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ABSTRACT
This study aimed to identify the productive cycle response of 

Italian zucchini genotypes grown under field conditions in two 
growing seasons using the nonlinear logistic model and its critical 
points. Two randomized block experiments were conducted, with 
three genotypes (Caserta, PX13067051, and Tronco) and two growing 
seasons (spring-summer and summer-fall), with eight replicates and 
each experimental unit consisting of 7 plants. The logistic nonlinear 
model was adjusted for the fruit mass variable, as a function of the 
accumulated thermal sum, and the critical points were estimated 
by the partial derivatives of the adjusted function. Adjustment by 
bootstrap resampling was performed to address the violation of 
assumptions. The results of intrinsic and parametric nonlinearity 
confirm the quality of the model fit. This experiment demonstrated 
that the zucchini genotypes evaluated were more productive in the 
spring-summer growing season, using the parameters and critical 
points obtained from the logistic nonlinear model. Genotypes 
PX13067051 and Caserta showed superior productivity to the Tronco 
genotype, and also fruited earlier and at a higher rate of production. 
The logistic growth model and its critical points characterized the 
production cycle of the zucchini genotypes in different growing 
seasons and allowed inferences to be made to differentiate the 
genotypes and the growing seasons.

Keywords: Cucurbita pepo, growth models, nonlinear models, 
production rate, thermal sum.

RESUMO
Ciclo de produção e caracterização de genótipos de abobrinha 

italiana pelo modelo logístico

O objetivo deste estudo foi identificar a resposta do ciclo 
produtivo de genótipos de abobrinha italiana cultivadas em condições 
de campo em duas épocas de cultivo por meio do modelo não linear 
logístico e seus pontos críticos. Para isso dois experimentos foram 
conduzidos em delineamento blocos ao acaso, com três genótipos 
(Caserta, PX13067051 e Tronco) e duas épocas de cultivo (primavera-
verão e verão-outono) com oito repetições e a unidade experimental 
composta por 7 plantas. Ajustou-se o modelo não linear logístico para 
a variável massa de frutos, em função da soma térmica acumulada, 
e estimou-se os pontos críticos pelas derivadas parciais da função 
ajustada. Os pressupostos do modelo não linear não foram atendidos 
para nenhum genótipo em ambas as épocas avaliadas, e para contornar 
este problema foi realizado o ajuste por reamostragens bootstrap. Os 
resultados de não linearidade intrínseca e paramétrica confirmam a 
qualidade do ajuste do modelo. Pelos parâmetros e pontos críticos do 
modelo foi possível determinar que os genótipos de abobrinha italiana 
avaliados foram mais produtivos na primavera-verão. Os genótipos 
PX13067051 e Caserta apresentaram produtividade superior ao 
genótipo Tronco, além de serem mais precoces e apresentar maiores 
taxas de produção. O modelo de crescimento logístico e seus pontos 
críticos foram capazes de caracterizar o ciclo de produção dos 
genótipos de abobrinha italiana em diferentes épocas de cultivo, e 
permitiu que inferências fossem realizadas com vistas a diferenciar 
os genótipos e as épocas de cultivo avaliadas.

Palavras-chave: Cucurbita pepo, modelos de crescimento, taxa de 
produção, soma térmica.

2018). According to the Instituto de 
Economia Agrícola (2020), in 2019, 
only the state of São Paulo, the largest 
Brazilian producer, produced more than 
70,900 tons, in an area of approximately 
4135 hectares.

Zucchini is a temperature-sensitive 
crop which does not tolerate low 
temperatures. The optimum temperature 

zucchini, in general, is China, followed 
by India, Ukraine, Russia, and Mexico, 
which together produced more than 17 
million tons in 2018 (Faostat, 2020).

