Arg. Bras. Med. Vet. Zootec., v.69, n.6, p.1367-1375, 2017

Imunidade celular em vacas Holandesas soropositivas para o Vírus da Leucose Bovina (BLV) durante o período de transição

[Cellular immunity in Holstein cows seropositive for Bovine Leukosis Virus (BLV) during the transition period]

V. Gomes¹, V.A.P. Baldacim¹, J.F.R. Costa¹, C.P. Costa e Silva¹, J.R.P. Arcaro², M.S. Miranda², R.S. Sousa¹, J.J. Fagliari³, K.M. Madureira⁴

¹Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo - São Paulo, SP
 ²Agência Paulista de Tecnologia dos Agronegócios (Apta) - São Paulo, SP
 ³Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista "Júlio de Mesquita Filho" - Jaboticabal, SP
 ⁴Escola de Medicina Veterinária e Zootecnia - Universidade Federal da Bahia - Salvador, BA

RESUMO

Esta pesquisa avaliou a dinâmica dos leucócitos e das subpopulações de linfócitos em vacas Holandesas soropositivas para o BLV no período de transição. Amostras de sangue (n=72) provenientes de 12 vacas foram coletadas entre as semanas -2 e +3 para a realização do leucograma, imunofenotipagem, dosagem de cortisol e haptoglobina (Hp). O perfil leucocitário foi caracterizado por leucocitose, neutrofilia, monocitose e eosinopenia próximo ao parto. Linfocitose e elevada proporção de linfócitos B CD21⁺ foram achados constantes entre as semanas -2 e +3; assim, as vacas foram testadas e confirmadas soropositivas para o BLV. Os valores das subpopulações de linfócitos T apresentaram-se baixos durante o período de transição, observando-se dois picos máximos que coincidiram com as elevações nas concentrações de cortisol no parto (2,11μg/dL) e semana +3 (1,97μg/dL). Hp apresentou aumento crescente de -2 (166μg/mL) a +3 (576μg/mL), provavelmente associada à elevada taxa de infecções uterinas observadas nas semanas +2 e +3. As vacas soropositivas para o BLV apresentaram leucograma de estresse próximo ao parto, exceto para linfócitos. A linfocitose e as elevadas proporções de células B CD21⁺, associadas com as baixas proporções de células T, podem ser indicativo de imunossupressão e predisposição aos processos inflamatórios no período pós-parto.

Palavras-chave: periparto, haptoglobina, cortisol, subpopulações de linfócitos

ABSTRACT

This research evaluated the dynamics of leukocytes and lymphocytes subsets in seropositive Holstein cows for BLV during the transition period. Blood samples (n=72) from 12 cows were harvested from week -2 up to week +3 to perform leukogram, immunophenotyping, cortisol and haptoglobin (Hp). Leukocytes pattern was characterized by leukocytosis, neutrophilia, monocytosis and eosinopenia around calving. Lymphocytosis and high proportions of B cells CD21 $^+$ were a constant finding between week -2 and +3, thus cows were tested and confirmed seropositive for BLV. The values of T lymphocytes subsets were low during the transition period, observing two peaks that coincided with high levels of cortisol at delivery (2.11 μ g/dL) and week +3 (1.97 μ g/dL). Hp had gradual increase from week -2 (166 μ g/mL) until week +3 (576g/mL) probably due to high rate of uterine infection detected between week +2 and +3. The seropositive cows for BLV presented stress leukogram around delivery, except for lymphocytes. Lymphocytosis and the high proportions of B cells, associated with the low proportions of T lymphocytes, can be indicative of immunosuppression and predisposition to the inflammatory process observed in the post-partum period.

Keywords: peripartum, haptoglobin, cortisol, lymphocytes subsets

Recebido em 17 de março de 2016 Aceito em 21 de fevereiro de 2017 E-mail: viviani.gomes@usp.br

INTRODUÇÃO

O crescimento da indústria leiteira nas últimas décadas exigiu a seleção genética por produção, o que resultou em aumento dos requerimentos energéticos. Esse fenômeno é intensificado no período de transição devido à nutrição fetal, colostrogênese e lactogênese (Ingvartsen e Moyes, 2013). O atendimento às demandas energéticas impostas no período de transição é dependente de mecanismos homeostáticos e homeorréticos, regulados pela secreção das catecolaminas, pelo cortisol, pela insulina, pelo glucagon, pelo hormônio do crescimento e pelo hormônio semelhante à insulina do tipo I (Drackley, 1999).

