Diploflavone, a New Flavonoid from Diplotropis ferruginea Benth. (Fabaceae)

Jackson Roberto G. S. Almeida^{a,b}, José Maria Barbosa-Filho^{*,a}, Analúcia G. S. Cabral^a, Maria de Fátima Agra^a, Emidio V. Leitão da-Cunha^{a,c}, Marcelo S. da Silva^a, Silene C. do Nascimento^d and Raimundo Braz-Filho^e

^aLaboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, CP 5009, 58051-970 João Pessoa - PB, Brazil

^bUniversidade Federal do Vale do São Francisco, CP 252, 56306-410 Petrolina - PE, Brazil

^cDepartamento de Farmácia, CCBS, Universidade Estadual da Paraíba, 58100-000 Campina Grande - PB, Brazil

^dDepartamento de Antibióticos, Universidade Federal de Pernambuco, 50740-521 Recife - PE, Brazil

^eSetor de Química de Produtos Naturais- LCQUI-CCT - Universidade Estadual do Norte Fluminense, 28015-620 Campos, Rio de Janeiro - RJ, Brazil

A análise química de *Diplotropis ferruginea* Benth. resultou no isolamento da 3-metoxiflavona, 3-metoxi-6-O-prenil-6",6"-dimetilcromeno-(7,8,2",3")-flavona, à qual foi dado o nome trivial de diploflavona (1), bem como da 3,6-dimetoxi-6",6"-dimetilcromeno-(7,8,2",3")-flavona (2). A estrutura do novo composto foi estabelecida por análises espectrais. A atividade citotóxica dos compostos isolados foi testada contra células NCI-H292 (carcinoma de pulmão), HEp-2 (carcinoma de laringe) e KB (carcinoma epidermóide oral). As células HEp-2 foram as mais afetadas pelas substâncias testadas.

The chemical examination of *Diplotropis ferruginea* Benth. resulted in the isolation of a new 3-methoxyflavone, 3-methoxy-6-*O*-prenyl-6",6"-dimethylchromene-(7,8,2",3")-flavone, to which was given the trivial name diploflavone (1); as well as the known 3,6-dimethoxy-6",6"-dimethylchromene-(7,8,2",3")-flavone (2). The structure of the new compound was established by spectral analyses. Cytotoxic activity of the isolated compounds was tested against the cells NCI-H292 (lung carcinoma), HEp-2 (larynx carcinoma) and KB (oral epidermoid carcinoma). The cells HEp-2 were the most affected by the substances tested.

Keywords: Diplotropis ferruginea, Fabaceae, flavonoids, cytotoxicity

Introduction

The Fabaceae have a cosmopolitan distribution, consisting of *ca* 700 genera and more than 17000 species.¹ The genus, *Diplotropis* consists of approximately 22 species, including, *Diplotropis ferruginea* Benth. Investigations of only two species have been reported in the literature: the isolation of quinolizidine alkaloids from *Diplotropis martiusii*,² and flavonoids from *Diplotropis purpurea*.³

Diplotropis ferruginea is a tree native to Northeastern Brazil, where it is popularly known as "sucupira". It is used in folk medicine for the treatment of rheumatism, arthritis and diabetes.⁴ Recently, a chemical investigation of this species resulted in the isolation of lupeol, ethyl 2-hydroxy-4-methoxy-6-propyl benzoate⁵ and of the flavonoid 3,4,5,8-tetramethoxy-6,7,2",3"-furanoflavan.⁶ Spasmolytic activity was reported for the crude EtOH extract of this plant.⁷

This paper describes the isolation of two more flavonoids, whose structures were established by spectroscopic techniques, mainly EIMS and 1D and 2D NMR.

