s�s*’
8: end while

For the initialization of the algorithm solution s, Lourenço, Martin and Stützle (2010) suggest that
for shorter runs a greedy method be used to generate the initial solution. Therefore, the GS de-
scribed above was chosen. In all executed instances, it was defined that kmax = 10. The One-Flip
proposed by Lü, Glover and Hao (2009) is in the neighborhood structure used in LocalSearch(s),
which defines as neighbors of s all solutions that have exactly one position of the solution matrix
with a different value if compared with S. The AcceptancerCriterion chooses the best solution
among the options. Finally, the Perturbation changes the solution at random in 20%.

5 APPLICATION OF THE PROPOSED MATHEMATICAL MODEL

In this section, the way that the computational experiments of heuristics and the exact method
were carried out, as well as the obtained results and relevant discussions are presented. Two test
instances based on Information Systems (IS) projects are also evaluated.

For the construction of heuristics, for the storage of instances and results, PoissonRandom.jl
v0.4.0, StaticArrays.jl v1.0.1, Traceur.jl v0.3.1, Distributions.jl v0.24.12 and XLSX packages
were used, while .jl v0.7.6. JuMP.jl v0.21.6 and Cbc.jl v0.7.1 were used together to solve
the instances with Branch-and-Cut. Finally, the runtimes of the heuristics were recorded with
BenchmarkTools.jl v0.5.0.

5.1 Evaluation of Heuristics

In this subsection the heuristics are evaluated based on a set of instances of different sizes.

In order to increase the execution speed of the algorithm, according to the tests in a larger instance
analyzed in the article, in all algorithms, the solution is initially generated empty, and the possible
total penalty is calculated and registered. At each modification in a position in this solution, the
new fitness is registered based on the previous value as well as the difference that occurs in the
solution when it is changed.

5.1.1 Creating Instances

Instances of different sizes were generated, with random values for the constants of the model,
within uniform continuous distributions established in an intuitive way. For the cost constants, cij,
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[300,700], for the time penalty in relation to know-how, kij, [0,5], for the percentage r, [0.4,0.7],
which helps to define the spending limit at L = r ∗∑cij, and for the time penalty ti n relation to
multitasking, [0.5,3].

To generate the R j function, initially a random value is generated within the interval [15,60] that
defines the project time if there is only 1 employee. From this, NE–1 sij values are generated
distributed between [0.01,0.08] , for each j value. Thus, R j can be calculated from i = 2, accord-
ing to equation (22), but before sij are ordered, in relation to j, so that it has a greater impact to
allocate employees to projects when they have a smaller number of employees already allocated.

R j (i) = R j (i−1)∗ (1− sij) (22)

The small instances generated were from the combination of number of employees and number of
projects NE = {5,10,15,20} and n = {3,5,10,15}, with an instance being generated for each of
the 16 possible combinations. For medium-sized instances m, of the same, NE = {20,24,28,32}
and n= {18,22,26,30}. Finally, in large instances l, unlike the others, 15 instances of the combi-
nations NE = {50,100,150,200} and n = {20,30,40,50}, were generated, with the instance of
size 200x50 not being generated because the package used to record instances does not support
strings of such dimensions.

5.1.2 Computational results of heuristics

The experiments were carried out on a notebook with an i5-8265U processor and 8 GB of RAM
memory. The heuristics were performed for all instances, whereas Cbc Solver was used for small
and medium instances.

All solving methods covered in the article were executed 10 times for each instance, with the
results found relating to the performance of the heuristics, as well as the exact method, in relation
to time and fitness function recorded in Appendices A, B and C for the small, medium and large
instances respectively.

Although GS is faster according to data in Appendix A, it is seen that time is not an issue for the
heuristics used, while it is seen to scale the Cbc resolution time for larger problems.

To compare the methods in relation to the quality of the solutions, equation (23) was used, which
measures the percentage difference PD between the performance of the optimal/best solution
found BS, and the mean MS result obtained by the method evaluated in each instance. From this,
the average percentage difference obtained by the method in the set of instances is calculated.

