# Caracterização fisionômica - estrutural de um remanescente de floresta ombrófila montana de Pernambuco, Brasil<sup>1</sup>

Elba Maria Nogueira Ferraz<sup>2,4</sup> e Maria Jesus Nogueira Rodal<sup>3</sup>

Recebido em 22/05/2006. Aceito em 9/06/2006

RESUMO – (Caracterização fisionômica-estrutural de um remanescente de floresta ombrófila montana de Pernambuco, Brasil). As florestas ombrófilas montanas de Pernambuco são pouco estudadas quanto a fisionomia, florística, estrutura e semelhanças com as florestas de terras baixas. Visando este entendimento, foi realizada a caracterização fisionômica-estrutural do maior remanescente (São Vicente Férrer, 600 ha) dessa floresta no Estado e sua comparação com outras florestas ombrófilas nordestinas de terras baixas e montanas. A área estudada localiza-se na encosta oriental do planalto da Borborema (07°38' S e 35°30' W), em altitudes entre 600 e 640 m, e tem precipitação média anual de 1.103 mm. Foram alocadas 50 parcelas de 10×20 m e incluídos os indivíduos com DAP ≥ 5 cm. Os 1.521 indivíduos amostrados pertenceram a 58 famílias, 96 gêneros e 152 espécies. Cerca de 50% deles tiveram altura entre 6,1 e 12,0 m e diâmetro entre 5 e 10 cm, sendo representados, predominantemente, por Clusiaceae, Quiinaceae, Myrtaceae e Sapindaceae. As famílias de maior valor de importância (Myrtaceae, Clusiaceae, Moraceae, Mimosaceae, Caesalpiniaceae, Vochysiaceae, Myristicaceae, Elaeocarpaceae, Lecythidaceae e Anacardiaceae) foram dominantes em diferentes classes de altura, tiveram número de espécies variado (1 a 10) e, geralmente, as maiores densidades. A floresta estudada foi melhor relacionada em composição de espécies e famílias com as florestas de terras baixas, embora tenha se destacado pela elevada riqueza de taxa, maior altura e principalmente pela abundância de famílias e espécies pouco comuns às florestas ombrófilas de terras baixas de Pernambuco.

Palavras-chave: Floresta Atlântica, nordeste, estratificação

ABSTRACT – (Physiognomic and structural characterization of a montane rain forest remnant in Pernambuco State, Brazil). The montane forests of Pernambuco, Brazil, are poorly understood in relation to their flora, physiognomy, structure, and similarity to lowland forests. The physiognomy and structure of the largest ombrophilous forest fragment in the state of Pernambuco (São Vicente Ferrer, 600 ha) were described and compared with other montane and lowland forests in northeastern Brazil. The study site is located on the eastern slope of the Borborema plateau (07°38' S, 35°30' W), at 600-640 m altitude. Mean annual rainfall is 1103 mm. Fifty 10×20 m plots were set up and all plants with diameter at breast height (dbh) ≥ 5 cm were identified and measured. The 1,521 plants recorded belonged to 58 families, 96 genera and 152 species. About 50% had heights ranging from 6.1 to 12 m and dbh between 5 and 10 cm. Most belonged to the families Clusiaceae, Quiinaceae, Myrtaceae, and Sapindaceae. Families with greatest importance indexes (Myrtaceae, Clusiaceae, Moraceae, Mimosaceae, Caesalpiniaceae, Vochysiaceae, Myristicaceae, Elaeocarpaceae, Lecythidaceae, and Anacardiaceae) were dominant in different height classes, had different species numbers (1 to 10), and, in general, the highest densities. São Vicente Férrer's montane forest showed a close relationship in composition to lowland forests, in spite of the taller trees, greater richness, and mainly greater abundance of families and species which are not common in lowland forests of Pernambuco.

Key words: Atlantic forest, Northeast, stratification

## Introdução

Em florestas neotropicais ocorrem mudanças florísticas e vegetacionais ao longo de gradientes altitudinais das terras baixas até montanas (Valencia 1995; Gentry 1988). No Nordeste do Brasil, a região

da floresta ombrófila (FO), ocupa a faixa tropical úmida (0 a 3 meses secos) e ocorre num gradiente topográfico que vai do nível do mar até cerca de 2.000 m de altitude (Brasil 1981a, b; 1983; Veloso & Góes Filho 1982). Dentro desta região (FO) foram mapeadas para o Nordeste, as formações aluviais e de terras baixas,

Parte da Tese de doutorado apresentada pelo primeiro autor ao Programa de Pós-Graduação em Botânica da Universidade Federal Rural de Pernambuco, Brasil

<sup>&</sup>lt;sup>2</sup> Centro Federal de Educação Tecnológica de Pernambuco, Gerência de Ensino Superior, Av. Prof. Luiz Freire 500, Cidade Universitária, 50740-540 Recife, PE, Brasil

<sup>&</sup>lt;sup>3</sup> Universidade Federal Rural de Pernambuco, Departamento de Biologia, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brasil (rodal@truenet.com.br)

<sup>&</sup>lt;sup>4</sup> Autor para correspondência: eferraz@elogica.com.br

em áreas de planície e do planalto rebaixado litorâneo (altitudes inferiores a 100 m), e as formações submontanas (100-600 m) e montanas (600-2.000 m), assentadas predominantemente no planalto da Borborema, planalto do Baturité e na chapada Diamantina. Apesar da literatura (Tavares *et al.* 2000; Nascimento 2001; Ferraz 2002; Rodal 2002) sugerir mudanças fisionômico-estruturais através do gradiente terras baixas montanas, pouco se conhece sobre a vegetação da floresta ombrófila situada em áreas intermediárias, entre altitudes de 100 a 900 m.

As florestas montanas, também conhecidas no nordeste como brejos de altitude, apresentam flora relacionada à das florestas de terras baixas (Tavares et al. 2000; Ferraz 2002), quando situadas no rebordo oriental do planalto da Borborema, das quais diferem por apresentar maior área basal (Nascimento 2001). Cabe ainda destacar a presença de remanescentes de floresta estacional montana em algumas serras baixas do semi-árido ou no rebordo ocidental da Borborema (Rodal 2002).

Dentre os poucos remanescentes de floresta ombrófila situado na faixa altitudinal submontanamontana, o de São Vicente Férrer destaca-se devido a sua extensão e aparente bom estado de conservação da cobertura vegetal. Segundo Andrade-Lima (1961), Melo (1980) e Lins (1989), esse remanescente representa uma disjunção da floresta ombrófila das terras baixas, localizado no rebordo oriental do planalto da Borborema.

Dessa forma, através deste trabalho objetivouse caracterizar a fisionomia e a estrutura do maior remanescente de floresta ombrófila montana do estado de Pernambuco, com intuito de responder as seguintes questões: 1) qual o conjunto de espécies estruturalmente mais importante na floresta ombrófila montana de São Vicente Férrer? 2) existe um padrão de variação na densidade total, na área basal e na altura entre esta e outras florestas ombrófilas de Pernambuco? 3) a distribuição e abundância das famílias e espécies nos diferentes estratos da floresta são semelhantes às registradas em florestas de terras baixas de Pernambuco e do Nordeste? As respostas a estas questões poderão subsidiar propostas voltadas a eleger áreas prioritárias para conservação da mata atlântica no Estado, que considere as diferentes fácies da floresta, o status de conservação da vegetação, tamanho de fragmento, características abióticas as quais estão submetidos os remanescentes e os arranjos das espécies dominantes nos diferentes estratos.

#### Material e métodos

Área de estudo – A área estudada localiza-se na zona da Mata Norte, Município de São Vicente Férrer, Pernambuco (07°38' S e 35°30' W), com altitude variando de 600 a 640 m. O clima dessa zona é classificado, segundo Koppen, como As' (quente e úmido) com chuvas de outono-inverno (Beltrão & Macedo 1994). O Município de São Vicente Férrer está localizado numa faixa de transição entre os níveis cristalinos que antecedem a Borborema (100 a 350 m de altitude) e o nível do planalto da Borborema (acima de 400 m). O substrato é formado por rochas do embasamento cristalino (pré-cambriano) pertencentes ao complexo gnáissico migmatítico e os solos são do tipo Podzólico Vermelho Amarelo órtico (Brasil 1981a). Denominada localmente de Mata do Estado ou Mata do Sirigi, a área de estudo representa importante reserva florestal do Estado de Pernambuco, contendo cerca de 32 nascentes e uma área de aproximadamente 600 ha, dos quais 496 ha são de propriedade da Prefeitura de Limoeiro (Beltrão & Macedo 1994). Os dados climatológicos foram obtidos do posto Macaparana (Banco de Dados Hidroclimatológicos da SUDENE), que dista cerca de 10 km da área de estudo, e correspondem a um período de 30 anos. A precipitação média anual é de 1.103 mm, a temperatura média anual de 24,1 °C, apresentando de cinco a seis meses com precipitação superior a 100 mm e um período seco de três a quatro meses. A vegetação da área é classificada como Floresta Ombrófila Montana (Veloso & Góes Filho 1982).

Coleta de dados - Para amostragem da vegetação foi selecionada uma área representativa da mata, considerando aspectos do solo, variação altitudinal e grau de preservação da vegetação. Foi amostrado 1 ha da floresta através do método das parcelas (Mueller-Dombois & Ellenberg 1974). Tomando como referência a margem esquerda do Rio Sirigi, que tem sua nascente na mata, foi instalada uma picada principal de 1.000 m de extensão e 20 picadas secundárias perpendiculares de 50 m cada: 10 em direção ao leito do rio e 10 em sentido contrário (espinha de peixe), onde foram sorteadas as 50 parcelas (10×20 m) para amostragem dos indivíduos vivos e mortos em pé, com diâmetro do caule a altura do peito (DAP) maior ou igual a 5 cm (exceto os cipós). A altura das árvores até 12 m foi medida com vara graduada até 9 m e acima desta altura por comparação com as árvores mais altas de cada parcela que foram medidas através da escalada no fuste.

O material botânico foi coletado no período de 36 meses consecutivos, com visitas semanais no primeiro ano e mensais nos dois anos subsequentes. As identificações foram realizadas nos herbários Prof. Vasconcelos Sobrinho (PEUFR), IPA - Dárdano de Andrade Lima (IPA) e do Centro de Pesquisa do Cacau (CEPEC). A confirmação e/ou complementação das mesmas foi procedida por especialistas do Brasil e do exterior. A coleção botânica foi tombada no herbário PEUFR e suas duplicatas enviadas a vários herbários. Utilizou-se o sistema de classificação de Cronquist (1981).

