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Um método para determinação simultânea de ácido clavulânico (CA) e amoxicilina (AMO) 
foi desenvolvido utilizando a técnica de espectroscopia no infravermelho médio com transformada 
de Fourier acoplada ao acessório de reflexão total atenuada (ATR/FTIR). Utilizaram-se 27 e 
8 amostras para os conjuntos de calibração e previsão, respectivamente. Os modelos de calibração 
foram desenvolvidos utilizando os algoritmos por mínimos quadrados parciais (PLS), PLS por 
intervalo (iPLS), PLS por sinergismo (siPLS) e PLS por exclusão (biPLS). Os melhores modelos 
foram aqueles que utilizaram o algoritmo biPLS. Obtiveram-se erro padrão relativo de previsão 
(RSEP) de 3,8 e 5,1% para CA e AMO, respectivamente. Os resultados obtidos pela metodologia 
proposta foram comparados com os obtidos por cromatografia líquida de alta eficiência (HPLC) e 
nenhuma diferença significativa foi observada. O método proposto utilizando ATR/FTIR associado 
a métodos de análise multivariados foi satisfatório para determinação de CA e AMO em produtos 
farmacêuticos.

A method for simultaneous determination of clavulanic acid (CA) and amoxicillin (AMO) 
was developed using Fourier transform mid infrared technique coupled with attenuated total 
reflectance (ATR/FTIR) accessory. 27 samples were used as calibration set and 8 samples were 
used for prediction set. Calibration models were developed using partial least squares (PLS), 
interval PLS (iPLS), synergy PLS (siPLS) and backward PLS (biPLS). Multiplicative scatter 
correction and the mean centering were used and produced the best models. Relative standard error 
of prediction (RSEP) of 3.8% for CA and 5.1% for AMO were obtained using biPLS algorithm for 
ATR/FTIR data. Results obtained by the proposed methodology were compared with those using 
high performance liquid chromatography (HPLC) and no significant differences were obtained. 
The proposed method using ATR/FTIR combined to multivariate analysis methods was suitable 
for the simultaneous determination of CA and AMO in commercial pharmaceutical products.

Keywords: clavulanic acid, amoxicillin, ATR/FTIR, pharmaceutical products, backward 
interval PLS

Introduction

Amoxicillin ((2S, 5R, 6R)-6-[(R)-(−)-2-amino-
2‑(p-hydroxyphenyl) acetamido]-3,3-dimethyl-7-oxo-
4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid 
trihydrate, C16H19N3O5S•3H2O, MW 419.46) is an analog 

of ampicillin, derived from the basic penicillin nucleus, 
6-aminopenicillanic acid. Clavulanic acid (potassium 
(Z)-(2R,5R)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-
1‑azabicyclo[3.2.0]-heptane-2-carboxylate, C8H8KNO5) 
is originally produced by fermentation of Steptomyces 
clavuligerus. It inactivates a wide variety of b-lactamases 
by blocking the active sites of theses enzymes. Amoxicillin 
is commonly prescribed in association with clavulanic acid 
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for the treatment of infection caused by bacteria that are 
resistant to amoxicillin alone.1 The main analytical methods 
that have been reported for the determination of these two 
drugs in biological fluids are high performance liquid 
chromatography (HPLC),2-5 capillary electrophoresis6-9 
and luminescence spectroscopy.10 For the pharmaceutical 
preparations of CA and AMO contents, the pharmacopoeias 
use HPLC technique as official assay for the procedure 
of quality control.11 However, this technique can present 
some drawbacks related to the throughput as consumption 
and generation of chemical residues and excessive time 
for analysis.