PD =
MS−BS

BS
∗100 (23)

Thus, Table 1, Table 2 and Table 3 were generated, with the performance of the best heuristic for
the instance highlighted in bold.
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Table 1 – PD for small instances.

Instance Problem Size (NE x n) GS GA CPIO ILS
s1 5x3 1,691% 0,451% 1,120% 0,165%
s2 5x5 1,188% 0,426% 2,160% 0,023%
s3 5x10 0,641% 1,165% 4,082% 0,271%
s4 5x15 0,410% 1,281% 7,547% 0,105%
s5 10x3 0,493% 3,052% 14,627% 0,148%
s6 10x5 0% 2,2980% 11,7890% 0%
s7 10x10 1,322% 1,871% 15,378% 0,586%
s8 10x15 0,740% 0,507% 13,630% 0,072%
s9 15x3 0,009% 10,585% 33,759% 0,004%

s10 15x5 0,194% 3,600% 19,412% 0,103%
s11 15x10 0,711% 3,392% 39,778% 0,538%
s12 15x15 0,989% 1,300% 31,932% 0,469%
s13 20x3 0,685% 7,629% 68,513% 0,577%
s14 20x5 0,191% 6,053% 41,109% 0,161%
s15 20x10 0,280% 2,744% 42,930% 0,159%
s16 20x15 0,922% 1,643% 42,449% 0,433%

Mean 0,654% 3,000% 24,388% 0,238%

Table 2 – PD for midsize instances.

Instance Problem Size (NE x n) GS GA CPIO ILS
m1 20x18 0,492% 1,335% 46,045% 0,323%
m2 20x22 0,712% 0,554% 47,469% 0,060%
m3 20x26 0,930% 0,798% 54,259% 0,149%
m4 20x30 0,756% 0,685% 61,818% 0,110%
m5 24x18 0,793% 1,464% 59,169% 0,165%
m6 24x22 1% 1,265% 61,380% 0,267%
m7 24x26 0,685% 0,711% 55,634% 0,153%
m8 24x30 0,620% 0,854% 120,365% 0,097%
m9 28x18 0,749% 2,557% 92,998% 0,588%

m10 28x22 0,383% 1,298% 85,593% 0,165%
m11 28x26 0,578% 1,245% 87,200% 0,235%
m12 28x30 0,711% 1,168% 91,195% 0,281%
m13 32x18 0,679% 2,948% 118,009% 0,541%
m14 32x22 0,582% 1,870% 107,803% 0,334%
m15 32x26 0,555% 1,288% 109,385% 0,272%
m16 32x30 0,456% 1,347% 108,772% 0,272%

Mean 0,645% 1,337% 81,693% 0,251%

As it is possible to observe, among the formulated heuristics, the one with the highest perfor-
mance is the ILS in all instances, and in most large instances, it is possible that it is not managing
to leave the optimal location that is the initial solution of the method obtained by the GS. The
second place is the GS, with an average performance close to the ILS, being followed by the GA
and CPIO, which had a poor performance compared to the other methods.
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Table 3 – PD for large instances.

Instance Problem Size (NE x n) GS GA CPIO ILS
l1 50x20 0,026% 3,374% 190,996% 0,024%
l2 50x30 0,080% 2,368% 202,493% 0,052%
l3 50x40 0,401% 2,592% 240,737% 0,095%
l4 50x50 0,893% 1,129% 200,742% 0,144%
l5 100x20 0% 15,816% 674,395% 0%
l6 100x30 0% 7,882% 606,922% 0%
l7 100x40 0% 5,024% 565,278% 0%
l8 100x50 0,089% 3,995% 593,750% 0,079%
l9 150x20 0% 31,479% 1091,337% 0%
l10 150x30 0% 15,206% 1059,604% 0%
l11 150x40 0% 9,756% 996,708% 0%
l12 150x50 0% 7,023% 990,529% 0%
l13 200x20 0% 51,486% 1738,224% 0%
l14 200x30 0% 23,936% 1572,621% 0%
l15 200x40 0% 15,632% 1483,045% 0%

Mean 0,099% 13,113% 813,825% 0,026%

The answers were obtained after running a certain number of generations in GA, iterations in
CPIO or after visiting a specific number of neighborhoods in ILS, and these values are registered
in Table 4 for all instances.