Análise dos dados – Para caracterização da arquitetura de abundância e tamanho (Rodal *et al.* 1992) foram calculados os parâmetros gerais de densidade total, área basal total e altura e diâmetro médioss e máximos, utilizando-se o pacote FITOPAC (Shepherd 1995). A distribuição das alturas e áreas basais individuais no espaço vertical foi realizada utilizando classes de alturas a intervalos fixos de 2 m.

No nível estrutural (Rodal *et al.* 1992), foram calculados para cada família e espécie os parâmetros de densidade absoluta, freqüência absoluta, dominância absoluta/área basal e o valor de importância. Os cálculos foram realizados através do pacote FITOPAC (Shepherd 1995). A distribuição das alturas individuais das 26 famílias de maior densidade (mínimo de 12 indivíduos) e das alturas e diâmetros das 41 espécies, também de maior densidade (mínimo de oito indivíduos), foi analisada pelo "Box-plot" utilizando o SYSTAT (Wilkinson 1992).

#### Resultados

Arquitetura – Dos 1.521 indivíduos amostrados em 1 ha, 25% tinham altura igual ou inferior a 6,0 m e 50% entre 6,1 e 12 m. A maior concentração de indivíduos ocorreu entre 8,1 e 12 m de altura e de 5,0 a 10 cm de diâmetro, totalizando 34% e 60%, respectivamente do total de indivíduos (Tab. 1). A área basal total foi 44,17 m² ha⁻¹, estando 19% desta concentrada nas plantas com altura igual ou inferior a 10 m e 29% nas que tinham entre 10,1 e 20 m de altura (Fig. 1). Com base nas observações de campo e distribuições das alturas individuais (Tab. 1), foram consideradas emergentes as árvores acima de 30 m de altura, o dossel formado pelas árvores entre 25 e 30 m de altura e o sub-bosque formado pelas árvores/arvoretas abaixo de 10 m de altura.

O número de espécies (9 a 25), indivíduos (18-51) e área basal (0,232 a 5,103 m²) por parcela (200 m²)

foi bastante variável nas 50 unidades amostradas. Em 10% das parcelas a heterogeneidade ocorreu devido à presença das clareiras que favoreceram a abundância de determinadas populações, como por exemplo *Croton floribundus* que formava populações adensadas em algumas dessas unidades amostrais. Porém, nas demais parcelas a variação ocorreu principalmente devido à diversidade de sítios do interior da floresta, como presença de aclives, declives, afloramentos rochosos e cursos de água. Ainda em relação às clareiras observou-se que, no geral, as mesmas eram formadas pela queda natural das árvores.

Estrutura de abundância - Os 1.521 indivíduos amostrados no hectare pertencem a 58 famílias, 96 gêneros e 151 espécies (Tab. 2, 3), das quais sete foram confirmadas e/ou descritas como espécies novas (Diospyros serrana; Crepidospermum atlanticum; Cupania sp. 2; Erythroxylum sp.; Ocotea sp. 1,3 e 5). As 10 famílias com maior valor de importância responderam por 53,7% do total do VI. Nelas estão incluídas tanto famílias de elevado número de espécies, como Myrtaceae (maior VI), Clusiaceae, Moraceae, Mimosaceae e Caesalpiniaceae (Tab. 2), quanto as com apenas uma ou duas espécies, como Vochysiaceae, Myristicaceae, Elaeocarpaceae, Lecythidaceae e Anacardiaceae (Tab. 2). Exceto por Elaeocarpaceae, com apenas seis indivíduos e os maiores valores de área basal, as demais famílias estiveram, também, entre as de maior número de indivíduos.

Famílias como Sapotaceae, Lauraceae, Meliaceae, Euphorbiaceae, Sapindaceae e Burseraceae não estão entre as 10 famílias de maior VI, em função de ocorrerem com áreas basais relativamente baixas, embora sejam bem representadas em número de indivíduos e/ou espécies para o levantamento em geral (Tab. 3).

A espécie de maior VI foi Vochysia thyrsoidea, seguida por Tovomita mangle, Myrcia aff. amazonica, Escheweilera ovata, Virola gardneri, Sloanea guianensis, Eugenia sp.1, Helicostylis tomentosa, Thyrsodium spruceanum, Quiina pernambucensis, Pouteria bangii e Dialium guianensis, que ocorreram com valores de importância semelhantes (Tab. 3), principalmente entre as cinco primeiras espécies (13,79 a 12,42) e as seis últimas (8,78 a 7,15). As 139 espécies restantes tiveram VI abaixo de 4,83. Assim como constatado para família, o número de indivíduos por espécie também foi determinante na composição do VI, com alguma ressalva para S. guianensis, com apenas três

Tabela 1. Trabalhos quantitativos em florestas ombrófilas e estacionais de Pernambuco, contendo dados sobre ambiente físico, amostragem da vegetação e parâmetros fitossociológicos. DNS = Diâmetro ao nível do solo, DAP = Diâmetro a altura do peito,  $\Sigma$  = somatório das classes anteriores de altura e diâmetro, - = dados não disponíveis.

| Parâmetros                                          |               | Flo                              | Florestas Ombrófilas         | St                     |                                                                |                                   | Flore                             | Florestas Estacionais          | nais                    |                                          |
|-----------------------------------------------------|---------------|----------------------------------|------------------------------|------------------------|----------------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------|-------------------------|------------------------------------------|
|                                                     | Montanas      | anas                             |                              | Terras Baixas          |                                                                |                                   |                                   | Montanas                       |                         |                                          |
|                                                     | Este trabalho | Caruaru<br>(Tavares et al. 2000) | Dois Irmãos<br>(Guedes 1998) | Curado<br>(Silva 1996) | Cabo de<br>Santo Agostinho<br>(Siqueira <i>et al.</i><br>2001) | Triunfo 1<br>(Ferraz et al. 2003) | Triunfo 2<br>(Ferraz et al. 2003) | Pesqueira<br>(Correia<br>1996) | Jataúba<br>(Moura 1997) | Brejo<br>Madre Deus<br>(Nascimento 2001) |
|                                                     | 040           | 000                              |                              |                        | 000                                                            |                                   |                                   | 000                            |                         | 000                                      |
| Altitude (m)                                        | 9             | 900-1.000                        | 30-90                        | , 100<br>, 666         | 10-80                                                          | 1.100                             | , 500<br>,                        | 1.082                          | 1.020-1.120             | 006-009                                  |
| Precipitação média anual (mm)                       | _             | 650-900                          | 2.000                        | 2.000                  | 2.000                                                          | 1.260                             | 1.066                             | 681                            | 764                     | 948                                      |
| N° de meses seco (<100 mm)                          | 3-4           | 2-7                              | 0-4                          | 4                      | 0-4                                                            | S                                 | 5                                 | 8-9                            | 8-9                     | 8-9                                      |
| Area amostral (ha)                                  | 1             | 1                                | 1,2                          | 4,0                    | 1                                                              | 0,2                               | 0,1                               | 0,3                            | 0,3                     | 1                                        |
| Critério de inclusão (cm)                           | DAP ≥5        | DAP ≥5                           | DAP ~9,5                     | DAP ≥5                 | DAP ≥5                                                         | DNS≥3                             | DNS ≥3                            | DNS ≥3                         | DNS ≥3                  | DAP>5                                    |
| N° de famílias                                      | 58            | 46                               | 040                          | 32                     | 36                                                             | 24                                | 30                                | 45<br>1                        | 41                      | 33                                       |
| N' de especies                                      | 152           | 92                               | 99                           | 59<br><b>-</b> 20      | 78                                                             | 20                                | 53                                | 65                             | 106                     | 79                                       |
| Densidade total (ind/ha)                            | 1.521         | 1.562                            | 549,0                        | 780                    | 1.657                                                          | 6.515                             | 3.060                             | 4.910                          | 4.406                   | 1.657                                    |
| Area basal total (m <sup>2</sup> ha <sup>-1</sup> ) | 44,17         | 44,40                            | 41,4                         | 24,7                   | 27,5                                                           | 56,7                              | 46,7                              | 67,2                           | 49,6                    | 40,80                                    |
| IVI (% de 10 famílias)                              | 51,7          | 65,1                             | 67,2                         | 74,0                   | 71,7                                                           | 72,6                              | 62,0                              | 65,1                           | 59,0                    | 77,8                                     |
| IVI (% de 10 espécies)                              | 40,3          | 43,8                             | 45,4                         | 59,6                   | 58,5                                                           | 57,3                              | 50,0                              | 52,8                           | 34,6                    | 0,99                                     |
| Altura média (m)                                    | 11,5          | 12,0                             | 1                            | 11,2                   | 11,5                                                           | 4,8                               | 5,6                               | 5,8                            | 4,6                     | 10,3                                     |
| Altura máxima (m)                                   | 36,0          | 35,0                             | 31,0                         | 28,0                   | 26,0                                                           | 14,0                              | 15,0                              | 16,0                           | 15,0                    | 30,0                                     |
| Diâmetro médio (cm)                                 | 13,4          | 13,9                             | 1                            | 14,9                   | 11,5                                                           | 8,1                               | 10,5                              | 8,6                            | 8,7                     | 14,2                                     |
| Diâmetro máximo (cm)                                | 244,8         | 194,0                            | 238,7                        | 77,1                   | 9,62                                                           | 102,0                             | 0,09                              | 72,0                           | 9,62                    | 105,0                                    |
|                                                     |               |                                  |                              | Classes d              | de altura (m)                                                  |                                   |                                   |                                |                         |                                          |
| 1-4 (% de indivíduos)                               | 5.06          | 3.46                             | ,                            | 0.96                   |                                                                | 49.1                              | 41.8                              | 50.2                           | 42.5                    | ,                                        |
| 4,1-8 (%)                                           | 30.97         | 32,97                            | 1                            | 27.56                  | 18,47                                                          | 45,7                              | 40,2                              | 32,8                           | 43,0                    | 1                                        |
| 8,1-12 (%)                                          | 34,12         | 25,29                            |                              | 37,82                  | 41,28                                                          | 4,1                               | 16,7                              | 15,8                           | 13,8                    | $\Sigma$ 75.0                            |
| 12,1-16(%)                                          | 14,86         | 14,66                            | $\Sigma$ 45,5                | 10,90                  | 21,48                                                          | 1,1                               | 1,6                               | 1,2                            | 9,0                     |                                          |
| 16,1-20 (%)                                         | 5,85          | 13,19                            |                              | 12,50                  | 9,23                                                           | 0                                 | 0                                 | 0                              | 0                       | 1                                        |
| 20,1-24 (%)                                         | 3,75          | 6,72                             | $\Sigma$ 42,7                | 6,73                   | 6,64                                                           | 0                                 | 0                                 | 0                              | 0                       | ,                                        |
| 24,1-28 (%)                                         | 3,55          | 2,75                             | 7,76                         | 0,35                   | 2,23                                                           | 0                                 | 0                                 | 0                              | 0                       |                                          |
| 28,1-32 (%)                                         | 1,25          | 1,02                             | 4,04                         | 0                      | 0                                                              | 0                                 | 0                                 | 0                              | 0                       |                                          |
| 32,1-36 (%)                                         | 0,59          | 0,32                             | 0                            | 0                      | 0                                                              | 0                                 | 0                                 | 0                              | 0                       | 1                                        |
|                                                     |               |                                  |                              | Classes de             | Classes de diâmetro (cm)                                       |                                   |                                   |                                |                         |                                          |
| 5-10 (% de indivíduos)                              | 59,76         | 56,00                            | 1                            | 54,00                  | 59,81                                                          | 71,6                              | 59,8                              | 66,4                           | 71,0                    | 1                                        |
| 10,1-15 (%)                                         | 17,03         | 16,56                            | 1                            | 13,78                  | 19,79                                                          | 15,4                              | 21,6                              | 14,8                           | 14,8                    | 1                                        |
| 15,1-20 (%)                                         | 7,03          | 11,54                            | 1                            | ı                      | 7,66                                                           | 5,3                               | 7,7                               | 6,4                            | 6,7                     | $\Sigma$ 50,0                            |
| 20,1-25 (%)                                         | 4,60          | 6,99                             | $\Sigma$ 75,88               | ı                      | 3,98                                                           | 1,3                               | 2,9                               | 4,2                            | 3,7                     |                                          |
| 25,1-30 (%)                                         | 3,09          | 3,63                             |                              | ı                      | 3,08                                                           | 1,7                               | 2,9                               | 3,8                            | 6,0                     |                                          |
| 30,1-35 (%)                                         | 2,04          | 1,52                             |                              | 1                      | 2,23                                                           | 0,7                               | 2,3                               | 6,0                            | 0,7                     |                                          |
| 35,1-40 (%)                                         | 1,78          | 1,12                             |                              | ı                      | 1,39                                                           | 0,3                               | 1,0                               | 2,1                            | 0,7                     | 1                                        |
| 40,1-45 (%)                                         | 1,18          | 0,92                             | $\Sigma$ 17,33               | ı                      | 0,00                                                           | 0,07                              | 9,0                               | 1,0                            | 0,07                    | 1                                        |
| 45,1-50 (%)                                         | 0,72          | 0,53                             |                              | ı                      | 96,0                                                           | 0,2                               | 0,3                               | 0,4                            | 0,7                     |                                          |
| > 50 (%)                                            | 2,76          | 1,19                             | $\Sigma$ 6,74                | ı                      | 0,48                                                           | 0,3                               | 9,0                               | 0,2                            | 8,0                     | 1                                        |
|                                                     |               |                                  |                              |                        |                                                                |                                   |                                   |                                |                         |                                          |