A adaptação metabólica das vacas ocorre em concomitância com uma série de fatores estressantes, incluindo mudanças na dieta, reagrupamentos sociais e alterações físicas, hormonais e fisiológicas associadas ao parto. Esses eventos resultam na liberação do cortisol e em situação de alerta orgânico, no qual as células de defesa são redistribuídas, observando-se o influxo dos neutrófilos e efluxo dos linfócitos dos tecidos para os vasos sanguíneos (Davis et al., 2008). Os glicocorticoides também alteram a transcrição gênica da interleucina 12, que estimula a resposta proliferativa dos linfócitos mediante estímulo antigênico. Esse mecanismo está associado com a diminuição da proporção de linfócitos auxiliares (CD4⁺) e citotóxicos (CD8⁺), observados ao redor da parição (Van Kampen e Mallard, 1997; Kimura et al., 2002).

Linfócitos B (CD21⁺) apresentam padrão variável durante o periparto. Foram relatados valores constantes e similares ao período de lactação plena (Van Kampen e Mallard, 1997; Kimura *et al.*, 2002), enquanto outros autores observaram decréscimo na população de células B (Ohtsuka *et al.*, 2010) ou acréscimo (Meglia *et al.*, 2005).

O balanço e a interação entre as diferentes células do sistema imune, especialmente as subpopulações de linfócitos, são fundamentais para a defesa do organismo contra os agentes infecciosos. Alterações nas proporções e migração das subpopulações de linfócitos podem afetar a resposta imune local e a sistêmica (Van Kampen e Mallard, 1997), tornando os animais

susceptíveis aos processos inflamatórios pósparto devido à mastite e à metrite.

O desequilíbrio entre as subpopulações de linfócitos sanguíneos em vacas Holandesas, independentemente do ciclo de lactação, pode ser afetado pelo vírus da leucose bovina (BLV). Esse vírus infecta células B e compromete a homeostase das subpopulações de linfócitos pelo desequilíbrio entre a proliferação e a morte celular (Souza *et al.*, 2011). A soroprevalência para o BLV em rebanhos leiteiros, na região Sudeste do Brasil, é de aproximadamente 49,53 – 79,75% (Rajão *et al.*, 2014). Apesar da elevada ocorrência, ainda não existem descrições sobre o perfil dos leucócitos sanguíneos em vacas soropositivas para o BLV no período de transição.

A dinâmica e a atividade funcional das células imunes no período de transição possuem destaque na literatura internacional, entretanto pesquisas nacionais que consideram as condições sanitárias de criação brasileiras são escassas e incluem um curto período de avaliação. Assim, o objetivo desta pesquisa foi avaliar a resposta imune celular em vacas Holandesas soropositivas para o BLV durante o período de transição.

MATERIAL E MÉTODOS

Esta pesquisa foi aprovada pelo Comitê de Ética no Uso de Animais da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo (Protocolo #2767/2012).

Este estudo foi conduzido entre setembro e novembro de 2013, em fazenda experimental pertencente à Agência Paulista de Tecnologia dos Agronegócios (Apta), localizada na cidade de Nova Odessa – São Paulo (latitude 22°75'S e longitude 47°27'W). Para tanto, foram selecionadas 12 vacas da raça Holandesa, entre a segunda e a quarta parição, de acordo com a data da inseminação e a previsão de parto.

As condições de manejo adotadas durante o experimento foram conduzidas de acordo com a rotina da fazenda. As vacas foram transferidas para piquete maternidade, composto por capim do gênero *Cynodon* (coast-cross e tifton), aos 30 dias do parto previsto. Em relação às condições de bem-estar das vacas, observaram-se variações de acordo com as condições climáticas do

período, considerando-se a ausência de cobertura no piquete maternidade, exceto pela existência de algumas árvores. Não existiam áreas específicas para a parição e os partos não eram assistidos no período noturno.

A composição da dieta oferecida para as vacas no pré e pós-parto era igual (Tab. 1), entretanto as quantidades de silagem de milho (pré-parto: 20kg; pós-parto: 35kg) e concentrado (pré-parto: total equivalente a 3kg; pós-parto: 1kg para cada litro de leite produzido) eram diferentes. A produção de leite diária dos animais variou de 25 a 30 litros entre as semanas +1 e +3. O balanço aniônico da dieta não era considerado, devido à alegação de baixos índices de ocorrência para hipocalcemia e retenção de placenta. *Drench* pós-parto também não era fornecido.

Tabela 1. Composição da dieta oferecida para as vacas Holandesas no período de transição

Ingredientes	%MS					
Feno de tifton	3,00					
Silagem de milho	47,00					
Milho moído	33,00					
Farelo de soja 45%	14,00					
Vitaminas	2,00					
Sal mineral	1,00					
Composição química						
Matéria seca MS (%)	65,24					
Proteína bruta - PB (%)	15,11					
Extrato Etéreo - EE (%)	1,80					
Extrativo não nitrogenado - ENN (%)	65,58					
Matéria mineral - MM (%)	6,56					
Cálcio (g/kg)	2,496					
Fósforo (g/kg)	5,989					

As análises relativas a esta pesquisa foram realizadas entre as semanas -2 e +3 em relação ao parto. A ocorrência das doenças nesse período foi estimada pelos registros da propriedade.

