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ABSTRACT
Th e timing of phenological events varies within and among populations, aff ecting the performance of individual 
plants diff erently. We evaluated the eff ects of relative variation in sprouting time on the display of reproductive 
events, vegetative growth and herbivory in Copaifera langsdorffi  i (Fabaceae). A total of 93 trees of C. langsdorffi  i was 
monitored daily to determine their sprouting time. We collected ten terminal branches of each plant to evaluate 
vegetative growth, production of defense compounds and insect herbivore damage. Th e sprouting time for the studied 
population lasted 67 days. Variation in sprouting time did not aff ect the probability of plants to enter the reproductive 
stage. Plants that entered the reproductive stage showed greater vegetative biomass. Variation in sprouting time 
had a negative relationship with branch growth and a positive relationship with the number of leafl ets. Leaf phenol 
concentration did not vary in relation to sprouting time or plant phenology, but herbivory was higher in plants that 
sprouted later. Th e relationships among plant sprouting time, vegetative development and display of reproductive 
stage in C. langsdorffi  i are discussed. Th e results of this study also suggest that early sprouting prior to the rainy 
season is a strategy used by C. langsdorffi  i to escape herbivores attacks.
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Introduction
Phenology describes the timing and factors that regulate 

transitions between stages in the life cycle of an organism 
(Fagundes 2014). Synchronism of phenological events in 
plant species (e.g., sprouting, fl owering, and fruiting) can 
vary among and within populations (Singh & Kushwaha 
2005). Ecological causes of variation in phenology include 
diff erences in temperature, photoperiod, moisture, and 
soil quality (Campo et al. 2010; Yang & Rudolf 2010). 

Furthermore, inter-plant variation in phenological 
events can be caused by genetic diff erences in age, size, 
and reproductive eff ort in the previous years, as well as 
interactions with higher trophic levels (Schemske et al. 
1978; Souza & Fagundes 2016).

During a phenological cycle, plants must acquire 
resources to invest in growth, reproduction and the 
production of compounds for defence against herbivores 
(Herms & Mattson 1992; Stamp 2003; Costa et al. 2016). 
Usually the resource demand for these three processes 
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cannot be met simultaneously, thereby generating a trade-
off in resource allocation among the different nutrient 
drains of the plant (Obeso 2002; Weiner et al. 2009). 
Trade-offs between reproduction and growth is a common 
phenomenon in higher plants. For example, during fruit 
development, plants may reduce or even stop growing 
because fruits are strong nutrient drains (Larcher 1995). 
In addition, scarcity of resources can trigger the reproductive 
phenophase in perennial plants (Yang & Rudolf 2010). 
Plants subjected to long periods of strictly vegetative growth 
prior to initiating reproductive activity have greater resource 
acquisition and resource stores (Araújo et al. 1998; Nord 
et al. 2011). Therefore, intra-population variation in plant 
phenology, in particular sprouting time, can affect vegetative 
and reproductive development of plants (Dahlgren 2007; 
Parachnowitsch et al. 2012).

From a co-evolutionary perspective, variation in 
sprouting time within a plant population can play a 
relevant role in the plant-herbivore interactions (Forister 
2005; Fagundes 2014). Plants try to reduce herbivore 
actions directly by using the host satiation mechanism or 
producing resource patches that vary over time (Schaik 
et al. 1993; Fei et al. 2014; Souza & Fagundes 2016). In 
contrast, herbivores try to synchronize their life cycle with 
the appearance of target-organs in the plant to ensure 
greater offspring performance (Yukawa & Akimoto 2006; 
Thompson & Gilbert 2014). Indirectly, variation in sprouting 
time produce resource patches that change in quantity 
and quality for herbivores. For example, early-sprouting 
plants can accumulate more resources during an extended 
vegetative stage, resulting in greater vegetative growth and 
a greater amount of secondary compounds (Forister 2005; 
Costa et al. 2016). Thus, phenological asynchronies within a 
plant population can generate patches of resources that vary 
in quality (e.g., concentrations of primary and secondary 
metabolites and morphological traits) and quantity over 
time (Forister 2005; Parachnowitsch et al. 2012; Fagundes 
2014).