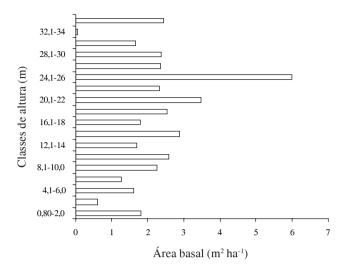



Figura 1. Distribuição das áreas basais em classes de altura para os 1.521 indivíduos amostrados na Mata do Sirigi, São Vicente Férrer, PF.

indivíduos e a maior área basal, e para *Cupania oblongifolia*, com número de indivíduos (41) semelhante ao de várias das espécies listadas acima, mas com freqüência relativa (0,47%) muito baixa, apresentando assim um VI relativamente baixo (3,62), sugerindo um padrão espacial agregado.

Estrutura de tamanho – A distribuição no espaço vertical das 41 espécies com populações de maior densidade (mínimo de 8 indivíduos) foi bastante variável (Fig. 2). Dessas espécies, 19 não foram amostradas abaixo de 5 m de altura e 21 ocorreram com indivíduos acima de 25 m.

As populações com indivíduos acima de 30 m de altura, consideradas emergentes, como *Diplotropis purpurea* (Fabaceae), *Eschweilera ovata* (Lecythidaceae), *Helicostylis tomentosa* (Moraceae), *Pouteria bangii* (Sapotaceae), *Plathymenia foliolosa* 

Tabela 2. Famílias e espécies arbóreas amostradas na Floresta Ombrófila Montana do Sirigi, São Vicente Férrer, PE. Os nomes entre parênteses indicam o especialista e o herbário onde foi realizada a identificação.

| Famílias/Espécies                         | Coletor/Número | Famílias/Espécies                             | Coletor/Número |
|-------------------------------------------|----------------|-----------------------------------------------|----------------|
| ANACARDIACEAE (D. Johnson/NY)             |                | Hymenaea sp.                                  | E. Ferraz 911  |
| Tapirira guianensis Aubl.                 | E. Ferraz 530  | Swartzia pickelii Killip ex Ducke             | E. Ferraz 647  |
| Thyrsodium spruceanum Benth.              | E. Ferraz 258  | Tachigalia paratyensis (Vell.) Lima           | E. Ferraz 601  |
| ANNONACEAE                                |                | CECROPIACEAE (P. Carauta/GUA)                 |                |
| Guateria schlechtendaliana Mart.          | E. Ferraz 443  | Pourouma guianensis Aubl.                     | E. Ferraz 486  |
| APOCYNACEAE                               |                | CELASTRACEAE (R.M.C. Okano/VIC)               |                |
| Aspidosperma discolor A.DC.               | E. Ferraz 876  | Maytenus sp.                                  | E. Ferraz 666  |
| A. spruceanum Benth.                      | E. Ferraz 930  | CHRYSOBALANACEAE                              |                |
| ex Müell Arg.                             |                | Couepia sp.                                   | E. Ferraz 883  |
| Himatanthus phagedaenicus (Mart.)         | E. Ferraz 557  | Licania kunthiana Hook. f.                    | E. Ferraz 905  |
| Woodson                                   |                | Parinari aff. excelsa Sabine                  | E.Ferraz 942   |
| Rauvolfia grandiflora Mart. ex A.DC.      | E. Ferraz 434  | CLUSIACEAE (V. Bittrich/UEC)                  |                |
| AQUIFOLIACEAE (M.Groppo Jr./SPF)          |                | Clusia pernambucensis G. Mariz                | E. Ferraz 919  |
| Ilex aff. sapotifolia Reissek             | E. Ferraz 582  | Garcinia gardneriana Planch. & Triana         | E. Ferraz 487  |
| ARALIACEAE                                |                | Rheedia brasiliensis (Mart.) Planch. & Triana |                |
| Dendropanax arboreum (L.) Planch. & Decne | E. Ferraz 567  | Symphonia globulifera L.f.                    | E. Ferraz 553  |
| Schefflera morototoni (Aubl.) Maguire     | E. Ferraz 485  | Tovomita brevistaminea Engl.                  | E. Ferraz 298  |
| BIGNONIACEAE                              |                | T. mangle G. Mariz                            | E. Ferraz 728  |
| Jacaranda puberula Cham.                  | E. Ferraz 624  | Vismia guianensis (Aubl.) Choisy              | F. Lucena 419  |
| BOMBACACEAE                               |                | COMBRETACEAE                                  |                |
| Eriotheca crenulaticalyx A. Robyns        | E. Ferraz 950  | Buchenavia capitata (Vahl) Eichler            | E. Ferraz 874  |
| Quararibea turbinata Poir                 | E. Ferraz 713  | CUNONIACEAE (C. Zickel/PEUFR)                 |                |
| BORAGINACEAE                              |                | Lamanonia ternata Vell.                       | E. Ferraz 875  |
| Cordia nodosa Lam.                        | E. Ferraz 1503 | EBENACEAE (C. Sother/K)                       |                |
| BURSERACEAE (D. Daly/NY)                  |                | Diospyros guianensis (Aubl.) Gurke            | E. Ferraz 767  |
| Protium aracouchini (Aubl.) Marchal       | E. Ferraz 327  | ELAEOCARPACEAE (M.J.E. Coode/K)               |                |
| P. giganteum Engl.                        | E. Ferraz 956  | Sloanea guianensis Benth.                     | E. Ferraz 764  |
| P. heptaphylum (Aubl.) Marchal            | E. Ferraz 940  | S. cf. parviflora Planch. ex Benth.           | E. Ferraz 374  |
| Protium sp.2                              | E. Ferraz 909  | ERYTHROXYLACEAE (A. Amaral Júnior/            |                |
| Protium sp.5                              | E. Ferraz 941  | BOTU; I.B. Loyola/ PEUFR)                     |                |
| CAESALPINIACEAE (R.C.Barneby/NY; L.P.     | -              |                                               | E. Ferraz 871  |
| Copaifera langsdorfii Desf.               | E.Ferraz 417   | Erythroxylum squamatum Sw.                    | E. Ferraz 697  |
| Dialium guianense Benth.                  | E.Ferraz 289   |                                               | continua       |

| Tabela | 2 | (continuação) |
|--------|---|---------------|
|        |   |               |