Amostras de sangue (n=72) foram coletadas semanalmente por meio da punção da artéria coccígea em tubos sem e com o anticoagulante *Ethylene Diamine Tetraacetic Acid* (1,5mg/mL). Os tubos sem anticoagulante foram centrifugados a 800xg por 20 minutos, sendo o soro armazenamento e congelado a -80°C.

Leucócitos totais foram determinados por meio de contagem automática (ABX ABC Vet, ABX Diagnostics, Brasil). O exame diferencial dos leucócitos foi realizado por metodologia manual (Birgel, 1982). O fenótipo dos linfócitos sanguíneos foi determinado pela técnica de citometria de fluxo, de acordo com o protocolo descrito por Della Libera et al. (2012). Resumidamente, 100µL de sangue foram lisados, utilizando-se solução salina isotônica (NaCl 0,2% e NaCl 1,6%). Anticorpos (ACs) monoclonais específicos para receptores de superfície dos linfócitos bovinos selecionados para a marcação das células (Tab. 2). As células foram incubadas com 100µL de ACs primários previamente diluídos em Phosphate Saline Buffer (PBS), por 30 minutos, a 4°C. As células foram lavadas 3x em PBS, sendo posteriormente incubadas com 100µL de ACs secundários, por 30 minutos, a 4°C, em ambiente escuro. Por fim, as células foram lavadas 2x e suspensas em 300µL de PBS. A aquisição dos eventos foi realizada em citômetro de fluxo FACS Calibur, por meio do programa CellQuest (Becton Dickinson Immunocytometry System, San Jose, EUA). Os eventos adquiridos (15.000) foram avaliados quanto à emissão das fluorescências no programa FlowJo Software (Tree Star, Ashland, EUA). Os resultados foram expressos na porcentagem de células positivas fluorescência associada para cada marcadores de superfície. O valor absoluto das populações de linfócitos foi calculado multiplicando-se a proporção (%) das populações determinada por citometria de fluxo pelo número de linfócitos totais (células/µL).

Tabela 2. Anticorpos (Ac) usados para a marcação dos linfócitos sanguíneos

Ac primário ¹	Clone	Isotipo	Diluição	Ac secundário ²	Diluição
CD3 ⁺ células T	MM1A	IgG1	1:200	Pe-Cy5.5	1:400
CD4 ⁺ células T	CACT83B	IgM	1:400	FITC	1:400
CD8 ⁺ células T	BAQ111A	IgM	1:200	FITC	1:100
CD21 ⁺ células B	BAQ15A	IgM	1:200	FITC	1:200

¹Ac monoclonal primário antibovino gerado em camundongos (VMRD, Pullman, EUA).

²Ac monoclonal secundário anticamundongo gerado em caprinos (Life Technologies, Carlsbad, EUA).

As amostras de soro foram submetidas ao teste imunoenzimático para detecção de anticorpos específicos para a glicoproteína gp 51 do BLV (De Giuseppe *et al.*, 2004).

A haptoglobina foi determinada pela separação eletroforética do soro em gel de poliacrilamida SDS-PAGE (Dodecil-Sulfato de Dódio de Poliacrilamida), de acordo com o proposto por Laemmli (1970). Após a separação das frações proteicas, o gel foi corado com azul de Coomassie a 0,2%. As concentrações das proteínas foram determinadas por densitometria computadorizada (Shimadzu CS9301, Tokyo, Japão).

A concentração de cortisol foi determinada por ensaio quimiluminescente, utilizando-se *kit* comercial em analisador de imunoensaios Immulite 1000[®] (Siemens, Brasil), de acordo com as instruções do fabricante. O *kit* comercial detecta concentrações de cortisol ≥1,0μg/dL.

A análise estatística foi realizada utilizando-se o programa estatístico SPSS 17.0 (IBM Corporation, Armonk, Nova York). As variáveis não apresentaram distribuição normal pelo teste de Shapiro-Wilk. A análise no tempo foi realizada por meio do teste de Friedman (P≤0,05). A este último teste, quando apresentou pelo menos um tempo significativamente diferente, foram realizadas as comparações múltiplas por meio do teste de Wilcoxon com correção de Bonferroni (P≤0,0033). Tendência estatística foi considerada quando o P<0,0066. Devido ao elevado número de amostras negativas ao cortisol, optou-se pela apresentação descritiva dos dados em mediana, valores mínimos e máximos.

RESULTADOS

As doenças relatadas entre a parição (semana 0) e a semana +3 foram distocia (33,4%, 4/12), retenção de placenta (8,3%, 1/12), hipocalcemia clínica (8,3%, 1/12), cetose clínica (8,3%, 1/12) e metrite (41,7%, 5/12). Duas das quatro vacas com episódios de distocia também apresentaram cetose, e do total de animais que apresentaram metrite, três já haviam desenvolvido distúrbios prévios: duas vacas com distocia e uma com retenção de placenta. Além disso, as 12 vacas desta pesquisa (12/12, 100%) apresentaram reações positivas ao teste imunoenzimático para

anticorpos específicos contra o antígeno gp51 do BLV, entretanto nenhuma das vacas apresentava a forma tumoral da doença.