Copaifera langsdorffii (Fabaceae) is a tropical tree 
species that reaches up to 20 m in height in the Brazilian 
Cerrado. This species exhibits supra-annual fruiting (i.e., 
there are years of intense fruit set followed by years of 
low or no fruit production), complete deciduousness in 
the dry season (mainly from July to September) with leaf 
emission occurring immediately after the fall of the old 
leaves produced in the previous year (Souza & Fagundes 
2016). Moreover, plants of C. langsdorffii exhibit wide intra-
population variation in leaf sprouting time in Cerrado areas 
(Fagundes 2014). Flowering occurs from November to 
December and fruits ripen from August to September of 
the following year (Fagundes et al. 2013). C. langsdorffii 
experiences a high diversity of free-feeding herbivorous 
insects, but the mechanism that regulates this diversity 
is still poorly known (see Silva et al. 2009; Costa et al. 
2016). We formulated the hypothesis that early-sprouting 
plants of C. langsdorffii accumulate more resources due 

their extended vegetative stage. Thus, this study tested the 
following predictions of this hypothesis: (i) early-sprouting 
plants would have a greater probability of displaying the 
reproductive stage, (ii) early-sprouting plants would have 
greater vegetative growth and (iii) early-sprouting plants 
would produce greater amounts of secondary compounds 
and would be subjected to lower levels of herbivory.

Materials and methods

Study area

The study was performed in a private reserve of 
approximately 25 hectares located in the city of Montes 
Claros (16o40’26’’S and 43o48’44’’W) in northern Minas 
Gerais, Brazil. This region is located between the Cerrado and 
Caatinga domains and has a semi-arid climate characterized 
by well-defined dry and rainy seasons (Fagundes et al. 2013). 
The average annual temperature is approximately 23°C, and 
the average precipitation is about 1,000 mm/year, with the 
rainy season being concentrated between November and 
February (Costa et al. 2016). The soil of the study area is 
dystrophic with a well-developed herbaceous subshrub layer 
(Fagundes et al. 2011; Souza & Fagundes 2016).

Field work

A total of 93 adult plants of Copaifera langsdorffii 
Desf. were marked in the study area during May 2012. 
Individuals were between 8 and 12 m tall and appeared in 
good physiological condition (i.e., abundant crown with the 
absence of lianas and parasites). Copaifera langsdorffii was 
irregularly distributed in the study area with the distance 
among trees varying from 7 to 45 m. All individuals were 
monitored daily from July 2012 to May 2013 in order to 
determine the precise date of sprouting for each individual 
plant and determine the relative variations in sprouting 
time (days) among all plants of the population. Because 
many plants did not enter a reproductive stage, we grouped 
the plants into two phenological groups: (1) plants that 
performed the reproductive stage and (2) plants that did 
not performed the reproductive stage.

During June 2013 (prior to leaf fall), we collected ten 
terminal branches (approximately 30 cm long) from each 
individual plant to assess the effect of relative variation in 
sprouting time on vegetative growth and leaf herbivory. 
Because C. langsdorffii is deciduous, we were able to identify 
branches that growth during previous growth station (July 
2012 to June 2013) and so, it was possible to access the 
biomass invested by each plant. Branches were collected 
from different parts of the crown in order to obtain samples 
from the entire individual and avoid bias caused by the 
effect of microhabitat on branch development and herbivory 
(Costa et al. 2010).
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Laboratory assay

The ten branches collected from each individual were 
taken to Conservation Biology Laboratory of the Unimontes 
(State University of Montes Claros) to quantify vegetative 
investment (branch growth, average number of leaflets per 
branch, leaf biomass and total biomass of branches), phenol 
concentration in leaf tissues and herbivory of each plant. 
Branch growth was assessed for each plant by determining 
the average length of internodes of the principal branch. 
Moreover, all leaflets and shoots present in those branches 
were used to determine leaflet number, leaflet biomass and 
shoot biomass. All leaflets and shoots present on the ten 
branches per tree were dried in an oven at 70 ºC for 72 h, and 
weighed on a precision electronic scale (0.01 mg/ Shimadzu 
Corp. AUW 220) to determine dry leaf and shoot biomass.

Total phenolic content was determined by 
spectrophotometry using the Folin-Ciocalteau methodology 
(Swain & Hillis 1959) with gallic acid serving as a standard. 
Initially, leaf extract was prepared for each individual used 
in the study by diluting 0.5 g pounded leaves in one mL of 
methanol. The 0.5 g of leaves was obtained from 50 mature 
leaves collected randomly from tree crowns. Next, 500 μL 
of the extract was transferred to tubes containing 250 μL 
Folin-Ciocalteu’s reagent. After waiting for 10 minutes, 500 
μL of a sodium carbonate solution (10% w/v) was added to 
the sample. The tubes were then allowed to stand at room 
temperature for 30 min before absorbance was measured at 
743 nm. The concentration of polyphenols in the samples 
was derived from a standard curve of gallic acid ranging 
from 20, 30, 40, 60, and 80μg/mL. Total phenolic content 
was expressed as gallic acid equivalents (GAE) in mg/g of 
dry leaf extract.

We randomly selected 30 leaves per individual (three 
leaves per sampled branch) to determinate the percentage 
of leaf area lost due to damage from chewing by herbivores. 
These leaves were digitalized and their total and removed 
areas were estimated using the software ImageJ (Rasband 
1997-2014).