| Famílias/Espécies                         | Coletor/Número                 | Famílias/Espécies                            | Coletor/Número  |
|-------------------------------------------|--------------------------------|----------------------------------------------|-----------------|
| Erythroxylum sp.nov.                      | E. Ferraz 307                  | I. subnuda subsp. subnuda T.D. Penn          | E. Ferraz 409   |
| EUPHORBIACEAE (A. Laurênio; M.F. Lucei    | na e                           | I. thibaudiana DC.                           | E. Ferraz 478   |
| S.I. da Silva/PEUFR)                      |                                | Inga sp.                                     | E. Ferraz 951   |
| Aparisthimium cordatum Baill.             | E. Ferraz 935                  | Macrosamanea pedicellaris DC. Kleinh         | E. Ferraz 878   |
| Croton floribundus Spreng                 | E. Ferraz 645                  | Platymenia foliolosa Benth.                  | E. Ferraz 310   |
| Hieronima oblonga (Tul.) Müll. Arg.       | E. Ferraz 549                  | Stryphnodendron pulcherrimum (Willd.) Hochr  | . E. Ferraz 368 |
| Mabea occidentalis (Benth.) Müll. Arg.    | E. Ferraz 566                  | MORACEAE (P. Carauta/GUA)                    |                 |
| FABACEAE (R.C. Barneby/NY; L.P. de Quei   | roz/HUEFS)                     | Brosimum guianensis Aubl.                    | E. Ferraz 894   |
| Bowdichia virgilioides Kunth              | E. Ferraz 441                  | Brosimum sp.                                 | E. Ferraz 885   |
| Diplotropis purpurea (Rich.) Amshoff      | E. Ferraz 792                  | Clarisia racemosa Ruiz & Pav.                | E. Ferraz 529   |
| Hymenolobium janeirense Kulm.             | E. Ferraz 872                  | Helicostylis tomentosa (Poepp. & Endl.)      | E. Ferraz 589   |
| Pterocarpus violaceus Vogel               | E. Ferraz 527                  | Rusby                                        |                 |
| FLACOURTIACEAE                            |                                | Sorocea klotzschiana Baill.                  | E. Ferraz 398   |
| Banara brasiliensis (Schott) Benth.       | E. Ferraz 698                  | Moraceae 1                                   | E. Ferraz 886   |
| Casearia javitensis Humb. Bonpl & Kunth   | E. Ferraz 585                  | Moraceae 2                                   | E. Ferraz 893   |
| C. sylvestris Sw.                         | E. Ferraz 834                  | MYRISTICACEAE                                |                 |
| HIPPOCRATEACEAE (J.A. Lombardi/BHCE       |                                | Virola gardneri (A. DC.) Warb.               | E. Ferraz 450   |
| Cheiloclinium cognatum (Miers) A.C. Sm.   | E. Ferraz 663                  | MYRSINACEAE                                  | Evitoriae io    |
| ICACINACEAE                               | E. I chuz oos                  | Myrsine guianensis A. DC.                    | E. Ferraz 329   |
| Citronella paniculata (Mart.) R.A. Howard | E. Ferraz 1506                 | MYRTACEAE (G. Barroso/RB)                    | 2.10114202      |
| Discophora guianensis Miers               | E. Ferraz 1505                 | Campomanesia eugenioides (Cambess.)          | E. Ferraz 641   |
| LAURACEAE (H. Van der Werff/MO)           | L. 1 cmuz 1505                 | Legrand                                      | L. I CHUZ O-1   |
| Aiouea sp.                                | E. Ferraz 895                  | Eugenia cauliflora O. Berg                   | E. Ferraz 781   |
| Cinnamomum triplinerve (Ruiz & Pav.)      | E. Ferraz 897                  | E. diplocampta Diels                         | E. Ferraz 446   |
| Kosterm                                   | L. I CII az 0)/                | Eugenia sp.1                                 | E. Ferraz 284   |
| Lauraceae 2                               | E. Ferraz 960                  | Myrcia aff. amazonica DC.                    | E. Ferraz 757   |
| Lauraceae 2<br>Lauraceae 3                | E. Ferraz 900<br>E. Ferraz 947 | M. grandiflora O. Berg                       | E. Ferraz 755   |
| Ocotea sp. 1 (sp. nov.)                   | E. Ferraz 896                  | Myrtaceae A                                  | E. Ferraz 445   |
| Ocotea sp. 3 (sp. nov.)                   | E. Ferraz 896                  | Myrtaceae B                                  | E. Ferraz 521   |
|                                           | E. Ferraz 899                  |                                              | E. Ferraz 150   |
| Ocotea sp. 5 (sp. nov.)                   |                                | Myrtaceae C                                  |                 |
| Nectandra cuspidata (Nees & Mart.) Nees   | E. Ferraz 371                  | Myrtaceae D                                  | E. Ferraz 150   |
| LECYTHIDACEAE                             | E E 072                        | NYCTAGINACEAE (A. Furlan/HRCB)               | E E 007         |
| Eschweilera ovata (Cambess.) Miers        | E. Ferraz 273                  | Guapira opposita (Vell.) Reitz               | E. Ferraz 807   |
| Lecythis pisonis Cambess.                 | E. Ferraz 722                  | G. venosa (Choisy) Lundell                   | E. Ferraz 520   |
| MALPIGHIACEAE                             | F.F. ((0)                      | OCHNACEAE                                    | E.E. (12        |
| Byrsonima crispa Juss.                    | E. Ferraz 660                  | Ouratea hexasperma (A. StHil.) Baill.        | E. Ferraz 613   |
| B. sericea DC.                            | E. Ferraz 531                  | POLYGONACEAE (E. Melo/HUEFS)                 |                 |
| Byrsonima sp. 1                           | E. Ferraz 370                  | Coccoloba ochreolata Wedd.                   | E. Ferraz 406   |
| Byrsonima sp. 2                           | E. Ferraz 957                  | QUIINACEAE                                   |                 |
| Byrsonima sp. 3                           | E. Ferraz 959                  | Quiina pernambucensis Pires &                | E. Ferraz 667   |
| MELASTOMATACEAE (R. Goldenberg/UFF        |                                | Andrade-Lima                                 |                 |
| Miconia calvescens DC.                    | E. Ferraz 537                  | ROSACEAE                                     |                 |
| M. minutiflora (Bonpl.) DC.               | E. Ferraz 449                  | Prunus sellowii Koehne                       | E. Ferraz 949   |
| M. prasina (Sw.) DC.                      | E. Ferraz 776                  | RUBIACEAE (D. Zappi/K)                       |                 |
| MELIACEAE (T.D. Pennington/K)             |                                | Amaioua guianensis Aubl.                     | E. Ferraz 285   |
| Cabralea canjerana (vell.) Mart.          | E. Ferraz 719                  | Malanea macrophylla Bartl. ex Griseb.        | E. Ferraz 810   |
| Cedrela odorata L.                        | E. Ferraz 725                  | Posoqueira latifolia (Rudge) Roem. & Schltdl | . E. Ferraz 383 |
| Guarea kunthiana A.Juss.                  | E. Ferraz 752                  | Psychotria carthaginensis Jacq.              | E. Ferraz 465   |
| G. macrophylla Vahl                       | E. Ferraz 492                  | P. sessilis (Vell.) Müll. Arg.               | E. Ferraz 594   |
| Trichilia lepidota Mart.                  | E. Ferraz 623                  | RUTACEAE (F.F. Melo/PEUFR)                   |                 |
| T. sylvatica C. DC.                       | E. Ferraz 630                  | Zanthoxylum rhoifolium Lam.                  | E. Ferraz 700   |
| Trichilia sp.                             | E. Ferraz 944                  | SAPINDACEAE (G. Sommer/RJ;                   |                 |
| MIMOSACEAE (R.C. Barneby/NY;              |                                | M.S. Ferrucci/Instituto de Botánica del NE)  |                 |
| L.P. de Queiroz/HUEFS; F. Garcia/VIC)     |                                | Cupania oblongifolia Mart.                   | E. Ferraz 631   |
| Albizia polycephala (Benth.) Killip       | E. Ferraz 604                  | Cupania sp.                                  | E. Ferraz 948   |
| Inga capitata Desv.                       | E. Ferraz 933                  | Cupania sp. nov. 2                           | E. Ferraz 547   |
| I. edulis (Vell.) Mart.                   | E. Ferraz 670                  | Talisia macrophylla Radlk                    | E. Ferraz 823   |
| I. flagelliformis (Vell.) Mart.           | E. Ferraz 806                  | zamon macrophyma Rudik                       | L. 1 01142 023  |
| j ( · · · · · ) · · · · · · · · · · · · · | 2.101142 000                   |                                              | continu         |

Tabela 2 (continuação)

| Famílias/Espécies                     | Coletor/Número | Famílias/Espécies                      | Coletor/Número |
|---------------------------------------|----------------|----------------------------------------|----------------|
| SAPOTACEAE (T.D. Pennington/K)        |                | STERCULIACEAE (L.J. Dorr/US)           |                |
| Diplöon cuspidatum (Hoehne) Cronquist | E. Ferraz 903  | Guazuma ulmiflora Lam. var. tomentella | E. Ferraz 543  |
| Manilkara sp.                         | E. Ferraz 955  | K. Schum                               |                |
| Micropholis compta Pierre             | E. Ferraz 904  | SYMPLOCACEAE                           |                |
| Pouteria bangii (Rusbv.) T.D.Penn.    | E. Ferraz 828  | Symplocos cf. neglecta Brand           | E. Ferraz 507  |
| P. cf. bangii (Rusbv.) T.D. Penn.     | E. Ferraz 490  | TILIACEAE                              |                |
| P. cf. gardneri (Mart. & Miq.) Baehni | E. Ferraz 902  | Apeiba tibourbou Aubl.                 | E. Ferraz 282  |
| Pouteria sp. 1                        | E. Ferraz 901  | Luehea ochrophylla Mart.               | E. Ferraz 540  |
| Pouteria sp. 2                        | E. Ferraz 376  | VERBENACEAE                            |                |
| Sapotaceae 1                          | E. Ferraz 918  | Vitex capitata Vahl.                   | E. Ferraz 286  |
| SIMAROUBACEAE (W.W. Thomas/NY)        |                | VIOLACEAE                              |                |
| Simarouba amara Aubl.                 | E. Ferraz 523  | Paypayrola blanchetiana Tul.           | E. Ferraz 301  |
| STYRACACEAE                           |                | VOCHYSIACEAE (F. França/HUEFS)         |                |
| Styrax camporum Pohl.                 | E. Ferraz 717  | Vochysia thyrsoidea Pohl               | E. Ferraz 322  |

Tabela 3. Espécies arbóreas amostradas na Floresta Ombrófila Montana do Sirigi, São Vicente Férrer, PE, com seus respectivos parâmetros fitossociológicos: DA = densidade absoluta; FA = freqüência absoluta; DoA = dominância absoluta; VI = valor de importância.