The main zucchini producing states 
in Brazil are São Paulo, Minas Gerais, 
Rio de Janeiro, Paraná, and Goias. 
All these states present ideal climate 
characteristics for cultivation (CEPEA, 

Italian zucchini (Cucurbita pepo) is a 
low cost and high production crop, 

often-used in rotation with tomatoes, 
as it has a relatively short development 
cycle until harvest. Management 
information is scarce (CEPEA, 2018), 
suggesting the value in advancing 
research on zucchini production. The 
world’s largest producer of Italian 
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for zucchini germination ranges from 21 
to 35°C (Puiatti, 2019), and the ideal 
temperature for flowering is 22 to 25°C 
according to Liu et al., (2020). This crop 
does not respond to the photoperiod to 
bloom, that is, it is a neutral day plant, 
but during long days there is an increase 
in the proportion of male flowers 
to female flowers (Puiatti, 2019). 
Zucchini is a multiple-harvest crop with 
a production cycle that can reach up to 
90 days. Production cycles may vary 
according to environmental conditions, 
with temperature, precipitation, and 
solar radiation influencing the growth 
and yield of the crop (Bannayan et al., 
2011).

Examining experimental data from 
multiple harvest crops, the assumptions 
for analysis of variance are often not 
met, as the occurrence of observations 
with zero values for the number of fruits 
and mass of fruits inflates the residual 
variance and can lead to inadequate 
estimates due to high type II error rates 
till, and accumulating the values of 
these variables in each plant can reduce 
these null values and allow the use of 
nonlinear regression models (Lúcio et 
al., 2016).

Non linear regressions or growth 
models can be used to describe the 
response of individuals over time. Thus, 
it is possible to evaluate the productive 
cycle of the culture, since the adjusted 
non-linear equations present their 
parameters and critical points with 
biological interpretation (Mischan & 
Pinho, 2014).

The thermal sum is widely used 
because it has biological influence in 
plants, as it takes into account the effect 
of temperature on plant development, 
in addition to presenting a non-linear 
response in plant growth (McMaster 
& Smika, 1988). In this way, using the 
accumulated thermal sum, it is possible 
to obtain relevant information and detect 
possible problems in the development 
of the culture.

Nonlinear regression models 
have been used in several analyses of 
vegetables, such as Allium sativum (Reis 
et al., 2014), Phaseolus vulgaris (Lucio 
et al., 2016), Fragaria x ananassa 
(Diel et al., 2019, 2020), Lycopersicun 
esculentum var. cerasiforme (Lúcio et 

al., 2016), Capsicum chinense (Diel 
et al., 2020a) and Capsicum annuum 
(Lúcio et al., 2015). Lúcio et al. (2015) 
modeled the zucchini culture cycle 
in protected cultivation. However, 
only a single cultivar was evaluated. 
In addition, the critical points of the 
adjusted model, which can be used in 
practice, for example, to determine 
the production precocity (Sari et al., 
2018) were not determined from the 
partial derivatives of the adjusted 
function. In view of the great economic 
importance of the crop and the problems 
in evaluating multiple-harvest crop, 
this study aimed identify the response 
of the productive cycle of three Italian 
zucchini genotypes grown under field 
conditions in two growing seasons 
using the nonlinear logistic model and 
its critical points.

MATERIAL AND METHODS

Cultivation site, area preparation, and 
experimental design

The experiments were conducted 
in 2018 and 2019, in the experimental 
area of the Federal University of Santa 
Maria (29°42’23’’S; 53°43’15’’W, 95 
m altitude). According to the Köppen 
classification, the region’s climate is 
of the Cfa type, rainy temperate, with 
rainfall well distributed throughout the 
year and subtropical from the thermal 
point of view (Alvares et al., 2013).

The rotary hoe was used to prepare 
the soil of the experimental area, and 
basic fertilization carried out according 
to the soil analysis, following the 
recommendations of the liming and 
fertilization manual for the states of 
Rio Grande do Sul and Santa Catarina 
(CQFS) (Comissão de química e 
fertilidade do solo, 2016).

The treatments consisted of three 
genotypes of Italian zucchini, Caserta, 
Hibrido PX13067051, and Tronco. Seeds 
were sown on September 26, 2018, for 
Season 1 (spring-summer) and February 
19, 2019, for Season 2 (summer-fall), 
in 128-cell trays containing Carolina® 
substrate. Seedlings were transplanted 
to flower beds on October 24, 2018 for 
the spring-summer season and March 
10, 2019 for the summer-fall season (28 

and 19 days after sowing respectively), 
with plant spacing of 0.70 m.

A randomized block design was 
used with eight replications of the three 
genotypes, and the experimental unit 
consisted of seven plants per plot.