Os valores absolutos e relativos dos leucócitos sanguíneos em vacas Holandesas durante o período de transição estão expressos na Tab. 3. Os leucócitos totais aumentaram gradualmente da semana -2 até a parição, observando-se queda brusca no período pós-parto. Neutrófilos e monócitos apresentaram variações similares aos leucócitos totais. Os valores absolutos de linfócitos aumentaram progressivamente entre as semanas -2 e +1, seguidos por diminuição gradual nas semanas +2 e +3. Os eosinófilos diminuíram gradualmente do pré-parto até a semana +1, observando-se ligeiro aumento nas semanas +2 e +3. Basófilos foram detectados apenas nas semanas +1 e +2.

Todos os componentes do leucograma apresentaram variações durante o período de transição, segundo o teste de Friedman (P<0.05). com exceção do número absoluto de linfócitos (P=0,587) e basófilos (P=0,756). A comparação múltipla pelo teste de Wilcoxon com correção de Bonferroni identificou apenas tendências estatísticas entre o dia da parição e a semana -2 (P=0,006) e entre as semanas -1 (P=0,006) e +3 (P=0,006) para os leucócitos totais; entre as semanas 0 e -1 (P=0,005) para os valores relativos de eosinófilos; entre as semanas +1 e -2 para os valores absolutos de eosinófilos (P=0,004); e entre as semanas 0 e +2 para os valores absolutos (P=0,004) de monócitos.

Os valores medianos absolutos e relativos das populações de linfócitos estão apresentadas na Tab. 4. Os valores medianos para os linfócitos (CD3⁺) aumentaram da semana -2 ao parto, observando-se diminuição nos momentos subsequentes. Apesar das variações observadas, não foi possível detectar diferencas no tempo para CD3⁺ (P≥0,05). Os valores relativos (%) e absolutos (x10³cells/µL) para o linfócito T auxiliar (CD3⁺CD4⁺) diminuíram entre as semanas -2 e -1, observando-se picos máximos ao redor da parição e nas semanas +2 e +3. Foi possível detectar variações no tempo para as proporções de CD3⁺CD4⁺ (P=0,029), entretanto a comparação múltipla entre os tempos apresentou P≥0,003. Os valores absolutos de T citotóxicos $(CD3^{+}CD8^{+})$ aumentaram progressivamente do período

pré-parto ao parto, observando-se diminuição dos valores no período pós-parto. Os valores relativos para T citotóxico também aumentaram da semana -2 ao parto, em seguida, as proporções celulares diminuíram na semana +1, observando-se pico máximo nas semanas +2 e +3. Foi possível identificar variações no tempo para as proporções de CD3+CD8+ (P=0,016), entretanto a comparação múltipla entre os tempos apresentou P≥0,003.

Os valores relativos e absolutos para células B $CD21^+$ foram relativamente estáveis durante o período de transição. Não foi possível detectar diferenças entre os momentos para células $CD21^+(P{\ge}0,05)$.

Os valores medianos obtidos para a Hp foram de 166 (43-149), 198 (109-508), 320 (180-6780), 457 (286-1145), 609 (160-1009) e 576 (251-940) ug/mL, respectivamente, entre as semanas -2 e +3 (P=0,000). As comparações múltiplas entre os momentos revelaram que os valores obtidos na semana +1 eram diferentes daqueles obtidos nas semanas -1 e +3 (P≤0,0033). As frequências de vacas com concentração de haptoglobina moderada (8,5 - $458\mu g/mL$) e alta (459 -1757µg/mL) eram de 100 e 0%; 91,67 e 8,33%; 81,82 e 18,18%; 58,33 e 41,67%; 41,66 e 58,34%; 33,33 e 66,67% entre as semanas -2 e +3, respectivamente. As vacas não apresentaram concentrações baixas de haptoglobina (≤8,4µg/mL) ao longo deste estudo (Nightingale et al., 2015).