| Espécies                  | DA (ha <sup>-1</sup> ) | FA (%) | DoA $(m^2 ha^{-1})$ | VI       |
|---------------------------|------------------------|--------|---------------------|----------|
| Vochysia thyrsoidea       | 78                     | 64     | 5,145               | 20,54    |
| Morto                     | 71                     | 76     | 3,132               | 16,22    |
| Tovomita mangle           | 123                    | 64     | 0,858               | 13,79    |
| Myrcia aff. amazonica     | 111                    | 68     | 0,967               | 13,48    |
| Eschweilera ovata         | 45                     | 54     | 3,130               | 13,22    |
| Virola gardneri           | 62                     | 68     | 2,189               | 13,03    |
| Sloanea guianensis        | 3                      | 6      | 5,245               | 12,42    |
| Eugenia sp. 1             | 66                     | 56     | 0,509               | 8,78     |
| Helicostylis tomentosa    | 62                     | 46     | 0,849               | 8,70     |
| Thyrsodium spruceanum     | 41                     | 48     | 1,364               | 8,60     |
| Quiina pernambucensis     | 65                     | 62     | 0,258               | 8,50     |
| Pouteria bangii           | 44                     | 54     | 0,622               | 7,47     |
| Dialium guianense         | 27                     | 40     | 1,338               | 7,15     |
| Clarisia racemosa         | 13                     | 24     | 1,132               | 4,83     |
| Diplotropis purpurea      | 23                     | 28     | 0,677               | 4,69     |
| Nectandra cuspidata       | 21                     | 22     | 0,7                 | 4,26     |
| Guarea macrophylla        | 27                     | 30     | 0,289               | 4,19     |
| Protium sp. 5             | 24                     | 32     | 0,31                | 4,16     |
| Mabea occidentalis        | 29                     | 18     | 0,444               | 3,97     |
| Pourouma guianensis       | 19                     | 26     | 0,454               | 3,81     |
| Copaifera langsdorfii     | 9                      | 14     | 1,007               | 3,69     |
| Cupania oblongifolia      | 41                     | 8      | 0,200               | 3,62     |
| Rheedia brasiliensis      | 19                     | 32     | 0,137               | 3,44     |
| Platymenia foliolosa      | 5                      | 10     | 1,049               | 3,29     |
| Protium sp. 2             | 18                     | 20     | 0,375               | 3,21     |
| Hieronima oblonga         | 8                      | 14     | 0,772               | 3,10     |
| Miconia calvescens        | 18                     | 26     | 0,163               | 3,08     |
| Macrosamanea pedicellaris | 6                      | 10     | 0,799               | 2,79     |
| Cupania sp.               | 22                     | 14     | 0,143               | 2,59     |
| Pterocarpus violaceus     | 3                      | 6      | 0,887               | 2,54     |
| Tapirira guianensis       | 8                      | 14     | 0,473               | 2,42     |
| Diospyros guianensis      | 12                     | 20     | 0,200               | 2,42     |
| Aiouea sp.                | 13                     | 14     | 0,306               | 2,37     |
| Simarouba amara           | 9                      | 16     | 0,296               | 2,20     |
| Psychotria sessilis       | 12                     | 20     | 0,086               | 2,16     |
| 1 by chow w sessues       | 12                     | 20     | 0,000               | continua |

Tabela 3 (continuação)

| Espécies                    | DA (ha <sup>-1</sup> ) | FA (%) | DoA $(m^2 ha^{-1})$ | VI       |
|-----------------------------|------------------------|--------|---------------------|----------|
| Croton floribundus          | 12                     | 10     | 0,305               | 2,07     |
| Moraceae 1                  | 11                     | 18     | 0,094               | 1,99     |
| Guapira venosa              | 6                      | 12     | 0,383               | 1,97     |
| Indeterminada 9             | 10                     | 16     | 0,128               | 1,89     |
| Dendropanax arboreum        | 10                     | 14     | 0,171               | 1,87     |
| Protium aracouchini         | 11                     | 18     | 0,389               | 1,87     |
| Byrsonima sp. 2             | 10                     | 12     | 0,217               | 1,85     |
| Inga thibaudiana            | 9                      | 12     | 0,233               | 1,82     |
| Inga edulis                 | 16                     | 6      | 0,017               | 1,79     |
| Cabralea canjerana          | 4                      | 6      | 0,508               | 1,77     |
| Ilex aff. Sapotifolia       | 3                      | 6      | 0,494               | 1,67     |
| Luehea ochrophylla          | 12                     | 12     | 0,076               | 1,67     |
| Erythroxylum squamatum      | 9                      | 16     | 0,037               | 1,61     |
| Sloanea cf. parviflora      | 3                      | 6      | 0,453               | 1,58     |
| Protium heptaphylum         | 8                      | 12     | 0,042               | 1,33     |
| Trichilia lepidota          | 6                      | 12     | 0,090               | 1,30     |
| Apeiba tibourbou            | 1                      | 2      | 0,421               | 1,14     |
| Myrsine guianensis          | 6                      | 10     | 0,052               | 1,10     |
| Amaioua guianensis          | 6                      | 10     | 0,044               | 1,08     |
| Moraceae 2                  | 3                      | 4      | 0,272               | 1,05     |
| Vitex capitata              | 4                      | 8      | 0,137               | 1,04     |
| Inga subnuda subsp. subnuda | 4                      | 6      | 0,183               | 1,03     |
| Talisia macrophylla         | 4                      | 8      | 0,123               | 1,01     |
| Miconia prasina             | 6                      | 8      | 0,059               | 1,00     |
| Paypayrola blanchetiana     | 8                      | 6      | 0,04                | 0,97     |
| Pouteria cf. bangii         | 5                      | 8      | 0,066               | 0,95     |
| Campomanesia eugenioides    | 4                      | 8      | 0,059               | 0,87     |
| Byrsonima sericea           | 5                      | 4      | 0,095               | 0,87     |
| Casearia javitensis         | 5                      | 8      | 0,036               | 0,87     |
| Couepia sp.                 | 4                      | 8      | 0,051               | 0,85     |
| Licania kunthiana           | 4                      | 8      | 0,051               | 0,85     |
| Cupania sp. nov. 2          | 6                      | 6      | 0,028               | 0,81     |
| Lauraceae 3                 | 4                      | 6      | 0,083               | 0,80     |
| Byrsonima crispa            | 3                      | 6      | 0,093               | 0,76     |
| Brosimum sp.                | 3                      | 6      | 0,093               | 0,76     |
| Parinari aff. excelsa       | 1                      | 2      | 0,246               | 0,74     |
| Schefflera morototoni       | 2                      | 4      | 0,15                | 0,71     |
| Cinnamomum triplinerve      | 3                      | 6      | 0,065               | 0,70     |
| Casearia sylvestris         | 3                      | 6      | 0,053               | 0,67     |
| Banara brasiliensis         | 4                      | 6      | 0,019               | 0,66     |
| Styrax camporum             | 3                      | 6      | 0,04                | 0,64     |
| Cedrela odorata             | 3                      | 4      | 0,089               | 0,63     |
| Ingaflagelliformis          | 3                      | 6      | 0,026               | 0,61     |
| Cedrela odorata             | 3                      | 6      | 0,027               | 0,61     |
| Myrtaceae A                 | 3                      | 6      | 0,024               | 0,60     |
| Byrsonima sp. 1             | 3                      | 6      | 0,021               | 0,60     |
| Trichilia sylvatica         | 3                      | 6      | 0,011               | 0,58     |
| Quararibea turbinata        | 3                      | 6      | 0,007               | 0,57     |
| Sorocea klotzschiana        | 3                      | 6      | 0,011               | 0,57     |
| Jacaranda puberula          | 3                      | 6      | 0,005               | 0,56     |
| Aspidosperma discolor       | 1                      | 2      | 0,156               | 0,54     |
| Diplöon cuspidatum          | 2                      | 4      | 0,067               | 0,52     |
| Trichilia lepidota          | 2                      | 4      | 0,069               | 0,52     |
| Posoqueira latifolia        | 2                      | 4      | 0,063               | 0,51     |
| Clusia pernambucensis       | 1                      | 2      | 0,137               | 0,49     |
| Ocotea sp. 5 (sp. nov.)     | 2                      | 4      | 0,054               | 0,49     |
| Eugenia cauliflora          | 2                      | 4      | 0,047               | 0,47     |
| Myrcia grandiflora          | 3                      | 4      | 0,011               | 0,46     |
|                             |                        |        |                     | continuo |

Tabela 3 (continuação)