Assessments completed
The plants were tutored individually, 

and drip irrigation was used, according 
to the needs of the crop. All plants in 
each plot were harvested, starting 25 
days after transplantation, and repeated 
every three days thereafter. The fruit 
size for the harvest was standardized, 
averaging 15 cm. After harvesting, the 
fruits were placed in identified plastic 
bags, and weighed in the laboratory.

Temperature data were collected from 
the automatic meteorological station of 
the National Institute of Meteorology 
(INMET), located approximately 50 m 
from the experiment site. Average air 
temperature was calculated as:

 where Tave is the air average temperature; 
Tmax is the maximum air temperature, 
and Tmin is the minimum air temperature.

The daily thermal sum (TSd) in °C 
day-1 (Arnold, 1960) (Byan et al., 2011) 
was calculated as:

where TSd is the daily thermal sum (°C 
day-1); Tave is the air average temperature, 
and Tb is the base temperature.

The base temperature (Tb) is set as 
the temperature below which the plant 
cannot develop, or its development is so 
slow that it can be ignored (Rosa et al., 
2011). Zucchini have a base temperature 
of 8°C (NeSmith & Bridges, 1992).

The dai ly  thermal  sum was 
calculated for each day starting at the 
date of sowing, and the accumulated 
thermal sum (TSa, in °C day-1) up to the 
ith day was calculated by:

Harvests were carried out every 
three days during the complete maturity 
stage for a total of 17 harvests for Season 
1 and 25 harvests for Season 2. The 
commercial fruits harvested in each 
experimental unit were weighed with 
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the aid of a scale.

Adjustment of growth model
The mean mass of fruits per plant 

(g plant-1) obtained in each harvest 
was consecutively accumulated 
for each experimental unit (H1, 
H1+H2, H1+H2+H3,....H1+ H2+…
H7). A logistic model was fitted to 
the accumulated data from each 
experimental unit using the following 
equation:

where Yi is the mean mass of fruits per 
plant (dependent variable); Xi is the 
accumulated thermal sum (TSa), in 
degree days, from the seedling transplant 
up to the i th harvest (independent 
variable); β1 is the asymptotic value, and 
its values represent the total production 
of treatments; β2 is a parameter that 
reflects the distance between the initial 
value (observation) and the asymptote, 
β3 is the parameter associated with the 
growth rate and ɛi represents random 
error.

Parameter estimates were obtained 
using the ordinary least squares method 
with a Gauss-Newton algorithm. The 
coefficient of determination (R²) and 
the intrinsic (ci) and parametric (cθ) 
nonlinearity were calculated using the 
curve method suggested by Bates & 
Watts (1988) and defined, in a compact 
form, as:

and

Where Ci and Cθ denote the maximum 
parameter-effects  and intr insic 
curvatures, while and  stand for the 
parameter-effects and intrinsic curvature 
arrays. The maximization is carried 
out over a unit-vector of the parameter 
values (Bates & Watts, 1988). Afterward,  

and 

values were estimated, where F(α,p,n-p) = F 
tabulated as a quantile of the F 
distribution in which α is 0.05, p is the 

number of parameters in the model and 
n the number of observations. Hence, 
the solution locus may be considered to 
be sufficiently linear within an 
approximately 95% confidence region 
if (α = 0.05). Similarly, if, 

, the projected parameter 
lines may be regarded as being 
sufficiently parallel and uniformly 
spaced (Ratkowsky, 1983). When these 
values  are  below 0.3  and 1 .0 , 
respectively, the parameters are close to 
being unbiased (Battes & Watts, 1988; 
Ratkowsky, 1983). The normality, 
homogeneity and independence of 
residuals were tested by the Shapiro-
Wilk, Bartlett and Durbin Watson tests 
respectively (Bartlett, 1937; Shapiro & 
Wilk, 1965; Breusch & Pagan, 1979).

As the assumptions of the model 
were not met, confidence intervals were 
obtained by a bootstrap-based procedure 
using the nlsboot function of the nlstools 
package in the R environment (Baty et 
al., 2015). In this procedure, 10,000 
estimates of each parameter were 
obtained for each treatment. Then, the 
confidence intervals were calculated for 
the deviations between the genotypes 
(T1-T2, T2-T3 and T1-T3).