Statistical analysis

The effect of variation in plant sprouting time and 
phenological group (reproductive or non-reproductive 
plants) on vegetative growth and phenolic compounds were 
tested using generalized linear models (GLMs) followed by 
ANOVA. In this case, plant sprouting time and phenological 
group were used as explanatory variables and branch growth, 
average number of leaflets per branch, leaf biomass, total 
biomass of branches or phenol concentration in leaf tissues 
were considered response variables. Since the response 
variables are continuous, we tested the models using F-test 
based on the Gaussian distribution prior to submitting the 
models to analysis of residues to test their adequacy at 
meeting statistical assumptions (Crawley 2007).

The effects of plant sprouting time, phenological group, 
vegetative growth and phenol concentration in leaf tissues 
on percentage of leaf herbivory were tested with GLMs 
followed by ANOVA. Thus, herbivory was the response 
variable and variation in sprouting time, phenological 
groups, branch growth, average number of leaflets, leaf 
biomass and phenol concentration were used as explanatory 
variables. The Akaike Information Criteria for small samples 
(AICc) was used for ordered explanatory variables and to 
select most parsimonious model. These procedures were 
carried out using the MuMIn package of R software.

Results
Sprouting of Copaifera langsdorffii started on July 27th, 

2012 and continued until October 1st, 2012 (Fig. 1A). 
Therefore, the sprouting time for the 93 individuals lasted 
a total of 67 days. Only 38 individuals (40.9%) entered the 
reproductive stage. Variation in sprouting time did not 
differed between plants that reproduced and those plants 
that did not (F = 0.3455, P = 0.5581, Fig. 1B).

Variation in sprouting time and the onset of reproductive 
events affected branch growth (Tab. 1). In fact, sprouting 
time had a negative relationship with branch growth while 
individuals that went into the reproductive stage had greater 
branch growth than non-reproductive individuals (Fig. 
2A). Leaf biomass was negatively related with variation in 
sprouting time (Fig. 2B) while total biomass was greater 
in plants that entered the reproductive stage (Fig. 2C). 
Sprouting time was positively related to the number of 
leaflets per branch (Fig. 2D). Sprouting time and plant 
phenological group did not affect leaf phenol concentration 
(F = 0.0159, P = 0.9000).

Among all explanatory variables tested, only sprouting 
time affected herbivory on C. langsdorffii leaves (Tab. 1). In 
fact, there was a positive relationship between percentage 
of foliar herbivory and variation in sprouting time (Fig. 
3), suggesting that early-sprouting plants had lower rates 
of herbivory.

Discussion
The results of this study showed that trees of Copaifera 

langsdorffii are deciduous and exhibit wide variation in 
leaf sprouting time. However, previous studies conducted 
in semideciduous forest suggest that C. langsdorffii is 
semideciduous, and leaf production by individuals is highly 
synchronized (Pedroni et al. 2002 and references). Climate, 
especially water availability, can influence the intensity and 
duration of vegetative phenophases of plant populations 
(Silveira et al. 2013). Thus, it is probable that plants of C. 
langsdorffii adjust their phenological behavior according to 
environmental conditions and this phenotypic plasticity 
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Figure 1. Variation in sprouting time of Copaifera langsdorffii trees: (a) specific date of sprouting for reproductive (n = 38) and non-
reproductive (n = 55) plants (right axis shows the daily precipitation during 12 moths, indicating that plant sprouting occurs prior to 
the rainy season); and (b) variation in sprouting time (mean ± SE) between reproductive and on-reproductive plants.

Table 1. Summary of minimal adequate models showing the effects of variation in sprouting time and phenological group on 
vegetative traits (branch growth, leaf biomass, total biomass and leaflets per branch) and the effects of variation in sprouting time 
on leaf herbivory of Copaifera langsdorffii.

Response variables Explicative variables Deviance Df Residual deviance F-values P-values

Branch growth Sprouting time 2.333 64 40.711 3.894 0.052

Phenological group 2.964 63 37.748 4.946 0.029

Leaf biomass Sprouting time 37.232 64 367.78 6.684 0.012

Total biomass Phenological group 65.891 64 804.23 5.243 0.025

Leaflets per branch Sprouting time 10800 64 100207 6.897 0.010

Leaf herbivory Sprouting time 0.273 64 2.244 7.808 0.006

could contribute to a broader niche breadth, thereby 
explaining the success of C. langsdorffii over a wide range 
of different habitats (see Souza & Fagundes 2014).

The transition from a vegetative to a flowering stage in 
perennial plants is regulated by a complex combination of 
environmental and internal plant signals. Environmental 
cues include seasonal changes in photoperiod, vernalization, 
light intensity and spectral quality, and nutrient or water 
availability (Fenner 1998; Hanke et al. 2007). Furthermore, 
endogenous signals, such as repression and expression of 
genes associated with variation in hormone levels, influence 
flowering display (Huijser & Schmid 2011). Generally, 
perennial plants must accumulate resources during their 
vegetative growth to invest in reproductive events, and the 
onset of flowering can be inhibited in the absence of an 
ideal quantity and quality of resources (Saulnier & Reekie 
1995; Canto et al. 2004).