Experimental

General experimental procedures

Melting points were determined on a REICHERT, model R3279 "Kofler" apparatus, and are uncorrected. IR spectra were obtained in KBr on a BOMEM model MB 100

^{*} e-mail: jbarbosa@ltf.ufpb.br

spectrophotometer. ¹H and ¹³C NMR spectra were run on a Jeol Eclipse+ 400 spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C, using CDCl, as solvent (approximately 10 mg of sample were dissolved in 0.5 mL of solvent and transferred into a 5 mm NMR tube) and solvent signals were used as internal reference for the chemical shifts δ_{μ} 7.26 (CHCl₃) and δ_{c} 77.00 (CDCl₃). The one-dimensional (1D) ¹H and ¹³C NMR spectra were acquired under standard conditions (5 mm multinuclear probe). The two-dimensional (2D) experiments were acquired and processed with the Delta software provided by Jeol. Standard pulse sequences were used for all experiments. 1H-1H-COSY spectra were obtained with X-points 512/Y-points 256, X-resolution 11.7 Hz/Yresolution 23.4 Hz, X-acquisition time 85.4 ms/Y-acquisition time 42.7 ms, pulse 90°, relaxation delay 1.5 s, zerofill: 4. For homonuclear 2D 1H-1H-NOESY experiments were used mixing time 0.5 s, X-points 512/Y-points 256, X-resolution 11. 7Hz/Y-resolution 23.4 Hz, X-acquisition time 85.4 ms/ Y-acquisition time 42.7 ms, pulse 90° relaxation delay 1.5 s, zerofill: 4. Two-dimensional inverse hydrogen detected heteronuclear shift correlation ${}^{1}\text{H}{}^{-13}\text{C}{}^{-}\text{HMQC}{}^{-1}J_{CH}$ spectra were obtained with ${}^{1}J_{CH} = 140$ Hz, X-points 1024/Y-points 128, X-resolution 5.86 Hz/Y-resolution 196 Hz, X-pulse 90% Y-pulse 90°, X-acquisition time 0.17 s/Y-acquisition time 5.09 ms, pulse 90°, relaxation delay 2.0 s, gradient 1/3 1 ms square, zerofill: 4. Two-dimensional inverse hydrogen detected heteronuclear long-range correlation ¹H-¹³C-HMBC-ⁿ J_{CH} (n=2 and 3) experiments were carried out by using ${}^{n}J_{CH} = J$ constant 140 Hz/J long range 8 Hz, X-points 1024/Y-points 128, X-resolution 5.86 Hz/Y-resolution 196 Hz, X-pulse 90°/Y-pulse 90°, X-acquisition time 0.17 s/Yacquisition time 5.09 ms, pulse 90°, relaxation delay 2.0 s, gradient 1/3 1 ms square, zerofill: 4. EIMS were measured at 70 eV on a GC/MS System Shimadzu QP-5050.

Plant material

The stem bark of *Diplotropis ferruginea* was collected in the municipality of Caraúbas, State of Rio Grande do Norte, Northeastern Brazil in May 2002. Botanic material was identified by Prof. Maria de Fátima Agra, of the Laboratório de Tecnologia Farmacêutica. A voucher specimen (AGRA & D. ALMEIDA 5559) is deposited at the Herbario Prof. Lauro Pires Xavier (JPB), of the Universidade Federal da Paraíba.

Extraction and isolation

The dried and powdered stem bark of *D. ferruginea* (3 kg) was exhaustively extracted with 95% EtOH at room temperature. The extract was concentrated under vacuum

yielding 95 g of the crude product. This was suspended in a MeOH:H₂O (3:7 v/v) mixture and partitioned with hexane, CHCl₃ and EtOAc. The hexane fraction was then subjected to silica gel column chromatography and eluted with hexane, CHCl₃ and MeOH in an increasing polarity gradient to give 152 fractions. The fractions were monitored by TLC and classified into 25 groups. Fraction 97-102 was purified by preparative TLC over silica gel using CHCl₃:MeOH (9:1) to afford flavonoid **1** (61 mg) and the fraction 89-96 was purified in the same way using hexane:EtOAc (2:1) to afford flavonoid **2** (123 mg).