Table 4 – Average number of iterations in instances.

Num. Instances
GA CPIO ILS

s m l S M l s m l
1 54,3 377,4 877,7 91,7 78,2 80,7 35,7 586,5 1601,2
2 66,7 439,2 1324,2 99,8 81,2 81,8 48 725,2 2429,6
3 97,1 529,5 1601,5 117,8 82,7 80 83,3 843,5 3256,3
4 125 608,6 2173,8 78,2 84,9 81,8 120,8 980,1 4107,3
5 103 447,5 1572,4 83,1 92 90,4 53,7 701,4 3152
6 104,1 511,2 2322,1 106,6 78,9 85,5 79,1 867,1 4818,8
7 135,9 623,8 3190,3 105,8 84 84,3 160,8 1018,8 6451,1
8 186,9 686,7 3993,3 81,9 84,8 85,4 246,4 1182,9 8156,6
9 106,4 499 2084,1 68,8 79,6 87,5 74,8 808,6 4631,6
10 144,9 616,9 3455,3 78,3 88,9 89,6 121,3 999,7 7216
11 167,9 711 4535,2 75,3 87,1 93,4 235,4 1176,9 9704
12 272,1 800,5 5732,3 84,6 79,3 87,9 364,9 1360,6 12163,9
13 140,6 577,6 2808,9 76,7 89,5 92,4 99,6 937,4 6166,5
14 170,7 665 4372,4 75 82,6 91,7 154,3 1150,7 9507,4
15 274,5 784,2 5850,7 77 78,2 83,3 320 1359,2 12863,6
16 302,6 897,6 - 82,4 78,7 - 482,7 1556,8 -

Thus, it is clear that the amount relative to the number of iterations in each heuristic increases
as the instance increases in size. However, this does not happen with the CPIO-based heuristic,
which remains on average with the same number of iterations. This may indicate that the heuristic
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cannot escape from optimal locations, which may be caused both by the penalty method and by
the absence of a method to adjust the parameters.

5.2 Resolution of IS Test Instances

The proposed mathematical model was executed in two test scenarios using the Cbc Solver,
because they are small scenarios.

Both scenarios assume that 10 employees need to be allocated to three projects. The times (in
months) for project j completion using professional y j, ( R j(y j)), are shown in Table 5. These
data were calculated and demonstrated in the study by E Silva & Costa (2013), to simulate IS
project.

Table 5 – Time (in months) to complete projects based on number of professionals.

Number of employees Project 1 Project 2 Project 3
1 21.1154 13.8237 8.2715
2 13.9778 9.1509 5.4755
3 8.6246 5.6463 3.3785
4 5.0558 3.3099 1.9805
5 3.5688 2.3364 1.398
6 2.3792 1.5576 0.932
7 1.487 0.9735 0.5825
8 0.8922 0.5841 0.3495
9 0.5948 0.3894 0.233

10 0.5948 0.3894 0.233

Source: E Silva & Costa (2013).

Table 6 shows the costs cij of employee i in project j. These were obtained conjecturally. These
costs are related to how much the company pays for each professional to work on a certain
project.

Table 6 – Costs of employee i in project j.

Employee Project 1 Project 2 Project 3
1 1000 700 700
2 900 850 895
3 600 580 760
4 300 600 910
5 490 565 700
6 1000 900 900
7 780 640 645
8 820 810 880
9 900 950 930

10 1100 1000 900
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Table 7 and Table 8 show, respectively, the time penalty kij in relation to the know-how of
professional i in project j and the time penalty ti in relation to professional i, if shared. These
parameters were also conjectured.