Temporal variation in sprouting time can affect resource 
allocation because early-sprouting plants can accumulate 
more resources during an extended period of vegetative 
growth (Huijser & Schmid 2011). Hence, we would expect 
early-sprouting trees of C. langsdorffii to have a higher 

probability of entering the reproductive phase. However, this 
hypothesis was refuted in our study because the variation 
in sprouting time did not differ among reproductive and 
non-reproductive plants. Moreover, as observed by Costa 
et al. (2016), flowering plants showed greater vegetative 
growth in comparison to no flowering plants. Because the 
study plants are located in a very homogenous environment, 
and the sprouting time did not differ between flowering and 
non-flowering plants, it is probable that resource acquisition 
and accumulation in previous years may be important in 
determining the probability that plants display reproductive 
events (Costa et al. 2016; Obeso 2002; Sandvik & Eide 2009).

The results of this study also showed that earlier 
sprouting plants had greater branch growth while later 
sprouting plants had a higher number of leaflets per branch. 
In this case it is reasonable to think that branches that 
had greater internode size also had a smaller number of 
ramifications and, consequently, a lower number of leaflets. 
However, several authors (Baldwin et al. 1998; Mole 1994; 
Costa et al. 2016) have called attention to the interpretation 
of plant resource reallocation because the understanding of 
all the metabolic routes of plants is still limited.
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Figure 2. Effects of variation in sprouting time and phenological groups on (a) branch growth, (b) dry leaf biomass, (c) total dry 
biomass and (d) number of leaflets per branch of Copaifera langsdorffii trees.

Figure 3. Relationship between relative variation in sprouting time and percentage of foliar herbivory in trees of Copaifera langsdorffii.
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Perhaps the most common result found in the literature 
concerning interactions between phytophagous insects and 
plant phenology is that herbivore attack is concentrated on 
new leaves (Forister 2005), because new leaves are richer in 
water and nitrogen while older leaves are sclerophilous and 
accumulate more allelochemicals (Coyle et al. 2010; Liu et 
al. 2010). Another common pattern concerning herbivore-
plant interactions is that early-sprouting plants are more 
heavily attacked by herbivores than later-sprouting plants 
(Fenner 1998; Fox et al. 1997), because early-sprouting 
plants provide more resources for herbivore development for 
a longer period of time (Forister 2005; Yukawa & Akimoto 
2006). However, some studies also have related greater 
herbivory to later sprouting plants. For example, Sloan 
(2007) showed that herbivory by Pseudosphinx tetrio on 
Plumeria alba occurred predominantly during the wet season, 
when plant leaf production is in decline. This author also 
suggests that the strategy of sprouting before the wet season 
serves as a mechanism to avoid herbivores because insect 
herbivores are more abundant in the wet season.

The results of this study showed that later-sprouting 
plants had greater leaf herbivory, but no relation was 
observed between leaf phenol concentrations and herbivory 
or plant sprouting time. Therefore, our results did not 
support the prediction that early-sprouting plants would 
produce greater amounts of secondary compounds and 
would be subject to lower levels of herbivory. At this point 
two questions must be considered. First, while sclerophylly 
and phenolic compounds dose-dependent are strategies 
used by plants with long-lived leaves for avoid herbivores, 
deciduous plants can afford the replacement of damaged 
short-lived leaves (Neves et al. 2010). Thus, because trees 
of C. langsdorffii are highly caduceus annually, it would 
be unlikely that plants would invest in dose-dependent 
compounds to inhibit herbivore attack. Secondly, leaf 
production by trees of C. langsdorffii is concentrated to 
the period prior to the rainy season, whereas herbivorous 
insects reach their greatest abundance during the rainy 
season (Leal et al. 2015). Therefore, earlier sprouting seems 
to be a phenological strategy used by plants of C. langsdorffii 
to escape herbivorous insect attacks.

Finally, our study on C. langsdorffii showed that 
differences in sprouting time do not only affect vegetative 
development of plants, but may also alter interactions with 
other trophic levels. Here it is important to point out that 
our study took place in a single seasonal environment, 
and the study species has a wide geographic distribution, 
occurring across several habitats such as Atlantic Forest, 
Caatinga and Cerrado (Souza & Fagundes 2016). Moreover, 
because plant phenology can be affected by habitat traits, 
understanding the interactions among environmental traits, 
plant phenology, and their effects on other trophic levels 
is particularly important for predicting how global climate 
change can affect the organization of natural communities 
(Parachnowitsch et al. 2012).
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