Biological assay

The cytotoxic activity assays were based on the methylazoetetrazolium (MTT) method or the 3-(4,5dimethylazol-2-yl)-3,5-diphenyltetrazolium bromide method.8 For the evaluation of cytotoxity the cellular strain HEp2 (larynx carcinoma) NCIH-292 (lung carcinoma) KB (mouth carcinoma)⁹ with proven viability were used. The cells were grown in MEM- Minimal Essential Medium¹⁰ with 10% bovine fetal serum containing 1% antibiotics solution (penicillin 1000 UI mL⁻¹ + streptomycin 250 mg mL⁻¹) and 1% glutamine (200 μ M). A cellular suspension of 5×10^4 cells mL⁻¹ was used and distributed in plates of 96 wells. The test samples of 0.15 mL were added into each well. The plates were incubated for 72 h at 37 °C in a humid atmosphere enriched with 5% CO2. After incubation 15 mL MTT in phosphate buffered saline (BPS) solution at (5 mg mL⁻¹) was added into each well. After 2h the culture medium was removed and 100 µL of DMSO were added in each well for quantitation of blue formazan. The readings were performed with the aid of a Multskan ELX 800 cell reader (Bio-Tec Instruments - USA) at 540 nm.

3-Methoxy-6-O-prenyl-6",6"-dimethylchromene-(7,8,2",3")-flavone or diploflavone, (1)

It was obtained as amorphous powder, mp 163-165 °C. IR (KBr) ν_{max} /cm⁻¹: 3062, 2971, 2847, 1620, 1404, 1379, 1300, 1100. EI-MS: *m/z* (%): 418 (8, [M⁺]), 364 (19), 349 (100, [M⁺ - prenyl]), 335 (38) (Calc. for C₂₆H₂₆O₅). ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) (Table 1).

3,6-Dimethoxy-6",6"-dimethylchromene-(7,8,2",3")flavone, (2)

It was obtained as amorphous powder, mp 203-204 °C. IR (KBr) ν_{max} /cm⁻¹: 2995, 2844, 1615, 1402, 1382, 1300, 1100. EI-MS: *m*/*z* (%): 364 (63, [M⁺]), 349 (100, $[M^+ - CH_3]$, 319 (4) (Calc. for $C_{22}H_{20}O_5$). ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₂, 100 MHz).

Results and Discussion

Flavonoid 1 was obtained as a colorless amorphous solid. Its molecular formula was deduced as $C_{26}H_{26}O_5$ (14 degrees of unsaturation), supported by the occurrence of the molecular ion at m/z 418 in the MS, in combination with ¹H and ¹³C-APT-NMR spectral data. The IR spectrum showed absorptions at 1620 cm⁻¹, attributed to an α - β unsaturated carbonyl group; 3062 cm⁻¹ attributed to unsaturated C-H and absorptions in the region 1379-1404 cm⁻¹, suggesting the presence of a gem-dimethyl group. ¹H NMR of 1 showed signals at $\delta_{\rm H}$ 8.07 (2H, br, d J = 7.7 Hz) and 7.56-7.46 (3H, m) which indicates the possibility of a mono-substituted ring B in a flavonoid. The presence of a 2,2-dimethylchromene moiety was indicated by the characteristic signals of its two vinyl hydrogens forming an AB system¹¹ at δ_{11} 5.74 (1H, d, J = 9.9 Hz) and 6.87 (1H, d, J = 9.9 Hz) and a signal at $\delta_{\rm H}$ 1.54 (6H, s) attributed to the two methyl groups. A signal at δ_{μ} 1.79 (6H, s) was also observed and signals at $\delta_{\rm H}$ 4.68 (1H, d, J = 6.2 Hz) and 5.53 (1H, t, J = 6.2 Hz), suggesting the presence of a prenyl group in the molecule. This suggestion is confirmed by the ¹³C-APT NMR spectra which shows signals at δ_{c} 18.25 and 25.72, for 2 methyl carbons and a methylene carbon at δ_c 66.29. The chemical shift of the methylene carbon in the ¹³C NMR indicates that the prenyl group is bound to an oxygen atom. The HMBC experiment showed the location of the O-prenyl group at C-6, due to the ${}^{3}J_{CH}$ correlation between the signal at δ_{H} 4.68 (prenyl's methylene hydrogens) with the signal at δ_c 146.06 (C-6). The analysis of all the spectral data for 1 led to the elucidation of its structure as 3-methoxy-6-O-prenyl-6",6"-dimethylchromene-(7,8,2",3")-flavone. This substance is described here for the first time and was given the trivial name diploflavone.