Table 7 – Time penalty in relation to professional know-how in project j.

Employee Project 1 Project 2 Project 3
1 0 0.2 0.2
2 0.1 0 0.15
3 0.3 0.3 0
4 0.11 0.11 0.11
5 0.2 0.17 0.05
6 0.03 0.13 0.09
7 0 0.05 0.04
8 0.2 0 0
9 0.14 0.12 0.06

10 0 0.02 0.05

The budget limit L, i.e., the financial capital that the company has available for human resources
in all projects, was considered to be R$ 9,000.00.

Table 8 – Time penalty in relation to shared professional i.

Employee 1 2 3 4 5 6 7 8 9 10
ti 1.5 1.0 1.1 2.0 1.7 0.9 1.2 1.3 1.0 1.4

In the first scenario, professionals were allocated without budgetary limitations. Although this
situation is not common in reality, it can be seen to what extent staff sharing can be beneficial
to the organization. In this case, the allocation of human resources occurs according to Table 9.
The total execution time for this scenario was0.026 seconds.

Table 9 – Human resource allocation in the first scenario.

Project 1 Project 2 Project 3
Allocated employees 1, 2, 4, 6, 7 and 10 2, 6, 8 and 9 3, 5, 6 and 9

It can be observed that there was sharing of employees: employee 2 (in projects 1 and 2), em-
ployee 6 (in all projects) and employee 9 (projects 2 and 3). The total execution time of the
projects resulted in approximately 12.16 months. The total cost, if this solution were to be
implemented, would be R$ 11,880.00.

Project 1 resulted in more staff allocated, six in all. Four employees were allocated to each of
Projects 2 and 3.

In the second scenario, the financial limit is considered, assuming, consequently, a lower shared
participation of human resources in the projects. The model was run for 0.310 seconds and the
software found the results shown in Table 10.
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Table 10 – Human resource allocation in the second scenario.

Project 1 Project 2 Project 3
Allocated employees 1, 4, 6 and 10 2, 6, 7 and 8 3, 5 and 9

As expected, there was less resource sharing due to budget constraints: only employee 6 was
shared (in projects 1 and 2). The total project execution time was longer in this case, resulting in
approximately 13.07 months. The total cost of employees was R$ 8,990.

In the first scenario, the cost has become R$ 2,890.00 higher due to the greater performance of
workers in the projects. Project execution, however, occurred 27.44 days faster. In the second
case, the cost of human resources was reduced to within budget limits. However, projects take
longer to complete.

Thus, it is found that greater resource sharing can be significant for better project execution
performance in less time, despite the increase in the cost of human resources.

Thus, the model is able to allocate professionals between projects, also considering the possibility
of sharing staff and taking into account the knowledge of workers in each project.

On the other hand, it is realistically very difficult to determine the time penalties for workers
working on more than one project and also to quantify each other’s know-how. Therefore, the
model has limitations as to the accuracy in determining the parameters.

6 FINAL CONSIDERATIONS

Considering the improvements based on E Silva & Costa (2013), in this paper we proposed a
mathematical model, to support the problem of human resource allocation.

In this model, the objective function to be minimized is divided into three portions. The first
refers to the time of completion of all projects using a certain number of employees in each
project. The second deals with the penalty for sharing resources between projects. In this case, if
an employee is allocated to only one project, the expression results in zero for this employee and
there is no time penalty as this employee will be dedicated exclusively to one project. If he/she
is allocated to two projects, for example, there will be a penalty, and so on. The last portion
refers to the time penalty in terms of know-how i.e., the lower the professional know-how in a
given project, the greater the time penalty. Nonetheless, the model ensures that each employee is
allocated to at least one project.

The model was then applied to several instances of different sizes, using the Cbc Solver and
heuristics, among which, it was noted that the one with the best average performance is the ILS,
with the CPIO heuristic having the worst performance. However, in tests with large instances, its
performance does not differ much from the GS, and it is possible that the heuristic based on ILS
cannot escape the great location that is the GS response.
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Even so, the model was applied in two scenarios and budgetary limitations were either considered
or ignored. Overall, it was noted that greater resource sharing can be significant for better project
execution performance in less time, despite increased human resource costs.