Tabela 3. Números relativo (%) e absoluto (x10³ céls./µL) dos tipos leucocitários sanguíneos em vacas

Holandesas no período de transição

Células	Variáveis	-2	-1	Parto	+1	+2	+3	Sig*
	Mediana	11,6	13,0	21,9	11,9	10,7	12,1	
Leucócitos (x10 ³ céls./µL)	Mínimo	6,1	7,8	10,2	5,3	7,0	7,6	0,006
	Máximo	30,8	37,1	54,4	27,1	37,6	35,0	
	Mediana	3,95	4,78	7,80	2,46	2,59	3,35	
Neutrófilos (x10 ³ céls./μL)	Mínimo	1,33	1,87	0	0,22	0,44	0,38	0,003
	Máximo	5,93	7,17	31,55	9,15	16,86	5,60	
	Mediana	34,5	28,0	37,5	21,5	25,5	28,5	
Neutrófilos (%)	Mínimo	11	13	18	2	6	4	0,015
	Máximo	48	56	67	69	77	40	
	Mediana	0,92	0,99	0,31	0,22	0,33	0,52	
Eosinófilos (x10 ³ céls./µL)	Mínimo	0	0,36	0	0	0	0,09	0,038
•	Máximo	1,99	2,04	1,32	1,41	1,54	3,06	
	Mediana	5,5	6,5	1,0	2,0	2,0	3,5	
Eosinófilos (%)	Mínimo	0	3	0	0	0	0,1	0,010
, ,	Máximo	19	10	9	22	18	21	
D (C) (103 (L)	Mediana	0	0	0	0,10	0,07	0,04	
Basófilos (x10 ³ céls./μL)	Mínimo	0	0	0	0	0	0	0,756
	Máximo	0,13	0,24	0,44	0,13	0,37	0,17	
	Mediana	0	0	0	1,0	0,5	0	
Basófilos (%)	Mínimo	0	0	0	0	0	0	0,718
	Máximo	1	2	2	2	1	2	
	Mediana	0,18	0,38	0,44	0,03	0,00	0,04	0,000
Monócitos (x10 ³ céls./μL)	Mínimo	0	0	0	0	0	0	0,000
	Máximo	0,896	1,855	2,176	0,762	0,219	0,484	
	Mediana	1,0	3,0	2,0	0,5	0	0	
Monócitos (%)	Mínimo	0	0	1	0	0	0	0,004
` ,	Máximo	7	6	4	6	3	4	
Linfócitos (x10 ³ céls./μL)	Mediana	6,64	7,15	7,85	8,02	6,47	6,78	0,587
	Mínimo	3,05	4,10	0	2,65	4,76	5,17	
	Máximo	22,88	27,10	26,71	32,30	24,66	27,55	
	Mediana	53,5	60,0	56,5	75,0	67,0	63,0	0,021
Linfócitos (%)	Mínimo	42	32	28	29	23	44	0,021
	Máximo	88	78	77	94	91	88	

^{*}Diferenças estatísticas pelo teste de Friedman (P≤0,05).

As concentrações séricas do cortisol ≥1,0µg/dL foram observadas em 25% (3/12) das vacas entre as semanas -2 e -1, entretanto o número de animais com valores acima do ponto de detecção aumentou na parição (11/12, 91,7%). No período pós-parto, a frequência de animais positivos diminuiu para 41,7% (5/12); 33,3% (4/12) e

58,3% (7/12) da semana +1 para a +3, respectivamente. As medianas entre as amostras de cortisol com valores acima de 1,0µg/dL foram de 1,07 (\leq 1,0-1,25); 1,06 (\leq 1,0-2,72); 2,11 (\leq 1,0-4,27); 1,45 (\leq 1,0-3,81); 1,53 (\leq 1,0-2,57); 1,97 (\leq 1,0-2,85) µg/dL entre as semanas -2 e +3, respectivamente.

Tabela 4. Valores relativos (%) e absolutos (x10³ céls./µL) das populações de linfócitos, determinados por citometria de fluxo, em amostras de sangue provenientes de 12 vacas Holandesas no período de transição

Populações	Variáveis	-2	-1	Parto	+1	+2	+3	Sig*
CD3 ⁺ (x10 ³ céls./µL)	Mediana	2,67	2,83	4,06	3,02	2,97	3,05	
	Mínimo	1,90	1,94	2,12	0,23	0,36	1,07	0,787
	Máximo	6,87	7,14	11,21	6,16	5,29	7,08	
CD3 ⁺ (%)	Mediana	36,7	37,5	43,4	38,5	33,1	39,2	
	Mínimo	20,5	20,0	19,9	3,6	5,6	18,0	0,889
	Máximo	61,5	61,0	55,8	60,1	56,8	57,9	
CD3 ⁺ CD4 ⁺ (x10 ³ céls./μL)	Mediana	0,60	0,40	0,97	0,60	0,83	0,95	
	Mínimo	0,18	0,38	0,29	0,10	0,27	0,34	0,203
	Máximo	1,12	1,42	2,27	1,05	1,55	1,72	
CD3 ⁺ CD4 ⁺	Mediana	7,0	4,4	9,0	5,6	10,2	11,0	
(%)	Mínimo	1,2	0,5	3,4	3,2	3,8	5,6	0,029
	Máximo	16,1	17,0	16,4	17,4	20,3	24,3	
CD3 ⁺ CD8 ⁺	Mediana	0,68	0,71	1,08	0,73	0,77	0,79	
$(x10^3 \text{ cels./}\mu\text{L})$	Mínimo	0,30	0,36	0,21	0,17	0,41	0,44	0,335
(X10 ceis./μL)	Máximo	1,69	1,90	4,77	1,80	3,02	1,89	
CD3 ⁺ CD8 ⁺	Mediana	7,2	9,0	9,3	8,4	10,6	8,4	
(%)	Mínimo	4,6	6,2	4,7	4,8	7,6	4,8	0,016
(%)	Máximo	16,8	17,4	23,7	23,3	18,1	26,0	
$CD21^{+}$ (x10 ³ céls./µL)	Mediana	3,54	3,33	3,85	2,92	3,79	3.49	
	Mínimo	0,91	1,20	1,41	0,78	0,73	2,14	0,098
	Máximo	2,36	1,58	2,75	1,10	2,33	2,49	
CD21 ⁺ (%)	Mediana	50,3	41,3	46,0	46,7	63,6	55,2	
	Mínimo	15,5	24,4	19,9	18,8	14,5	39,5	0,152
	Máximo	87,1	59,2	85,2	89,7	84,7	87,8	