| Espécies                          | DA (ha <sup>-1</sup> ) | FA (%) | DoA $(m^2 ha^{-1})$ | VI   |
|-----------------------------------|------------------------|--------|---------------------|------|
| Cordia nodosa                     | 2                      | 2      | 0,086               | 0,44 |
| Ocotea sp. 3 (sp. nov.)           | 2                      | 4      | 0,028               | 0,43 |
| Zanthoxylum rhoifolium            | 2                      | 4      | 0,027               | 0,43 |
| Vismia guianensis                 | 2                      | 4      | 0,024               | 0,42 |
| Inga sp.                          | 2                      | 4      | 0,019               | 0,41 |
| Sapotaceae 1                      | 2                      | 4      | 0,018               | 0,41 |
| Psychotria carthaginensis         | 2                      | 4      | 0,029               | 0,41 |
| Myrtaceae D                       | 2                      | 4      | 0,008               | 0,39 |
| Erythroxylum pulchrum             | 2                      | 4      | 0,010               | 0,39 |
| Guateria schlechtendaliana        | 2                      | 4      | 0,010               | 0,39 |
| Protium giganteum                 | 2                      | 4      | 0,010               | 0,39 |
| Himatanthus phagedaenicus         | 2                      | 4      | 0,009               | 0,39 |
| Lauraceae 2                       | 2                      | 4      | 0,010               | 0,39 |
| Symplocos cf. neglecta            | 2                      | 4      | 0,009               | 0,39 |
| Garcinia gardneriana              | 2                      | 4      | 0,006               | 0,38 |
| Guarea kunthiana                  | 2                      | 4      | 0,005               | 0,38 |
| Guapira opposita                  | 2                      | 4      | 0,005               | 0,38 |
| Erythroxylum sp. nov.             | 3                      | 2      | 0,023               | 0,37 |
| Bowdichia virgilioides            | 2                      | 2      | 0,039               | 0,34 |
| Discophora guianensis             | 1                      | 2      | 0,069               | 0,34 |
| Eugenia diplocampta               | 2                      | 2      | 0,028               | 0,31 |
| Tachigalia paratyensis            | 1                      | 2      | 0,053               | 0,30 |
| Buchenavia capitata               | 1                      | 2      | 0,045               | 0,30 |
| Miconia minutiflora               | 2                      | 2      | 0,017               | 0,29 |
| Aspidosperma spruceanum           | 1                      | 2      | 0,033               | 0,26 |
| Pouteria cf. gardneri             | 1                      | 2      | 0,015               | 0,22 |
| Inga capitata                     | 1                      | 2      | 0,015               | 0,22 |
| Byrsonima sp. 3                   | 1                      | 2      | 0,014               | 0,22 |
| Aparisthimium cordatum            | 1                      | 2      | 0,011               | 0,21 |
| Protium sp. 5                     | 1                      | 2      | 0,013               | 0,21 |
| Malanea macrophylla               | 1                      | 2      | 0,013               | 0,21 |
| Citronella paniculata             | 1                      | 2      | 0,014               | 0,21 |
| Indeterminada 7                   | 1                      | 2      | 0,009               | 0,20 |
| Lamanonia ternata                 | 1                      | 2      | 0,006               | 0,20 |
| Symphonia globulifera             | 1                      | 2      | 0,006               | 0,20 |
| Albizia polycephala               | 1                      | 2      | 0,005               | 0,20 |
| Pouteria sp. 2                    | 1                      | 2      | 0,003               | 0,20 |
| Eriotheca crenulaticalyx          | 1                      | 2      | 0,007               | 0,20 |
| Indeterminada 14                  | 1                      | 2      | 0,007               | 0,20 |
| Cheiloclinium cognatum            | 1                      | 2      | 0,003               | 0,19 |
| Coccoloba ochreolata              | 1                      | 2      | 0,002               | 0,19 |
| Indeterminada 11                  | 1                      | 2      | 0,003               | 0,19 |
|                                   | 1                      | 2      | 0,003               |      |
| Rauvolfia grandiflora             |                        |        |                     | 0,19 |
| Ocotea sp. 1 (sp. nov.)           | 1                      | 2<br>2 | 0,005               | 0,19 |
| Guazuma ulmiflora var. tomentella | 1                      | 2      | 0,004               | 0,19 |
| Trichilia sp.                     | 1                      |        | 0,003               | 0,19 |
| Pouteria sp. 1                    | 1                      | 2      | 0,003               | 0,19 |
| Swartzia pickelii                 | 1                      | 2      | 0,003               | 0,19 |
| Prunus sellowii                   | 1                      | 2      | 0,002               | 0,19 |
| Maytenus sp.                      | 1                      | 2      | 0,002               | 0,19 |
| Indeterminada 2                   | 1                      | 2      | 0,002               | 0,19 |
| Lecythis pisonis                  | 1                      | 2      | 0,003               | 0,19 |
| Micropholis compta                | 1                      | 2      | 0,002               | 0,19 |
| Hymenaea sp.                      | 1                      | 2      | 0,002               | 0,19 |
| Brosimum guianensis               | 1                      | 2      | 0,002               | 0,19 |
| Myrtaceae B                       | 1                      | 2      | 0,003               | 0,19 |
| Stryphnodendron pulcherrimum      | 1                      | 2      | 0,004               | 0,19 |
| Tovomita brevistaminea            | 1                      | 2      | 0,003               | 0,19 |
| Myrtaceae C                       | 1                      | 2      | 0,002               | 0,19 |

(Mimosaceae), Vochysia thyrsoidea (Vochysiaceae), Cupania sp. 2 (Sapindaceae), Copaifera langsdorffii e Dialium guianensis (Caesalpiniaceae) e Psychotria sessilis (Rubiaceae) foram bem representadas nas diferentes classes de altura da floresta (Fig. 2). Além dessas espécies de maior densidade, foram também amostrados, acima de 30 m de altura, indivíduos de Sloanea guianensis e S. parviflora (Elaeocarpaceae), de Luehea ochrophylla e Apeiba tibourbou (Tiliaceae) e de Byrsonima sp. 2 (Malpighiaceae).

Das populações com 75% dos indivíduos abaixo de 10 m de altura, algumas como Tovomita mangle, Quiina pernambucensis, Paypayrola blanchetiana, Cupania oblongifolia e Protium aracouchini são abundantes e características do subdossel (Fig. 2) enquanto outras como Psychotria sessilis, Dendropanax arboreum, Ilex aff. sapotifolia e Diospyros serrana representam populações do dossel

bem estabelecidas, isto é, com elevada concentração de indivíduos nas classes de menor altura e decrescendo nas classes de maior altura (Fig. 2). Essas espécies contribuíram para a elevada concentração (cerca de 65% do total) de indivíduos amostrados nas classes de altura entre 4,1 a 10 m (Fig. 2, Tab. 1) evidenciada na arquitetura de tamanho, assim como para a maioria das famílias que tiveram 75% dos indivíduos abaixo de 10 m de altura, como Clusiaceae, Myrtaceae, Quiinaceae, Sapindaceae e Ebenaceae (Fig. 3).

Das 26 famílias com maior densidade, grande parte apresentou indivíduos com altura entre 20 e 30 m, exceção de Aquifoliaceae, Melastomataceae, Quiinaceae e Sapindaceae, típicas do estrato mais baixo da mata (Fig. 3). Esses resultados mostram que a maioria das famílias foi representada por indivíduos que ocupam os estratos mais altos da floresta. Todavia, parte dessas famílias apresentou dois distintos padrões

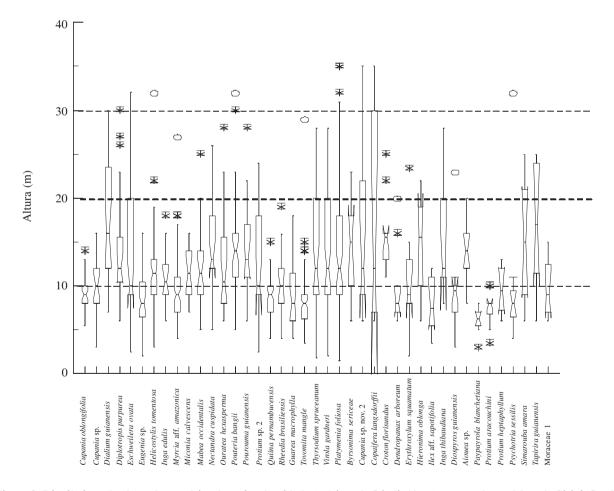



Figura 2. Distribuição de altura das espécies de maior densidade (mínimo de 8 indivíduos) amostradas na Mata do Sirigi, São Vicente Férrer, PE. A caixa dos Box-plots = 50% dos dados coletados; barras superior e inferior a caixa = 25% da variação dos dados; \* = pontos extremos nos dados coletados; o = pontos mais que extremos entre os dados coletados; linha no interior da caixa = mediana da distribuição dos dados; estreitamento ao redor da mediana = intervalo de confiança da mediana. A não sobreposição do intervalo de confiança da mediana entre distribuições indica diferença significativa entre as mesmas a 5% de probabilidade (Wilkinson 1992).

de distribuição no espaço vertical: 1) o formado pelas famílias que ocorreram com cerca de 75% dos indivíduos abaixo de 10m de altura, listadas ao final do parágrafo anterior; e 2) o outro representado por Anacardiaceae, Cecropiaceae, Euphorbiaceae, Fabaceae, Lauraceae, Malpighiaceae e Sapotaceae, que tiveram 75% dos indivíduos acima de 10 m de altura (Fig. 3).

As 23 espécies de maior densidade (até 15 indivíduos) apresentaram indivíduos entre 5 e 10 cm de DAP, mostrando que as mesmas estão se regenerando no interior da floresta. Nove espécies tiveram mais de 75% de seus indivíduos com no máximo 30 cm de diâmetro, indicando tratarem-se de espécies lenhosas de caules mais finos (Fig. 4). A maior concentração de indivíduos nas classes de diâmetro abaixo de 10 cm foi determinada, principalmente por Cupania oblongifolia, Eugenia sp. 1, Myrcia aff. amazonica, Quiina pernambucensis, Rheedia brasiliensis e Tovomita mangle (Fig. 4, Tab. 1). As populações de Vochysia thyrsoidea, Virola gardneri, Thyrsodium spruceanum, Escheweilera ovata, Nectandra cuspidata, Pouroma guianensis e Protium sp. 2 tiveram seus indivíduos melhor distribuídos entre as várias classes de diâmetro.

# Discussão

Arquitetura de abundância e tamanho - Em termos fisionômicos e estrutural, de um modo geral, a floresta montana de São Vicente Férrer esteve melhor relacionada com as florestas ombrófilas de terras baixas (TB). Os gêneros Cabralea, Cheiloclinium, Citronella, Croton, Dendropanax, Diploon, Diospiros, Guazuma, Hieronima, Jacaranda, Parinari, Paypayrola, Plathymenia, Pourouma, Prunus, Quararibea, Quiina, Rauvolfia, Tachigalia e Talisia presentes na floresta de São Vicente Férrer, não estão citados nas listas florísticas de TB, exceto por *Clarisia* presente na mata de Dois Irmãos (Guedes 1998). No nível específico, 42 dentre as 252 espécies de árvores coletadas e amostradas (Ferraz et al. 2004) foram exclusivas da área de estudo, demonstrando o quanto esta mata é distinta das demais florestas ombrófilas de TB e montanas (MO) comparadas.

A densidade total (1.521 ind. ha<sup>-1</sup>) registrada na área foi semelhante às das florestas ombrófilas e semideciduais de Pernambuco (ca. 1.600 ind. ha<sup>-1</sup>) referidas em trabalhos que utilizaram os mesmos critérios de inclusão (DAP ≥5 cm) e área amostral (Tavares *et al.* 2000; Nascimento 2001; Siqueira *et al.* 

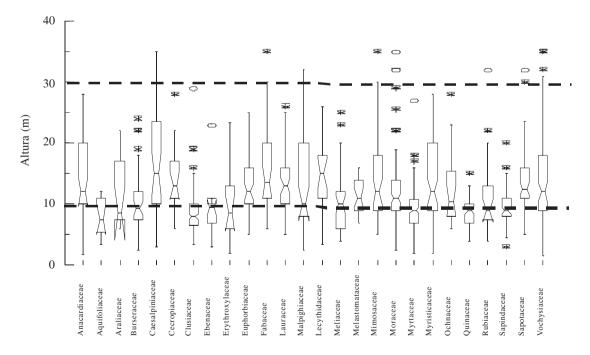



Figura 3. Distribuição das alturas individuais das 26 famílias de maior densidade (mínimo de 12 indivíduos) amostradas na Mata do Sirigi, São Vicente Férrer, PE. A caixa dos Box-plots = 50% dos dados coletados; barras superior e inferior a caixa = 25% da variação dos dados; \* = pontos extremos nos dados coletados; o = pontos mais que extremos entre os dados coletados; linha no interior da caixa = mediana da distribuição dos dados; estreitamento ao redor da mediana = intervalo de confiança da mediana. A não sobreposição do intervalo de confiança da mediana entre distribuições indica diferença significativa entre as mesmas a 5% de probabilidade (Wilkinson 1992).