It is worth noting that the way of penalizing solutions that violate restrictions was created in
a simple and intuitive way. As a consequence of this, parts of the problem search space may
become inaccessible to the heuristic, or, else, it can end with a solution that does not narrowly
respect the restriction of expenses, which is one of the factors that may have harmed CPIO.
Thus, the heuristic could have its performance improved by better defining the penalty function,
or by using other techniques to deal with restrictions, such as those described by Coello (2002).
Exploring these possibilities could be usefully undertaken in future studies.

In addition, to improve the performance of the proposed heuristic, another suggestion for future
work is the use of methods to adjust the parameters of the heuristics, such as Revac, F-Race and
SPO (MONTERO et al., 2014).
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A RESULTS OF HEURISTICS

A.1 Small instances

3 unfeasible solutions were registered as PIO outputs for instance l13.

Instance Problem Size (NE x n) Cbc GS GA PIO ILS
Optimal Time (s) Value Time (s) Best Average σ Time (s) Best Average σ Time (s) Best Average σ Time (s)

l1 5x3 105,43 6,20E-03 107,21 1,79E-06 105,43 105,9 0,486 2,99E-04 105,43 106,61 1,456 1,24E-04 105,43 105,6 0,12 1,33E-05
l2 5x5 174,01 7,80E-03 176,08 4,26E-06 174,01 174,75 0,748 3,67E-04 174,74 177,77 1,74 1,59E-04 174,01 174,05 0,125 2,99E-05
l3 5x10 311,84 1,71E-02 313,84 1,18E-05 312,19 315,47 2,459 5,74E-04 319,52 324,57 4,037 2,49E-04 311,84 312,69 0,605 9,59E-05
l4 5x15 560,28 1,86E-02 562,57 2,68E-05 562,81 567,46 3,959 8,43E-04 588,38 602,56 8,62 3,57E-04 560,28 560,87 0,908 2,05E-04
l5 10x3 111,28 1,39E-02 111,83 6,54E-06 111,28 114,68 2,527 3,93E-04 118,3 127,56 5,313 1,69E-04 111,28 111,44 0,265 4,12E-05
l6 10x5 150,65 2,00E-02 150,65 1,24E-05 151,12 154,11 2,928 5,34E-04 160,44 168,41 6,96 2,38E-04 150,65 150,65 0 9,42E-05
l7 10x10 308,66 3,87E-02 312,74 4,16E-05 310,58 314,44 2,751 1,09E-03 335,6 356,13 13,061 4,39E-04 309,38 310,47 0,919 3,65E-04
l8 10x15 598,93 2,44E-02 603,36 9,24E-05 599,61 601,97 1,583 1,91E-03 658,89 680,57 11,004 6,08E-04 598,93 599,36 0,462 8,82E-04
l9 15x3 88,04 4,21E-02 88,04 1,39E-05 91,62 97,36 3,792 4,72E-04 106,43 117,76 7,843 2,29E-04 88,04 88,04 0,004 7,95E-05

l10 15x5 200,89 9,53E-02 201,28 2,86E-05 202,84 208,12 3,953 7,86E-04 233,71 239,88 5,889 3,35E-04 200,89 201,09 0,156 2,12E-04
l11 15x10 320,19 8,44E-02 322,47 7,57E-05 326,68 331,05 4,309 1,71E-03 420,73 447,56 12,63 6,45E-04 320,84 321,92 0,496 8,23E-04
l12 15x15 561,54 1,52E-01 567,09 1,55E-04 565,97 568,84 1,888 3,06E-03 714,23 740,85 19,118 9,19E-04 563,11 564,17 1,02 1,86E-03
l13 20x3 109,35 1,13E-01 110,1 2,58E-05 114 117,69 3,009 6,18E-04 133,02 184,27 65,471 2,64E-04 109,35 109,98 0,232 1,56E-04
l14 20x5 160,75 2,33E-01 161,06 5,39E-05 163,51 170,48 3,957 9,77E-04 218,54 226,84 7,09 4,05E-04 160,75 161,01 0,107 3,74E-04
l15 20x10 360,19 3,41E-01 361,2 1,64E-04 363,96 370,07 4,993 2,69E-03 496,58 514,82 11,765 8,33E-04 360,19 360,76 0,38 1,58E-03
l16 20x15 534,29 4,71E-01 539,21 3,56E-04 538,44 543,06 3,339 4,48E-03 727,54 761,08 21,085 1,25E-03 534,29 536,6 1,29 3,49E-03