From the resampling values of the 
model parameters and their differences, 
the critical points of the function were 
calculated. The coordinates (X and Y) 
of the critical points of the logistical 
model,  known as the maximum 
acceleration point (MAP), inflection 
point (PI), maximum deceleration point 
(MDP), and asymptotic deceleration 
point (ADP), were obtained by setting 
the following derivatives equal to zero, 
according to the methodology described 
in (Mischan et al., 2011): inflection 
point (PI):  ; point of maximum 

acceleration (MAP) and point of 
maximum decelerat ion (MDP): 

; and point of asymptotic 

dece le ra t ion  (ADP) : . 
Precocity is defined as when the PI was 
achieved (this point identifies the 
moment at which the rate of production 
of  f ru i t  was  maximized) .  The 
concentration of production was defined 
by the difference between MAP and 
MDP, corresponding to the time during 

w h i c h  p r o d u c t i o n  i n c r e a s e d 
exponentially (Sari et al., 2018).

Confidence intervals were obtained 
by taking the difference between 
the 97.5th and 2.5th percentiles of the 
bootstrap parameter estimates. The 
confidence intervals were obtained from 
the deviations between the genotypes 
(T1-T2, T2-T3 and T1-T3) for each 
parameter of the model and its critical 
points. When the value 0 was contained 
within any of these confidence intervals, 
equality between the genotypes was 
admitted. Statistical and graphical 
analyses were performed using R 
software (R Core Team, 2019), with 
the MASS (Venables & Ripley, 2002), 
lmtest (Zeileis & Hothorn, 2002), car 
(Fox & Weisberg, 2019), manipulate 
(Allaire, 2014), nlstools  (Baty et al., 
2015) ggplot2  (Wickham, 2016) and 
metan (Olivoto & Dal’Col Lúcio, 2020).

RESULTS AND DISCUSSION 

For the spring-summer season, 
which was sown in late September and 
concluded on December 30, 2018, the 
minimum and maximum absolute air 
temperature recorded in the evaluation 
period was 10.2 and 38.4°C respectively. 
The average temperature, however, 
remained between 15.1 and 29.4ºC 
(Figure 1A). For the summer-fall 
season, which was sown on February 19 
and continued until May 22, 2019, the 
minimum and maximum temperatures 
were 10 and 36.4ºC respectively. The 
average temperature remained between 
14.2 and 29.3ºC (Figure 1B). During 
both evaluation periods the temperatures 
did not fall below the lower basal 
temperature for the cultivation of 
zucchini, which is 8ºC.

The cucurbit family, which includes 
the Italian zucchini (Cucurbita pepo), 
needs mild to high temperatures for 
rapid growth and development, a 
minimum temperature of 16°C for seed 
germination, and an ideal temperature 
range for plant germination and growth 
from 25 to 32°C. Temperature and 
length of day play important roles in 
determining the size and number of 
fruits and overall production (Paris et al., 
2017). The bottom base temperature of 
the zucchini is 8ºC (Nesmith & Bridges, 

AD Lúcio et al.
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Table 1. p-values for the tests of normality, heteroscedasticity and error independence, 
estimates of non-linearity, and determination coefficient of the logistic model adjusted for 
fruit mass (g plant-1) for genotypes of Italian zucchini cultivated in two growing seasons. 
Santa Maria, UFSM, 2020.

Genotype
Spring-Summer 2018

SW¹ BP DW Ci Cθ R2aj
Caserta 0.59 0.06 0 0.09 0.57 0.99
PX13067051 0.03 0.08 0.002 0.08 0.61 0.99
Tronco 0.16 0.30 0 0.12 0.57 0.99

Summer-Fall 2019
Caserta 0.33 0.83 0 0.10 0.64 0.99
PX13067051 0.06 0.21 0 0.08 0.77 0.99
Tronco 0.03 0.36 0 0.10 0.62 0.99

¹SW= Shapiro-Wilk; BP= Breusch-Pagan; DW= Durbin Watson; Ci= intrinsic nonlinearity; 
Cθ= parametric nonlinearity; R²aj= adjusted coefficient of determination.

1992), and in both growing seasons of 
this experiment the temperature did not 
fall below 10ºC. Temperatures are one 
of the causes of the good productivity 
achieved by genotypes, especially in the 
spring-summer season.