2001). Os dados de área basal foram distintos entre as áreas de TB e MO do Estado (Tab. 1). A baixa área basal encontrada na TB do Zumbi (Siqueira *et al.* 2001) foi atribuída às suas características de mata secundária. Independente do estágio sucessional desses remanescentes e do tipo de formação (TB e MO), a densidade total das plantas foi muito semelhante, o que não ocorreu com a área basal. Assim, sugere-se que diferentemente de outros parâmetros florísticos e vegetacionais a densidade total é pouco indicada para separação das formações ombrófilas MO e de TB de Pernambuco, que são distintas quanto aos aspectos físicos de unidades de relevo (formação Barreira e planalto da Borborema), altitude (10 a 1.000 m) e precipitação (650 a 2.000 mm).

A pouca variação da densidade entre florestas que foram amostradas com metodologia similar, mas em condições ambientais distintas, também vem sendo evidenciada para outras florestas tropicais (Dulvenvoorden 1996). A densidade é, segundo o autor, menos afetada pelas condições adversas do ambiente que a riqueza de taxa. Esta afirmação mostra claramente que mesmo a riqueza de espécies sendo menor, devida às condições ambientais mais restritivas, determinadas populações são bem adaptadas àquela condição e formam, portanto, populações de elevada densidades, as quais refletirão no arranjo da comunidade.

A distribuição dos indivíduos em classes fixas de diâmetro (Tab. 1) foi relativamente semelhante entre

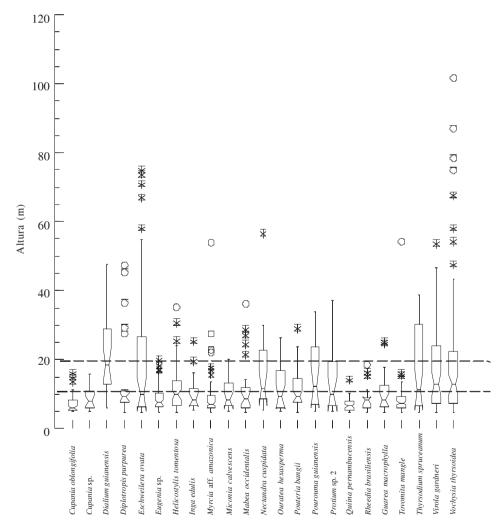



Figura 4. Distribuição dos diâmetros individuais das espécies com no mínimo 15 indivíduos, Mata do Sirigi, São Vicente Férrer, PE. A caixa dos Box-plots = 50% dos dados coletados; barras superior e inferior a caixa = 25% da variação dos dados; \* = pontos extremos nos dados coletados; o = pontos mais que extremos entre os dados coletados; linha no interior da caixa = mediana da distribuição dos dados; estreitamento ao redor da mediana = intervalo de confiança da mediana. A não sobreposição do intervalo de confiança da mediana entre distribuições indica diferença significativa entre as mesmas a 5% de probabilidade (Wilkinson 1992).

(MO e TB) e dentre (MO e MO ou TB e TB) formações (Tavares *et al.* 2000; Siqueira *et al.* 2001; este trabalho), enquanto que no espaço vertical foi muito variável, sendo as diferenças menores entre as MO (Tavares *et al.* 2000, este trabalho). É possível que tanto os dados estimados de altura tenham interferido nas caracterizações e comparações entre as áreas, quanto as estratégias de crescimento vertical das plantas, em relação ao tempo de abertura de clareiras e as respostas aos fatores abióticos como luz e água.

As diferenças observadas na distribuição dos indivíduos no espaço vertical são melhor exemplificadas através das alturas máximas individuais registradas para as árvores emergentes e do dossel das florestas (Tab. 1). Nos levantamentos de florestas de TB (Barbosa 1996; Guedes 1998; Siqueira *et al.* 2001) e MO (Tavares *et al.* 2000; Nascimento 2001), as alturas das árvores emergentes variaram de 26 a 31 m e as do dossel de 20 a 25 m. As árvores emergentes (entre 30 e 36 m de altura) e do dossel (25 a 30 m) da floresta MO de São Vicente Férrer tiveram alturas semelhantes às da floresta MO de Caruaru (Tavares *et al.* 2000) e superiores às registradas em outras florestas de Pernambuco e Paraíba (Barbosa 1996; Guedes 1998; Nascimento 2001; Siqueira *et al.* 2001).

Assim, é possível afirmar que entre as formações ombrófilas de Pernambuco (MO/TB) houve uma tendência a que os remanescentes de florestas MO apresentassem maiores alturas máximas que os de TB (A.C.B. Lins e Silva, dados não publicados, Siqueira *et al.* 2001). Por outro lado, as florestas MO estacionais estudadas por Ferraz *et al.* (2003), Correia (1996) e Moura (1997) tiveram menores alturas máximas que as ombrófilas MO de São Vicente Férrer e Caruaru (Tavares *et al.* 2000).

A separação de áreas de florestas montanas de Pernambuco, com base na altura da comunidade, foi apresentada por Rodal et al. (1998) ao considerarem que as manchas de floresta localizadas na microrregião do Vale do Ipojuca tinham porte florestal mais baixo, com no máximo 16 m de altura. A altura máxima para as florestas dessa microrregião foi ampliada por Nascimento (2001), que registrou altura máxima de 30 m. Os dados atuais sugerem que entre as florestas MO de Pernambuco, denominadas de florestas serranas/brejos de altitude, há pelo menos dois tipos fisionômicos distintos em relação à altura da comunidade: o primeiro formado pelas áreas que adentram para o interior, em pleno domínio da caatinga, com solos relativamente rasos (profundidade geralmente inferior a 1,5 m) e com altura máxima da

vegetação de 16 m (Correia 1996; Moura 1997; Ferraz *et al.* 2003); e o outro formado pelas áreas mais próximas às florestas costeiras (TB), com solos em geral profundos e altura do dossel de cerca de 30 m (este trabalho; Tavares *et al.* 2000; Nascimento 2001).

Se, por um lado, existe uma indicação da relação entre altura da comunidade e profundidade do solo (Correia 1996; Moura 1997), por outro lado, os totais pluviométricos não foram relacionados à maior ou menor altura da comunidade, uma vez que, dentro da mesma faixa de precipitação (próxima a isoieta de 1.000 mm), foram registradas alturas bem distintas (Ferraz et al. 2003; este trabalho). Estes resultados estão em acordo com a conclusão de Moura (1997), que em área de baixa precipitação (neste caso, totais equivalentes) a capacidade de armazenamento de água no solo (profundidade e textura) pode ser determinante na estrutura vertical da floresta. Talvez, para um melhor entendimento das relações entre as florestas montanas do nordeste, outros fatores, além dos mencionados, fossem importantes de ser considerados, como o efeito da continentalidade (maior número de meses secos) e processos biogeográficos.

Estrutura de tamanho e abundância - Variações na altura e no número de indivíduos e espécies das plantas emergentes ocorreram em todos os levantamentos (este trabalho; Barbosa 1996 - duas áreas; Guedes 1998; Tavares et al. 2000; Nascimento 2001; Siqueira et al. 2001). Nenhuma espécie foi comum a todos os levantamentos e das 35 espécies citadas como emergentes apenas Tapirira guianensis, Eschweilera ovata, Pterocarpus violaceus, Eriotheca crenulaticalyx, Ocotea glomerata e Copaifera langsdorffii foram comuns a dois levantamentos. Esses resultados confirmam a afirmativa de Hallé et al. (1978) sobre a existência de descontinuidade florística entre as plantas emergentes das florestas tropicais. Por outro lado, dependendo da idade da floresta espécies emergentes e ou de dossel podem vir a ser substituídas por outras devido ao crescimento das plantas. Nos remanescentes de florestas do nordeste, espécies emergentes podem representar indivíduos relictos do alto dossel da floresta primária.

A dominância de famílias e espécies do estrato mais baixo das florestas de TB e MO de Pernambuco e Paraíba pode ser usado como indicativo de possíveis diferenças estruturais entre as mesmas. Famílias como Quiinaceae (*Quiina pernambucensis*), Clusiaceae (*Tovomita mangle*), Sapindaceae (*Cupania* spp.) e Ebenaceae (*Diospyros serrana*), importantes nas classes de altura abaixo de 10 m para a mata estudada,

ainda não foram registradas e/ou indicadas como dominantes nos levantamentos em outras florestas ombrófilas de TB e MO de Pernambuco e Paraíba.

O padrão geralmente observado é que Myrtaceae e Rubiaceae, também dominantes estruturalmente nesta área e na faixa de altura abaixo de 10 m, são típicas do subdossel dessas florestas (Siqueira *et al.* 2001; Nascimento 2001) chegando, entretanto, algumas espécies dessas famílias a atingir o estrato mais alto da floresta estudada (cerca de 30 m). São exemplos *Amaioua guianensis*, *Psychotria sessilis* (Rubiaceae) e *Myrcia* aff. *amazonica* (Myrtaceae).

A análise das cinco famílias de maior densidade citadas em 24 levantamentos em TB, realizados no Nordeste (Tavares et al. 1968a, b; 1971a, b; 1979; Mori et al. 1983; Barbosa 1996; A.C.B. Lins e Silva, dados não publicados; Guedes 1998; Siqueira et al. 2001), mostra que Anacardiaceae teve maior densidade nas matas de Pernambuco, Paraíba e Alagoas, enquanto Caesalpiniaceae, Lecythidaceae e Sapotaceae, nas matas de Alagoas e da Bahia. Para os levantamentos em MO (Correia 1996; Moura 1997; Tavares et al. 2000; Nascimento 2001; Ferraz et al. 2003), Myrtaceae destacou-se pela maior densidade, tanto nas semideciduais como nas ombrófilas, seguida por Lauraceae. Na mata de São Vicente Férrer, as maiores densidades por família (Myrtaceae, Clusiaceae, Moraceae, Sapindaceae, Vochysiaceae e Sapotaceae) seguiram o padrão de florestas de TB, exceto por Myrtaceae. A elevada densidade de Clusiaceae e Vochysiaceae é comum apenas nos levantamentos de TB da Bahia e Alagoas (Tavares et al. 1968a, b; 1979; Mori et al. 1983). É visível, portanto, a presença de arranjos estruturais distintos entre os fragmentos comparados, os quais devem ser considerados na definição de áreas prioritárias a conservação.