A.2 Midsize instances

1 unfeasible solution was registered as PIO output for instances m4, m10 and m13, and 4 unfeasible solutions were registered for m8.

Instance Problem Size (NE x n) Cbc GS GA PIO ILS
Optimal Time (s) Value Time (s) Best Average σ Time (s) Best Average σ Time (s) Best Average σ Time (s)

m1 20x18 637,44 6,97E-01 640,58 4,84E-04 642,9 645,95 2,237 5,80E-03 899,99 930,94 21,034 1,38E-03 638,4 639,5 0,696 5,02E-03
m2 20x22 841,12 6,59E-01 847,11 6,97E-04 843,83 845,78 1,874 7,91E-03 1181,05 1240,39 31,69 1,65E-03 841,21 841,63 0,348 7,50E-03
m3 20x26 910,43 8,10E-01 918,9 9,16E-04 914,13 917,7 3,038 1,01E-02 1354,63 1404,43 22,194 1,95E-03 910,67 911,79 0,511 1,07E-02
m4 20x30 1103,88 1,05E+00 1112,23 1,32E-03 1107,29 1111,44 2,953 1,33E-02 1593,07 1786,28 397,441 2,53E-03 1104,31 1105,09 0,806 1,39E-02
m5 24x18 662,37 1,37E+00 667,62 6,53E-04 667,22 672,06 2,885 7,59E-03 1018,69 1054,28 26,375 1,64E-03 663,04 663,46 0,339 7,22E-03
m6 24x22 809,91 2,46E+00 815,05 8,94E-04 816,83 820,15 4,217 9,75E-03 1255,85 1307,02 29,958 2,13E-03 810,78 812,07 0,916 1,07E-02
m7 24x26 1043,88 3,07E+00 1051,03 1,35E-03 1048,97 1051,3 2,356 1,39E-02 1572,35 1624,62 37,8 2,63E-03 1044,45 1045,47 0,58 1,54E-02
m8 24x30 961,23 3,57E+00 967,19 1,50E-03 965,7 969,45 2,467 1,76E-02 1642,03 2118,22 559,623 2,79E-03 961,45 962,16 0,406 1,99E-02
m9 28x18 563,25 4,92E+00 567,47 6,41E-04 571,49 577,66 4,531 9,02E-03 1027,43 1087,07 36,961 1,87E-03 565,11 566,57 0,902 9,45E-03
m10 28x22 807,21 7,95E+00 810,3 1,13E-03 813,79 817,69 3,411 1,32E-02 1345,99 1498,13 313,215 2,61E-03 807,6 808,55 0,86 1,46E-02
m11 28x26 916,57 6,64E+00 921,87 1,61E-03 923,81 927,98 2,97 1,78E-02 1586,84 1715,82 60,223 2,82E-03 917,31 918,72 0,709 2,06E-02
m12 28x30 1002,99 1,04E+01 1010,12 2,18E-03 1008,68 1014,7 3,692 2,19E-02 1877,97 1917,66 26,318 3,24E-03 1004,11 1005,8 1,351 2,76E-02
m13 32x18 552,96 1,36E+01 556,71 9,05E-04 560,15 569,26 4,34 1,23E-02 1068,66 1205,5 237,805 2,46E-03 554,54 555,95 0,726 1,26E-02
m14 32x22 687,63 2,05E+01 691,63 1,35E-03 695,05 700,49 4,37 1,63E-02 1382,61 1428,91 27,712 2,72E-03 688,45 689,92 0,972 1,92E-02
m15 32x26 882,2 1,42E+02 887,09 1,90E-03 889,93 893,56 2,348 2,01E-02 1784,15 1847,19 44,946 3,50E-03 883,52 884,59 1,034 2,78E-02
m16 32x30 999,26 7,56E+02 1003,81 2,55E-03 1007,88 1012,71 4,321 2,73E-02 2016,41 2086,17 47,336 3,66E-03 1001,56 1001,97 0,332 3,54E-02