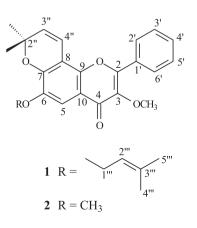


Figure 1. Flavonoids from Diplotropis ferruginea.

Flavonoid **2** was isolated as a colorless amorphous solid. Its molecular formula deduced as $C_{22}H_{20}O_5$ (13 degrees of unsaturation), was confirmed by the molecular ion at *m/z* 364 in the MS in combination with ¹H-NMR (1D and 2D ¹H-¹H-COSY) and ¹³C-APT-NMR spectral data. IR and ¹H and ¹³C-NMR spectra showed the similarity with substance **1**. The only difference between the two substances was the absence of the prenyl moiety in **2**, having a methoxy in the same position. The presence of the methoxy group was indicated by the signal at δ_H 3.97 (3H, s). The substance was thus characterized as the flavonoid 3,6-dimethoxy-6",6"-dimethylchromene-(7,8,2",3")-flavone (**2**), previously isolated from *Bowdichia virgilioides* and the NMR data are in accordance with the literature. ¹²

The 2D experiments HMQC and HMBC were used to confirm the ¹H and ¹³C chemical shifts of 1 (Table 1) and 2.¹²

Table 1. ¹H (400 MHz) and ¹³C (100 MHz) NMR data for **1** including results obtained by heteronuclear 2D shift-correlated HMQC and HMBC spectra, in CDCl₃ as solvent and TMS as internal reference. Chemical shifts in δ (ppm) and coupling constants (*J*, in parenthesis) in Hz*

Carbon	¹ H- ¹³ C-COSY- ¹ J _{CH}		¹ H- ¹³ C-COSY- ⁿ J _{CH}		
	$\delta_{_{ m C}}$	$\delta_{_{ m H}}^{_{ m CII}}$	${}^{2}J_{\rm CH}$	${}^{3}J_{\rm CH} e {}^{4}J_{\rm CH}$	
С					
2	154.31	-		H-2'/H-6'	
3	140.96	-		MeO-3	
4	174.21	-		H-5	
6	146.06	-		2H-1'"	
7	147.93	-		H-5; H-4"	
8	110.16	-	H-4"	H-3"	
9	146.15	-		H-5; H-4"	
10	117.19	-	H-5		
1'	131.29	-	H-2'/H-6'	H-3'/H-5'	
2"	77.91	-	3H-5"/3H-6"	H-4"	
3'"	137.78	-	3H-4'"/3H-5"	' 2H-1'"	
СН					
5	106.5	7.52 (s)			
2',6'	128.1	8.07 (br, d, 7.7))		
3',5'	128.44	7.56-7.46 (m)			
4'	131.24	7.56-7.46 (m)		H-2'/H-6'	
4"	115.32	6.87 (d, 9.9)			
3"	131.27	5.74 (d, 9.9)		3H-5"/3H-6"	
2'"	119.48	5.53 (t, 6.2)	2H-1'"	3H-4'"/3H-5'"	
CH ₂					
1'"	66.29	4.68 (d, 6.2)			
CH ₃					
MeO-3	60.02	3.89 (s)			
MeO-6	-	-	-	-	
5",6"	27.83	1.54 (s)		H-3"	
4'"	18.25	1.79 (s)		H-2""	
5'"	25.72	1.79 (s)		H-2'"	

* Homonuclear ¹H-¹H-COSY spectra were also used for these assignments. Chemical shifts of hydrogen atoms obtained from 1D ¹H NMR spectrum. Carbon atoms corresponding to C, CH, CH₂ and CH₄ deduced by comparative analysis of {¹H}- and APT-¹³C spectra.