^{*}Diferenças estatísticas pelo teste de Friedman (P≤0,05).

DISCUSSÃO

O período de transição é marcado por uma série de eventos, como a gestação, o parto, a colostrogênese e a lactogênese, que requerem uma série de adaptações metabólicas para o suprimento dessas demandas fisiológicas. A adaptação das vacas pode ser favorecida pelas condições de criação, caso contrário o desequilíbrio entre a demanda e o consumo pode resultar em cetose e hipocalcemia, estritamente relacionadas à intensificação da imunossupressão relatada para vacas no período de transição. A análise das condições oferecidas às vacas no préparto permitiu identificar alguns fatores de risco que podem ter contribuído para a elevada taxa de doenças no rebanho, tais como: 1. bem estar —

esta pesquisa foi conduzida em meses quentes do ano (primavera e verão), entretanto a área de sombreamento no piquete pré-parto era escassa; além disso, não havia manejo ou área específica que proporcionassem condições favoráveis à privacidade e ao conforto das vacas durante o trabalho de parto. Os partos das vacas não eram assistidos no período noturno e nos finais de semana, propiciando demora na assistência obstétrica dos casos de distocia. Esses eventos, por si só, podem ter intensificado o estresse das vacas ao redor da parição e justificam o pico de cortisol observado nesse período; 2. em relação à dieta das vacas, pode-se dizer que a relação cálcio e fósforo está desequilibrada (1:2), sendo este um dos fatores que podem ter contribuído para a ocorrência de hipocalcemia clínica. Dados

a respeito da concentração de cálcio dessas vacas foram apresentados previamente por Baldacim (2014), observando-se hipocalcemia subclínica ao redor de 70% das vacas na parição e na semana +1. Assim, os fatores de risco presentes no sistema de criação das vacas contribuíram para a elevada taxa de ocorrência de doenças observada a partir da parição.

Corassin *et al.* (2011) verificaram incidência de hipocalcemia e metrite de 1,7% e 19,5%, respectivamente, enquanto, na presente pesquisa, as taxas foram de 8,3 e 41,7% para as mesmas enfermidades. Esses autores observaram ainda que vacas com retenção de placenta tiveram 3,68 vezes mais chance de apresentarem metrite. No presente estudo, essa relação também existiu: das cinco vacas que apresentaram metrite, três manifestaram doenças prévias, como distocia e retenção de placenta.

Diante do perfil sanitário apresentado pelas vacas, pode-se prever que a dinâmica celular observada ao longo do período de transição foi influenciada por uma série de eventos interconectados: estresse ao redor da parição (pico de cortisol), elevada taxa de doenças a partir da parição e soropositividade das vacas ao BLV.

O pico de cortisol ao redor da parição coincidiu com algumas alterações no leucograma compatíveis com o estresse, exceto para linfócitos (Meglia et al., 2001). O principal evento associado à imunossupressão das vacas ao redor da parição é o efeito negativo do cortisol subpopulações de linfócitos. sobre as Geralmente, observa-se linfopenia decorrente da diminuição resposta proliferativa, da especialmente dos linfócitos T CD3⁺, diante dos antígenos (Van Kampen e Mallard, 1997; Kimura et al., 2002). Esse perfil foi totalmente alterado nesta pesquisa devido à soropositividade das vacas ao BLV, observando-se linfocitose em razão da elevada proporção de células B CD21⁺.