The adjusted logistic growth model 
for fruit mass (g plant-1) showed 
low intrinsic and parametric non-
linear results, that is, below 0.3 and 1 
respectively, confirming the good fit 
of the fruit mass as a function of the 
accumulated thermal sum. The non-
linear model should resemble a linear 
model, such as the results presented 
in our study (Table 1). However, the 
assumptions of the nonlinear model 
were not fully met during the growing 
seasons, and to address this, bootstrap-
based parameter estimation was also 
performed (Table 1).

Fitting a logistic model for fruit mass 
(g plant-1) allows parameters to provide 
interpretations related to the productive 
cycle of the crop. Such interpretation 
would not be possible when evaluating 
only one production variable or simply 
making a comparison of means, or linear 
model (Diel et al., 2020). For such 
inferences to be reliable, however, the 
model must have a high quality of fit 

Figure 1. Average (Tave), maximum (Tmax) and minimum (Tmin) temperatures during the conduction period of experiments with 
zucchini genotypes grown in two growing seasons; A) 2018 (spring-summer) and B) 2019 (summer-fall). Santa Maria, UFSM, 2020.

and have characteristics close to the line 
(Sari et al., 2018). For this, the intrinsic 
and parametric nonlinearity measures 
proposed by Bates & Watts (1988) 
must be less than 0.3 and 1 respectively. 
The intrinsic non-linearity does not 
depend on the parameterization of the 
model, and the parametric nonlinearity 
has to do with the parameterization 
of the chosen model. Using different 
parameterizations of nonlinear models 
is one of the ways to circumvent the 

problem of high parametric nonlinearity, 
and for vegetable multiple harvest crops, 
the logistic model used in this study 
presents good linear approximation 
measures and is suitable for this type of 
study (Diel et al., 2019; Sari et al., 2018, 
2019 a,b). In the present experiment, the 
measures of non-linearity were met, and 
the adjusted growth model has a high 
quality of fit.

For the parameters of the adjusted 
nonlinear model to be reliable, that 
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Figure 2. Confidence intervals for the parameters and critical points of the nonlinear logistic model estimated via bootstrap. β1 (represents 
production); β2  (represents the precocity of production); β3 ( represents the rate of fruit production); MAP (maximum acceleration point); 
PI (inflection point); MDP (maximum deceleration point); ADP (asymptotic deceleration point) and Concentration, for genotypes of 
Italian zucchini, grown in spring-summer A) and summer-fall B) seasons. Santa Maria, UFSM, 2020.

is, for them to represent the reality 
of the growth cycle, the assumptions 
of normality, homoscedasticity, and 
independence of the residuals must be 
met. In the present work, not all of the 
model’s assumptions were ignored and, 
when this does not occur, adjustments 
with bootstrap resampling can be 
implemented to allow the estimation 
of precise confidence intervals for the 
parameters. (Ratkowsky, 1983; Souza 
et al., 2010; Diel et al., 2019).

For the spring-summer growing 
season (seeding in September 2018) 
the asymptote of the non-linear model 
reflects the production reached by the 
culture, and shows that the genotype 
PX13067051 was the most productive, 
reaching 6597.88 g plant-1, and differing 
significantly from the Caserta and 
Tronco genotypes which reached 
production of 4365.71 and 4492.35 
kg plant-1 respectively. The genotypes 
Tronco and Caserta did not show 
significant differences (Figure 2A and 
3A). 

In addition to the higher production 
per plant, the estimates of the parameter 
β2 show that the genotype PX13067051 
produces fruits earlier than the other two 
genotypes, and the Caserta genotype 
has no significant differences from 
the Tronco genotype. The lowest 
values of the parameter β2 indicate 
fruit maturation at the beginning of the 
harvest, that is, greater fruiting of the 
PX13067051 genotype at the beginning 
of the harvest. The fruit production 
rate, defined by parameter β3, shows 
that genotype PX13067051 had a 
higher rate of fruit production, that is, 
it continued producing fruits for longer 
period than the genotypes Caserta. The 
Tronco genotype demonstrated a lower 
production rate (higher β3) and remained 
in production over a shorter period 
(Figure 2A).