Compound	Cell strain							
	KB		NCI-H - 292		HEp-2			
	Concentration (µg mL ⁻¹)	% Inhibition	Concentration (µg mL ⁻¹)	% Inhibition	Concentration (µg mL ⁻¹)	% Inhibition		
1	10.0	26.2	10.0	29.1	10.0	41.0		
	5.0	21.2	5.0	26.7	5.0	24.8		
	2.5	19.0	2.5	9.8	2.5	3.4		
	1.25	18.0	1.25	11.0	1.25	3.4		
2	10.5	18%	10.0	10.0	10.0	21.0		
	5.0	16%	5.0	9.2	5.0	17.9		
	2.5	15%	2.5	3.8	2.5	13.8		
	1.25	15%	1.25	3.8	1.25	8.8		

Table 2. Cytotoxic activity of 1 and 2 against the cells KB, NCI-H 292 and HEp-2

KB (oral epidermoid carcinoma), NCI-H - 292 (lung carcinoma), HEp-2 (larynx carcinoma).

The cytotoxic activity of cells NCI-H292 and KB were not affected by flavonoids **1** and **2**, however, cells HEp-2 were affected by diploflavone (**1**). At the concentration of $10 \,\mu g \, \text{mL}^{-1}$ it showed an inhibition of proliferation of 41% (Table 2).

Acknowledgements

The authors are grateful to the Instituto do Milênio do Semi-Árido (IMSEAR/CNPq), CAPES and FAPERJ by financial support. Sincere thanks are also due to NAPRALERT.

References

- Heywood, V. H.; *Flowering Plants of the World*, B. T. Batsford LTD: London, 1996, p.149.
- Kinghorn, A. D.; Balandrin, M. F.; Lin, L. J.; *Phytochemistry* 1982, 21, 2269.
- Braz-Filho, R.; Gottlieb, O. R.; Pinho, S. L. V.; Monte, F. J. Q.; Rocha, A. I.; *Phytochemistry* **1973**, *12*, 1184.

- Pio-Correia, M.; *Dicionário das Plantas Úteis do Brasil e das Exóticas Cultivadas*, Ministério da Agricultura: Brasil, 1984, p. 149.
- Almeida, J. R. G. S.; Cunha, E. V. L.; Silva, M. S.; Athayde-Filho, P. F.; Braz-Filho, R.; Barbosa-Filho, J. M.; *Rev. Bras. Farmacogn.* 2003, 13, Suppl. 2, 44.
- Almeida, J. R. G. S.; Cunha, E. V. L.; Silva, M. S.; Braz-Filho, R.; Marques, A. S.; Zheng, C.; Barbosa-Filho, J. M.; *Ann. Magn. Reson.* 2003, *1*, 33.
- Lima, J. T.; Claudino, F. S.; Cavalcante, F. A.; Almeida, J. R. G.
 S.; Barbosa-Filho, J. M.; Silva, B. A.; *Rev. Bras. Ci. Farm.* 2003, *39*, Suppl. 2, 158.
- Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbot, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R.; *Cancer Res.* **1988**, *48*, 589.
- 9. Eagle, H.; Proc. Soc. Exper. Biol. Med. 1955, 89, 362.
- 10. Eagle, H.; Science 1959, 130, 432.
- Campos, A. M.; Khac, D. D.; Fetizon, M.; *Phytochemistry* 1987, 26, 2819.
- Arriaga, A. M. C.; Gomes, G. A.; Braz-Filho, R.; *Fitoterapia* 2000, 71, 211.

Received: January 13, 2005 Published on the web: October 31, 2005