Semelhanças e dissemelhanças na fisionomia e na estrutura entre as formações de terras baixas, submontanas e montanas neotropicais são discutidas na literatura (Kelly et al. 1988; Dulvenvoorden 1996). Lieberman et al. (1996) verificaram para florestas úmidas da Costa Rica que as florestas situadas em maiores altitudes apresentavam maiores valores de densidade, área basal, diâmetro e altura e menores valores de riqueza que as situadas em altitudes mais baixas. Entre as florestas ombrófilas comparadas no presente trabalho, houve a mesma tendência quanto à altura e área basal, aumentando no sentido TB-MO, mas para densidade total e número de famílias e espécies não houve padrão consistente. Para a MO

estudada, a riqueza de espécies e famílias teve comportamento inverso ao constatado por Lieberman *et al.* (1996), sendo geralmente superior ao das florestas de TB do nordeste.

A mata de São Vicente Férrer diferencia-se das áreas TB e MO comparadas, principalmente por apresentar maior riqueza de espécies e famílias no componente arbóreo, maior altura e riqueza de taxa no dossel. Isto lhe confere uma estrutura de tamanho e abundância similar aos remanescentes de floresta de Alagoas e Bahia (Tavares et al. 1968a, b; 1971a, b; 1979; Mori et al. 1983) e relativamente distinta das florestas acima do Estado de Alagoas (Barbosa 1996; A.C.B. Lins e Silva, dados não publicados; Guedes 1998; Nascimento 2001; Sigueira et al. 2001). O número de espécies novas (sete) registradas no levantamento fitossociológico, atrelado à presença de famílias e espécies, até então, não amostradas nas florestas MO de Pernambuco, são mais um indicativo da importância e do pouco conhecimento que se tem sobre essa formação no Estado.

## Agradecimentos

À Fundação o Boticário de Proteção A Natureza e ao Programa de Pós-Graduação em Botânica (UFRPE), pelo financiamento de parte desta pesquisa; ao CNPq, pela concessão da bolsa de doutorado; aos taxonomistas da UFRPE A.L. de Melo e M.F.A. Lucena, pelo apoio nas coletas e identificações; à A.P. Gomes, pela colaboração no uso do FITOPAC; à toda equipe que participou do trabalho de campo: G. Régio; M. Gomes; M. Silva, A. Bispo e J. Urbano.

### Referências bibliográficas

Andrade-Lima, D. 1961. Tipos de Floresta de Pernambuco. Separata dos Anais da Associação dos Geógrafos Brasileiros. São Paulo, 12: 29-48.

Barbosa, M.R.V. 1996. Estudo florístico e fitossociológico da mata do buraquinho, remanescente de mata atlântica em João Pessoa-PB. Tese de Doutorado. Universidade Estadual de Campinas, Campinas.

Beltrão, A.L. & Macêdo, M.M.L. 1994. Projeto piloto da Bacia Hidrográfica do Rio Goiana (Macrozoneamento) Subsídios ao planejamento integrado da bacia do Rio Goiana: complexo serras do Mascarenhas e Jundiá. Recife, CPRH.

Brasil, Ministério das Minas e Energia. Secretaria geral. Projeto Radambrasil. 1981a. Folhas SB. 24/25 – Jaguaribe/Natal. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro (Levantamento de Recursos Naturais, 23).

- Brasil, Ministério das Minas e Energia. Secretaria geral. Projeto Radambrasil. 1981b. Folhas SD. 24 Salvador. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro (Levantamento de Recursos Naturais, 24).
- Brasil, Ministério das Minas e Energia. Secretaria geral. Projeto Radambrasil. 1983. Folhas SC. 24/25 Aracaju/Recife. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro (Levantamento de Recursos Naturais, 30).
- Correia, M.S. 1996. Estrutura da vegetação da mata serrana de um brejo de altitude de Pesqueira PE. Dissertação de Mestrado: Universidade Federal de Pernambuco, Recife.
- Cronquist, A. 1981. **An integrated system of classification of flowering plants**. New York, Columbia University Press.
- Dulvenvoorden, J.F. 1996. Patterns of tree species richness in Forests of the middle Caquetá area, Colombia, NW Amazonia. **Biotropica 28**(2): 142-158.
- Ferraz, E.M.N. 2002. Panorama da floresta atlântica no estado de Pernambuco. Pp. 23-26. In: E.L. Araújo; A.N. Moura; E.V.S.B. Sampaio; L.M.S. Gestinari & J.M.T. Carneiro. (eds.). **Biodiversidade, Conservação e Uso sustentável da Flora do Brasil**. Recife, Imprensa Universitária.
- Ferraz, E.M.N.; Rodal, M.J.N. & Sampaio, E.V.S.B. 2003. Physiognomy and structure of vegetation along na altitudinal gradient in the semi-arid region of northeastern Brazil. **Phytocoenologia 33**(1): 71-92.
- Ferraz, E.M.N.; Araújo, E.L. & Silva, S.I. 2004. Floristic similarities between lowland and montane areas of Atlantic Coastal Forest in Northeastern Brazil. Plant Ecology 174: 59-70.
- Gentry, A.H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. **Annals of the Missouri Botanical Gardens 75**: 1-34.
- Guedes, M.L.S. 1998. A vegetação fanerogâmica da reserva Ecológica de Dois Irmãos. Pp. 157-172. In: I.C.S. Machado; A.V. Lopes & K.C. Porto (eds.). Reserva Ecológica da Mata de Dois Irmãos: estudos em uma remanescente de Mata Atlântica em área urbana (Recife – Pernambuco - Brasil). Recife, Editora Universitária.
- Hallé, F.; Oldeman, R.A.A. & Tomlinson, P.B. 1978. Tropical trees and forests. New York, Springer-Verlag, Berlin Heidelberg.
- Kelly, D.L.; Tanner, E.V.J.; Kapos, V.; Dickinson, T.A.; Goodfriend, G.A. & Fairbairn, P. 1988. Jamaican Limestone Forest: floristic, structure and environment of three examples along a rainfall gradient. Journal of Tropical Ecology 4: 121-156.
- Lieberman, D.; Lieberman, M.; Peralta, R. & Harshorn, G.S. 1996. Tropical forest structure and composition on largescale altitudinal gradient in Costa Rica. Journal of Ecology 84: 137-152.
- Lins, R.C. 1989. **Áreas de exceção do agreste de Pernambuco**. Recife, SUDENE/PSU7SER, mapas (Brasil. SUDENE, Estudos Regionais, 20).

- Melo, M.L. 1980. **Os agrestes: estudo dos espaços nordes- tinos do sistema gado-policultura de uso de recursos.**Recife, SUDENE (Brasil. SUDENE, Estudos Regionais, 4)
- Mori, S.A.; Boom, B.M.; Carvalho, A.M. & Santos, T.S. 1983. Southern Bahian moist forests. **Botanical Review 49**: 155-232.
- Moura, F.B.P. 1997. Fitossociologia de uma mata serrana semidecídua no brejo de jataúba, Pernambuco. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife.
- Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. New York, John Wiley & Sons.
- Nascimento, L.M. 2001. Caracterização fisionômicoestrutural de um fragmento de floresta montana no nordeste do Brasil. Dissertação de Mestrado. Universidade Federal Rural de Pernambuco, Recife.
- Rodal, M.J.N.; Sampaio, E.V.S.B. & Figueiredo, M.A. 1992.
  Manual sobre métodos de estudo florístico e fitossociológico ecossistema caatinga. Sociedade Botânica do Brasil.
- Rodal, M.J.N.; Sales, M.F. & Mayo, S.J. 1998. Florestas Serranas de Pernambuco: localização e conservação dos remanescentes dos brejos de altitude, Pernambuco/ Brasil. Recife, Imprensa Universitária da Universidade Federal Rural de Pernambuco.
- Rodal, M.J.N. 2002. Montane forests in Northeast Brazil: a phytogeographical approach. **Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 124**(1): 1-10.
- Siqueira, D.R.; Rodal, M.J.N.; Lins e Silva, A.C.B. & Melo, A.L. 2001. Physionomy, structure and floristic in na area of Atlantic Forest in northeast Brasil. Pp. 11-27. In: G. Gottsberger & S. Liede (eds.). Life Forms and Dynamics in Tropical Forests. Gebr. Borntraeger Verlagsbuchhandlung, Berlim-Stuttgart.
- Shepherd, G.J. 1995. FITOPAC 1. **Manual do usuário**. Campinas, UNICAMP.
- Tavares, M.C.G.; Rodal, M.J.N.; Melo, A.L. & Araújo, M.F. 2000. Fitossociologia do componente arbóreo de um trecho de Floresta Ombrófila Montana do Parque Ecológico João Vasconcelos Sobrinho, Caruaru, Pernambuco. Naturalia 25: 17-32.
- Tavares, S.; Paiva, F.A.F.; Tavares, E.J.S.; Neves, M.A. & Lima, J.L.S. 1968a. Inventário florestal de Alagoas I: estudo preliminar da Mata das Carobas, município de Marechal Deodoro. Boletim Técnico da Secretaria de Obras e Serviços Públicos 88/89: 17-30.
- Tavares, S.; Paiva, F.A.F.; Tavares, E.J.S.; Neves, M.A. & Lima, J.L.S. 1968b. Inventário florestal de Alagoas II: estudo preliminar da Mata da Varrela, município de São Miguel dos Campos. Boletim Técnico da Secretaria de Obras e Serviços Públicos 90: 17-28.

- Valencia, R. 1995. Composition and structure of na Andes forest fragment in eastern Equador. Pp. 239-249. In: S.P. Churchill; H. Blaslev; E. Forero & J.L. Luteyn (eds.).
  Biodiversity and Conservation of Neotropical Montane Forests. New York, New York Botanical Garden.
- Veloso, H.P. & Góes Filho, L. 1982. Fitogeografia brasileira, classificação fisionômico-ecológica da vegetação neotropical. **Boletim Técnico, Série Vegetação 1**.
- Wilkinson, L. 1992. **SYSTAT: The system for statistics**. SYSTAT. Inc., Evanston.