Regarding the critical points of the 
logistic model, the point of maximum 
acceleration (MAP), showed significant 
differences between the genotype 
PX13067051 and the genotypes Caserta 

for the spring-summer growing season. 
In biological terms, this means that 
the genotype PX13067051 showed 
maximum increases in production 
over a shorter period, causing a higher 
production peak relative to the other 
evaluated genotypes. This is consistent 
with findings about the inflection point 
(PI), where the genotype PX13067051 
reached the moment of maximum 
production earlier than the Caserta and 
Tronco genotypes, revealing a greater 
precocity of PX13067051 (Figure 2A 
and 3C).

The maximum deceleration points 
(MDP) and asymptotic deceleration 
points (ADP) show the same trend 
and illustrate not have significant 
differences between the treatments 
evaluated, suggesting that the decrease 
in production was practically at the same 
time. Concentration of production, as 
determined by the difference between 
MDP and MAP, shows that the 
genotype PX13067051 had the highest 
concentration in relation to genotype 

AD Lúcio et al.
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Figure 3. Adjusted logistic model for fruit mass of Italian zucchini genotypes grown in spring-summer A) and summer-fall B); fruit 
production rate: C) spring-summer D) summer-fall; critical points of the adjusted model (PI= inflection point, MAP= maximum 
acceleration point, ADP= asymptotic deceleration point, MDP= maximum deceleration point): E) for spring-summer growing season 
and F) for summer-fall growing season. Santa Maria, UFSM, 2020.

spring-summer, the Caserta genotype 
showed significantly higher production 
than the Tronco genotype during this 
summer-fall season (2288.72 and 
1632.65 g plant-1, respectively) (Figure 

less mass fruit compared to the first 
season (spring-summer). Again, the 
parameter β1 indicates that the genotype 
PX13067051 was the most productive 
(2860.10 g plant-1). Unlike the results for 

Caserta, because production started 
earlier (Figure 2A and 3E).

For the second summer-fall growing 
season (sowing in February 2019), 
the three cultivars produced much 

Production cycle and characterization of Italian zucchini genotypes by the logistic model
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2B and 3B).
C o n s i d e r i n g  t h e  p a r a m e t e r 

representing early production, the same 
trend is observed for the spring-summer 
season, being the genotype PX13067051 
the earliest, presenting greater fruit 
ripening at the beginning of the harvests, 
followed by Caserta and Tronco. The 
rate of fruit production (β3) also showed 
a similar pattern; genotype PX13067051 
had a higher rate of production, and 
the genotype Tronco a lower rate of 
production, likely because it remained 
in production for a shorter period, the 
Tronco genotype did not differ from the 
Caserta genotype (Figure 2B and 3B).

With respect to MAP, difference 
was observed between the genotype 
PX13067051 and the Caserta genotype, 
while the Tronco genotype showed no 
difference for MAP in relation to the 
Caserta and PX 13067051 genotypes 
(Figure 2B). The PI was reached earlier 
by genotype PX13067051 in relation to 
the genotypes Tronco and Caserta.in the 
summer-fall growing season, with about 
1100ºC day-1, while the Tronco and 
Caserta genotypes reached the PI with 
about 1120ºC day-1 (Figure 2B and 3D).

For MDP it can be seen that the 
genotype PX13067051 decreased 
production later than Caserta. The 
ADP showed no significant differences 
between genotypes. The production 
concentration showed the same behavior 
as the spring-summer growing season, 
where the highest concentration 
of harvests was for the genotype 
PX13067051 (Figure 2B and 3F).

The parameter estimate β1 showed 
differences in the productivity of zucchini 
genotypes, with the highest productivity 
achieved by genotype PX13067051 in 
both growing seasons. The growing 
seasons differed in their productivity; 
the summer-fall was considerably 
less productive for each of the three 
evaluated genotypes as compared to the 
spring-summer growing season. This 
may be related to the planting season 
indicated for cucurbits in general, 
which is the spring (Paris et al., 2017). 
Evaluating the production and quality 
of zucchini in two growing seasons 
Rouphael & Colla (2005) concluded 
that, compared to spring-summer, plants 
grown in summer-autumn showed a 

total and marketable yield 35 and 33% 
lower, however, they showed greater 
efficiency in the use of water.