In this way, alternative techniques for drugs quality 
control that use measurements in real time, minimum 
sample preparation and free-solvent methods have been 
proposed in last years.12-17 The use of Fourier transform 
infrared spectroscopy can supply with these characteristics, 
mainly when associated to reflection techniques, such as 
attenuated reflection. Attenuated total reflectance/Fourier 
transform infrared spectroscopy (ATR/FTIR) has been 
suggested as a sensible technique to analyze pharmaceutical 
formulations such as solids, semi-solids and liquids.18

Infrared spectroscopy combined with multivariate 
analysis allows the improvement of the quality of the 
results obtained for complex mixtures by overcoming 
problems related to overlapped signals. Partial least-squares 
(PLS) regression is the most popular algorithm used for 
multivariate calibration for quantitative analysis and allows 
minimizing problems such as the loss of resolution in the 
analytic signal.19,20 Generally, PLS performs the calibration 
using information from the full spectrum to build a 
regression model to determine the property of interest, 
called full-spectrum method. However, recent applications 
have been proposed using methods for selection spectral 
region with suitable algorithms to improve the performance 
of PLS regression.21-25 In the case of FTIR, specific regions 
are selected and there are production of models with lower 
prediction error. In practice, these methods are based on 
the identification of a subset of complete data that will 
produce the lowest prediction error. An optimized region 
can be found by reducing or increasing or by subtracting 
or adding new variables.21

Interval PLS model (iPLS) is based on the division of the 
spectrum into smaller intervals followed by the construction 
of a PLS regression model for each interval. The root mean 
square error of cross-validation (RMSECV) is calculated for 
each interval and compared with the value obtained for the 
full spectrum model. Regions that present the smallest value 
of RMSECV is then chosen.26 One of the main advantages 
of this method is the possibility of representing a local 
regression model in a graphical display, focusing on a choice 

of better intervals allowing a comparison among interval 
models and the full spectrum model.21

Synergic interval PLS model (siPLS) is an evolution of 
the iPLS algorithm described by Munck et al.27 Synergic 
iPLS algorithm also splits the spectrum in a number of 
intervals (variables-wise) and develops PLS regression 
models for all possible combinations of two, three or four 
intervals.

For backward interval PLS (biPLS) algorithm, as well 
as for iPLS algorithm, the spectrum is split into a given 
number of intervals.28 Finally, PLS models are calculated 
with each interval left out. The first left out interval is the 
one that when left out gives the poorest performing model 
with respect to RMSECV, i.e. each time excluding the 
interval whose removal results in the lowest RMSECV. 
The procedure is continued until the last interval or can be 
stopped when the number of retained wavelengths is lower 
than a predefined threshold.

In this study, the main objective was to investigate 
the feasibility of ATR/FTIR spectroscopy associated to 
iPLS, siPLS and biPLS algorithms to obtain regression 
models for simultaneous determination of CA and AMO 
in pharmaceutical formulations, as an alternative to official 
method (HPLC). Partial least square was employed to data 
modeling using full spectra information, while iPLS, siPLS 
and biPLS were used to select variable intervals. Results 
obtained by the proposed method were compared with those 
obtained by recommended procedures by pharmacopoeias.

Experimental

Materials and sample preparation 

Clavulanic acid standard (in lithium salt form) was 
acquired from United States Pharmacopoeia (USP), and 
amoxicillin certified reference material from Brazilian 
Pharmacopoeia. Methanol and monobasic sodium 
phosphate were HPLC grade and purchased from Merck 
(Darmstadt, Germany). Clavulanic acid (as potassium 
clavulanate) and amoxicillin trihydrate pharmaceutical 
grade were purchased from manipulation drugstore and 
used for the preparation of synthetic samples. A total 
of 16 formulations (synthetic samples) containing CA, 
AMO and excipients mixture (78% of microcrystalline 
cellulose, 20% of talc, 1% of colloidal silicon dioxide and 
1% of magnesium stearate) were prepared in laboratory.  
19  commercial tablet formulations from different 
laboratories were acquired in local drugstore. The 
concentration of these samples was previously determined 
by HPLC. Thus, samples were divided in calibration and 
prediction subsets (Table 1). Calibration set was constructed 
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with 12 synthetic samples and 15 commercial samples and 
prediction set was constructed with 4 synthetic samples and 
4 commercial samples. Synthetic and commercial samples 
were ground and mixed in a cryogenic mill Spex Certiprep 
(model 6750 Freezer Mill, Metuchen, EUA). A time period 
of 2 min was enough to mixing each samples, that was 
ground up to particle size less than 80 mm.