A.3 Large instances

5 unfeasible solutions were registered as PIO outputs for instance l5, and 3 for instance l12, with the best performance found in the instance
being highlighted in bold.

Instance Problem Size (NE x n) GS GA PIO ILS
Value Time (s) Best Average Σ Time (s) Best Average Σ Time (s) Best Average Σ Time (s)

l1 50x20 647,6 2,43E-03 662,84 669,27 4,96 2,74E-02 1815,54 1883,98 44,443 3,81E-03 647,42 647,58 0,054 3,73E-02
l2 50x30 958,61 4,80E-03 972,11 980,52 4,673 6,17E-02 2806,04 2897,39 57,749 6,23E-03 957,84 958,34 0,302 8,38E-02
l3 50x40 1162,91 7,68E-03 1169,38 1188,29 10,994 9,42E-02 3847,68 3946,63 52,358 9,27E-03 1158,26 1159,36 1,234 1,55E-01
l4 50x50 1668,86 1,40E-02 1664,92 1672,75 5,418 1,60E-01 4864,78 4974,52 70,664 1,13E-02 1654,08 1656,46 1,127 2,40E-01
l5 100x20 494,43 7,02E-03 548,78 572,63 11,841 8,82E-02 3327,82 3828,87 462,153 8,45E-03 494,43 494,43 0 1,46E-01
l6 100x30 784,01 1,33E-02 830,39 845,8 17,039 2,01E-01 5318,98 5542,33 132,748 1,46E-02 784,01 784,01 0 3,30E-01
l7 100x40 1120,06 2,44E-02 1163,28 1176,34 9,735 3,61E-01 7350,05 7451,53 96,372 1,85E-02 1120,06 1120,06 0 6,09E-01
l8 100x50 1387,39 4,00E-02 1430,23 1441,53 10,327 5,63E-01 9517,15 9616,45 72,689 2,40E-02 1386,16 1387,25 0,389 9,71E-01
l9 150x20 464,39 1,35E-02 589,93 610,57 19,047 1,78E-01 5170,81 5532,44 158,098 1,50E-02 464,39 464,39 0 3,24E-01

l10 150x30 718,12 2,68E-02 815,95 827,32 8,47 4,34E-01 8133,02 8327,38 114,815 2,34E-02 718,12 718,12 0 7,72E-01
l11 150x40 1040,98 4,73E-02 1122,07 1142,54 16,823 7,60E-01 10726,66 11416,5 262,881 2,84E-02 1040,98 1040,98 0 1,37E+00
l12 150x50 1419,76 6,75E-02 1503,75 1519,47 12,97 1,20E+00 14750,99 15482,93 1001,286 3,67E-02 1419,76 1419,76 0 2,19E+00
l13 200x20 389,04 2,21E-02 567,43 589,33 13,53 3,07E-01 6914,72 7151,34 105,042 1,79E-02 389,04 389,04 0 5,94E-01
l14 200x30 685,35 4,44E-02 815,26 849,39 18,468 7,44E-01 11253,41 11463,24 159,847 3,16E-02 685,35 685,35 0 1,38E+00
l15 200x40 978,94 7,75E-02 1103,8 1131,97 20,987 1,28E+00 15194,58 15497,11 149,538 4,21E-02 978,94 978,94 0 2,44E+00