O número de linfócitos observado ao redor da parição nas vacas desta pesquisa foi três vezes maior que aqueles relatados para vacas saudáveis (3,58x10³células/μL) e semelhante ao valores observados em vacas soropositivas (9,16x10³células/μL) por Kaczmarczyk *et al.* (2004). As proporções de células CD21⁺ (41,3 – 63,6%) aqui obtidas foram semelhantes à

proporção de 58% relatada para vacas lactantes e soropositivas para o BLV (Lewin et al., 1988). Esses valores são superiores às proporções de 24,1; 28,9 e 22,8% encontradas nas semanas -3, parto e +3 por Van Kampen e Mallard (1997), em animais não investigados para BLV. As vacas soropositivas para o BLV apresentam aumento da meia-vida dos linfócitos B devido à diminuição da taxa de apoptose (Souza et al., 2011), entretanto alguns mecanismos efetores da resposta imune envolvendo as células B estarão suprimidos, justificando, assim, a linfocitose como compensatória. Droogmans et al. (1994) encontraram baixa expressão do receptor da interleucina 6 nas células B infectadas pelo BLV. Essa citocina é fundamental para a diferenciação das células B em plasmócitos produtores de anticorpos.

As proporções de linfócitos T auxiliares (4,4-11%) encontrados nesta pesquisa foram muito menores que os intervalos de 24,8-29,8 e 20,1-38,7% relatados por Kimura et al. (2002) e Van Kampen e Mallard (1997), respectivamente. Em contrapartida, as proporções de linfócitos T citotóxicos (7,2-10,6%) foram semelhantes àqueles relatados por Kimura et al. (2002) (8,6-12,3%) e Van Kampen e Mallard (1997) (5,8-11,5%). A baixa proporção das subpopulações de linfócitos T pode ser consequência da menor resposta proliferativa dessas células durante o período de transição sob o efeito de elevadas concentrações de cortisol (Kimura et al., 2002) ou de desequilíbrio na produção de citocinas devido à influência do BLV (Droogmans et al., 1994). Os dados encontrados nesta pesquisa concordam parcialmente com aqueles relatados por Della Libera et al. (2012), que também encontraram maior proporção de células B CD21⁺ (41,82%) e baixas proporções de auxiliares (3,95%) em linfócitos soropositivas para o BLV que apresentavam linfocitose persistente, porém esses autores também relataram menores proporções de T citotóxicos (6,47%).

A análise das proporções das subpopulações de células T no tempo estudado revelou dois picos para as células CD3⁺CD4⁺ e CD3⁺CD8⁺ ao redor da parição e entre as semanas +2 e +3. Provavelmente as oscilações observadas decorreram de processos inflamatórios causados pelas doenças relatadas nesta pesquisa e/ou por outras doenças infecciosas. Não houve descrição

de mastite clínica nas fichas de controle sanitário da fazenda, porém tal doença não foi investigada. O segundo pico das subpopulações de linfócitos T no pós-parto provavelmente está associado aos episódios de metrite (41,7%).

O aumento da Hp foi gradual da semana -2 à +3, indicando o agravamento da condição patológica do útero das vacas ao longo do estudo. Nightingale et al. (2015) determinaram as concentrações de haptoglobina em vacas sadias no período de transição e as classificaram conforme o valor encontrado em três grupos distintos: low cows, para valores séricos de Hp abaixo de 84µg/mL; moderate cows, para valores obtidos entre 85 e 458µg/mL; e high cows, para valores entre 459 e 1.757µg/mL. Considerandose os limiares descritos por esses autores, as vacas desta pesquisa pertenceriam ao grupo moderate cows no pré-parto e ao grupo high cows no pós-parto. A resposta imunológica intensa, porém ineficiente, ao BLV promove a alteração no padrão de expressão das citocinas TNF-α, IFN-γ, L-2, IL-4, IL-6, IL-10 e IL-12 em vacas soropositivas (Amills et al., 2004), a qual, aliada às doenças da produção ocorridas no período, justifica a classificação das vacas analisadas nos perfis estabelecidos pelos autores.

Em geral, o perfil de leucócitos e de subpopulações de linfócitos apresentado pelas vacas no período de transição sofreu influência de fatores fisiológicos relacionados à elevada taxa de cortisol ao redor da parição associada ao BLV e às doenças da produção.

CONCLUSÕES

O perfil leucocitário apresentado pelas vacas Holandesas ao redor da parição foi compatível com as elevadas concentrações de cortisol, exceto para linfócitos. A dinâmica das subpopulações de linfócitos B foi compatível com a infecção pelo BLV. As subpopulações de linfócitos T auxiliar e citotóxico foram influenciadas quantitativamente pelo BLV e pelo cortisol, porém as oscilações (picos) observadas foram concomitantes às doenças da produção. Acredita-se que o BLV pode ter sido um dos fatores de risco para a elevada taxa de doenças observadas nas vacas deste estudo.

AGRADECIMENTOS

Esta pesquisa foi financiada pelo CNPq, projeto número 479381/2013.

REFERÊNCIAS

AMILLS, M.; NORIMINE, J.; OLMSTEAD, C.A. *et al.* Cytokine mRNA expression in B cells from bovine leukemia virus-infected cattle with persistent lymphocytosis. *Cytokine*, v.28, p.25-28, 2004.