Spectra collection

Spectra were collected in the range from 4000 to 
650 cm-1 using a PerkinElmer Model Spectrum One FTIR 
spectrometer with deuterated triglycine sulfate (DTGS) 
detector and KBr beam splitter. This instrument is equipped 
with an attenuated total reflection (ATR) sampling universal 
accessory supplied with a top plate for ZnSe crystal. For 
the ATR spectrum acquisition, each sample was previously 
weighted before spectrum acquisition (about 25 ± 5 mg 
of powder sample) and placed onto the ATR crystal. 
Crystal was cleaned with acetone after acquisition of each 
spectrum. Spectra were obtained in triplicate with 16 scans, 
4 cm-1 resolution and normalized. Spectra of the CA and 
AMO were normalized with an ordinate limit of up to 1.0 
of absorbance using the tool available in the software of 
the spectrometer (Spectrum, 5.01 version, Perkin-Elmer, 
2003), and finally the medium spectrum was obtained.

Softwares

Hierarchical cluster analysis (HCA) algorithm from 
Pirouette® 3.11 software (http://www.infometrix.com 
EUA) was used to divide the samples set in calibration 
and prediction samples. Data were handled using 
Matlab® software 6.5 version (The Math Works, Natick, 
USA) using PLS multivariate calibration models from 
PLS Toolbox 2.0 version. The iToolbox for Matlab® 
(http://www.models.kvl.dk USA) was used to variable 
selections and develop multivariate models.26 For evaluation 
of the models obtained from iPLS, siPLS and biPLS 
algorithms, spectrum was divided in 10, 20, 30, 40 and 
50 intervals. Multiplicative scatter correction (MSC) 

pretreatment and autoscalling (A) and mean centering (MC) 
preprocessing were applied. F test (95% confidence level) 
was used to compare the prediction errors of constructed 
models. Comparison between results obtained by the 
proposed methodology and reference methodology was 
performed using t-test paired (95% confidence level).

HPLC reference method

The reference method used for the determination of 
CA and AMO in pharmaceutical formulations was HPLC 
that is recommended by United States Pharmacopoeia, 
USP 31.11 High performance liquid chromatography system 
used was a Agilent 1100 Series system equipped with pump 
(model G1311A), detector (model G133A ALS) and loop 
sampling of 20 mL. Detector was set at 220 nm and peak 
areas were integrated automatically using a Chemstation® 
software program (Agilent Technologies Inc. CA, USA). 
Separation was carried out at ambient temperature using 
a Zorbax® SBC-18 column (250 mm × 4.5 mm i.d., 5 mm 
particle size) and guard cartridge system was used to 
safeguard the analytical column. Mobile phase was a 
mixture of methanol:sodium phosphate buffer (5:95 v/v). 
Commercial and synthetic samples were dissolved in water 
with the aid of mechanical stirring, transferred to a suitable 
volumetric flask in order to obtain a solution containing 
about 0.5 mg mL-1 of amoxicillin in agreement with 
USP  31. All these determinations were carried out in 
triplicate for synthetic and commercial samples.

Chemometric models

PLS algorithm was applied to ATR/FTIR data to built 
calibration models for CA and AMO quantification in 
pharmaceutical preparation. For variable selection iPLS, 
siPLS and biPLS algorithms were used. Interval PLS 
models were built with spectra division into 10, 20, 30, 40 
and 50 intervals. Synergic interval PLS and biPLS models 
were also built with spectra division into 10, 20, 30, 40 and 
50 intervals and combinations of 2 and 3 intervals were 
used for siPLS models. 