Although the zucchini plants can 
be grown in the summer/fall, as in the 
present work, the high temperatures 
at the beginning of the cycle, and the 
low temperatures during the flowering 
period reduce the flower emission, and 
although to a lesser extent, the days that 
start to decrease end up affecting the 
growth of the plants, resulting in fewer 
flowers, ultimately leading to decreased 
fruit production  (NeSmith & Bridges, 
1992; Paris et al., 2017; Puiatti, 2019). 
Also, high humidity during the ripening 
period of the fruits can cause decreased 
productivity in zucchini  (Conti et al., 
2015). The greater solar radiation due to 
the high level of natural light and the long 
photoperiod was probably responsible 
for the increase of photosynthesis in 
season 1 (spring-summer) compared 
to season 2 (summer-fall) (Rouphael 
& Colla, 2005). Even so, cultivation 
outside the most indicated season can 
be of interest allowing the fruit to be 
delivered when there is low supply in 
the market, between harvests.

The crop cycle in the summer-
autumn was shorter in terms of thermal 
time, since it accumulated 1323.8ºC day-

1 from sowing to the last harvest, while 
in the spring-summer it accumulated 
1484.8ºC day-1 from sowing until the 
last harvest. Thermal time is the most 
accurate measure of biological time 
in plants, rather than calendar days or 
days after sowing/planting (Gilmore 
& Rogers, 1958). In this experiment, 
thermal time influenced the model 
parameters.

Another way of offering fruit at a 
time when production is lower relates to 
the choice of genotype. Crop planning 
must take this into account; a genotype 
that produces about two weeks earlier 
manages to gain market share relative 
to other vegetables and fruits that have 
more limited supply. In the present 
study, during the two growing seasons 
evaluated, the genotypes PX13067051 
and Caserta fruited earlier than the 
genotype Tronco. The use of β2 to assess 
the productive precocity of a crop is 
recent, and it presents a more accurate 
way of determining such a variable (Sari 

et al., 2019b; Diel et al., 2020), and a 
more efficient alternative to counting 
the number of days between sowing 
and harvesting. Rouphael & Colla 
(2005) found a greater precocity in the 
summer-fall season of approximately 10 
days prior to the spring-summer season. 
In this study, the precocity differences 
were not as pronounced; the biggest 
differences in fruit production were due 
to the genotype and not the growing 
season.

The rate of fruit production is also 
important when choosing a genotype. 
It is of interest to know if the genotype 
has dense production characteristics, 
with a high peak and a slight drop in 
production, or if a genotype remains 
with constant production throughout 
the productive cycle of the crop . The 
use of β3 together with the critical 
points of the model (MAP, MDP, ADP 
and PI) provides a more thorough 
characterization of the culture cycle 
(Mischan et al., 2011; Sari et al., 2019 
a, b; Diel et al., 2020 a, b).

When a genotype is identified that 
not only produces a high quantity of 
fruits, but also can be brought to market 
early, achieves high production rates 
and a high concentration of production, 
that is, has a longer life cycle, it can be 
considered an ideal genotype. In this 
experiment, genotype PX13067051 
presented these characteristics, and 
therefore, among the studied genotypes, 
is the most suitable. The concentration 
of production, defined by the differences 
between the critical points MDP and 
MAP, is important to define how 
long the genotypes have exponential 
growth in production (Sari et al., 
2018). The shorter this period, the 
more concentrated the production. The 
opposite, that is, the longer the period, 
the less concentrated the production 
(Sari et al., 2018, 2019b). In our case, 
the most productive genotype had a 
higher concentration of production 
compared to the others. PX13067051 
also highlights the early start of the 
exponential production period.

The results obtained in the research 
showed that the Italian zucchini 
genotypes evaluated are highly 
productive in the spring-summer 
growing season as compared to the 
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summer-autumn growing season. The 
PX13067051 and Caserta genotypes 
have higher productivity than the Tronco 
genotype, in addition to fruiting earlier 
and presenting a higher production 
rate. Estimates of the logistic growth 
model parameters and its critical points 
can characterize the production cycle 
of the zucchini genotypes in different 
growing seasons and allows inferences 
to be made to differentiate the evaluated 
genotypes and growing seasons.
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