BALDACIM, V.A.P. Metabolismo e resposta immune celular no sangue de vacas Holandesas no período de transição. 2014. 107 f. Dissertação (Mestrado em Clínica Veterinária) — Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP.

BIRGEL, E.H. Hematologia clínica veterinária. In: BIRGEL, E.H.; LARSSON, M.H.M.A; HAGIWARA, M.K. et al. (Eds.). Patologia clínica veterinária. São Paulo: Sociedade Paulista de Medicina Veterinária, 1982. p.2-49.

CORASSIN, C.H.; MACHADO, P.F.; COLDEBELLA, A. *et al.* Importância das desordens do periparto e seus fatores de risco sobre a produção de leite de vacas Holandesas. *Semin. Cienc. Agrar.*, v.32, p.1101-1110, 2011.

DAVIS, A.K.; MANEY, D.L.; MAERZ, J.C. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. *Funct. Ecol.*, v.22, p.760-772, 2008.

DE GIUSEPPE, A.; FELIZIANI, F.; RUTILI, D. *et al.* Expression of the bovine leukemia virus envelope glycoprotein (gp51) by recombinant baculovirus and its use in an enzyme-linked immunosorbent assay. *Clin. Diagn. Lab. Immunol.*, v.11, p.147-151, 2004.

DELLA LIBERA, A.M.M.P.; BLAGITZ, M.G.; BATISTA, C.F. *et al.* Quantification of B cells and T lymphocyte subsets in bovine leukemia virus infected dairy cows. *Semin. Cienc. Agrar.*, v.33, p.1487-1494, 2012.

DRACKLEY, J.K. Biology of dairy cows during the transition period: the final frontier. *J. Dairy Sci.*, v.82, p.2259-2273, 1999.

- DROOGMANS, L.; CLUDTS, I.; CLEUTER, Y. *et al.* Expression of Interleukin 6 receptors and Interleukin 6 mRNA by bovine Leukaemia virusinduced tumour cells. *Cytokine*, v.6, p.641-646, 1994.
- INGVARTSEN, K.L.; MOYES, K. Nutrition, immune function and health of dairy cattle. *Animal*, v.7, p.112-122, 2013.
- KACZMARCZYLK, E.; BOJAROJC-NOSOWICZ, B.; FIEDOROWICZ, A. *et al.* Polymorphism of blood leukocyte acid phosphatase and the profile of peripheral blood lymphocytes in the first lactation trimester of cows naturally-infected with bovine leukaemia virus. *Arch. Tierz.*, v.47, p.415-430, 2004.
- KIMURA, K.; GOFF, J.P.; KEHRLI M.E. *et al.* Effects of mastectomy on composition of peripheral blood mononuclear cell populations in periparturient dairy cows. *J. Dairy Sci.*, v.85, p.1437-1444, 2002.
- LAEMMLI, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, v.227, p.680-685, 1970.
- LEWIN, H.A.; WU, M.C.; NOLAN, T.J. *et al.* Peripheral B lymphocyte percentage as an Indicator of Subclinical Progression of Bovine Leukemia Virus. *J. Dairy Sci.*, v.71, p.2526-2534, 1988.
- MEGLIA, G.E.; JOHANNISSON, A.; AGENÄS, S. *et al.* Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. *Vet. J.*, v.169, p.376-384, 2005.

- MEGLIA, G.E.; JOHANNISSON, A.; PETERSSON, L. *et al.* Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. *Acta Vet. Scand.*, v.42, p.139-150, 2001.
- NIGHTINGALE, C.R.; SELLERS, M.D.; BALLOU, M.A. Elevated plasma haptoglobin concentrations following parturition are associated with elevated leukocyte responses and decreased subsequent reproductive efficiency in multiparous Holstein dairy cows. *Vet. Immunol. Immunopathol.*, v.164, p.16-23, 2015.
- OHTSUKA, H.; TERASAWA, S.; WATANABE, C. *et al.* Effect of parity on lymphocytes in peripheral blood and colostrum of healthy Holstein dairy cows. *Can. J. Vet. Res.*, v.74, p.130-135, 2010.
- RAJÃO, D.S.; HEINEMANN, M.B.; REIS, J.K.P. *et al.* Effects of bovine leukemia virus infection on crossbred and pubebred dairy cattle productive performance in Brazil. *Semin.: Cienc. Agrar.*, v.35, p.891-900, 2014.
- SOUZA, F.N.; LATORRE, A.O.; CANICEIRO, B.D. *et al.* Proliferação de linfócitos e apoptose de células CD25+ de bovinos infectados pelo vírus da leucose enzoótica bovina. *Arq. Bras. Med. Vet. Zootec.*, v.63, p.1124-1130, 2011.
- VAN KAMPEL, C.; MALLARD, B.A. Effects of peripartum stress and health on circulating bovine lymphocyte subsets. *Vet. Immunol. Immunopathol.*, v.59, p.79-91, 1997.