Root mean square error was calculated according to the 
following equation 1:20

	  (1)

where ŷ is the prediction value for test set sample i,  yi the 
reference value for test set sample i and n is the number of 
observation in the test set (for cross-validation was used 
n – 1). 

Table 1. Samples used in the calibration and prediction set

Set SNa Minimum Maximum

Calibration
AC / (mg g-1)
AMO / (mg g-1)

27
69.4
375.7

185.3
737.2

Prediction
AC / (mg g-1)
AMO / (mg g-1)

8
80.5
387.5

167.6
686.1

aSN: number of samples.
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Root mean square error of cross-validation (RMSECV)29 
was used to select the number of latent variables and 
variable selections. Root mean square error of calibration 
(RMSEC) was employed to evaluate the error of the proposed 
calibration models and root mean square error of prediction 
(RMSEP) was used to evaluate the prediction ability of 
different PLS models and used to select the best model.

The performance of the calibration models was 
calculated using relative standard error of prediction 
(RSEP), using the following equation 2:30-32

	  (2)

where ŷi is the prediction value for test set sample i, yi the 
reference value for test set sample i.

Correlation coefficients between the prediction and 
measured values were calculated for the calibration set, 
which were calculated as equation 3, where –yi is the mean 
of the reference measurement results for all samples in the 
training set.22

	  (3)

Systematic error (bias) and standard deviation of 
validation (SDV) were calculated from equations 3 and 
4, respectively:

	 (4)

	 (5)

Thereafter, the t-test was applied, according to the 
following equation 6:33

	 (6)

Systematic error was considered not significant 
for t systematic (tsist) values lower than critical value 
(tcrit)a = 0.5% and n-1 degree of freedom.

Accuracy was calculated for the proposed ATR/FTIR 
method and reports the agreement between the reference 

value obtained by HPLC and the prediction value obtained 
by the calibration model (in this case evaluated by RMSEP 
value).

Results obtained by the proposed method were 
compared with reference method (using HPLC) by t-test 
paired (a = 0.5%). The results obtained by ATR/FTIR were 
also in agreement to the interval allowed by United States 
Pharmacopoeia (90-120% declared value).11

Results and Discussion

Treatment data

PLS models were obtained using full spectrum and 
MSC pre-treatment, autoscalling (A) and mean center 
data (MC) preprocessing. MSC pre-treatment showed the 
lower RMSEP values and better correlation coefficient. 
No significant difference was observed for RMSEP values 
when A and MC were used. MC preprocessing combined 
with MSC pretreatment were chosen because showed the 
lower RMSEP value.

Results of PLS models

Initially, models were built using ATR/FTIR full-
spectrum data. For PLS algorithm, the number of latent 
variables is a critical parameter in calibration model. The 
optimum number of latent variables is determined by the 
lowest root mean square error cross-validation (RMSECV). 
The full-spectrum PLS models that showed the lowest 
RMSECV used eight and seven latent variables for CA 
and AMO, respectively. These models showed RMSEP 
of 18.05 and 39.60 mg g-1 for CA and AMO, respectively 
(Tables 2 and 3).

Results of clavulanic acid iPLS models

Spectral interval selection was first carried out by iPLS. 
Spectra were split into smaller equidistant regions and 
models were developed for each subinterval. The RMSECV 
values obtained for each subinterval were compared with 
full-spectrum RMSECV value.26 Interval number 19 
showed the minor RMSECV values when compared with 
the others 19 intervals.

In Table 2, it is possible to compare the prediction 
performance of all models obtained for CA using ATR. Root 
mean square error of the prediction value obtained using 
iPLS algorithm did not show significant difference when 
compared with PLS full-spectrum (F test, 95% confidence 
level). The best iPLS model for CA determination used the 
interval number 19 (spectra divided in 20 intervals), 3 latent 
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Table 2. Statistical results for the CA better calibration models and CA full-spectrum PLS model. The best models iPLS, siPLs and biPLS are showed in bold

Model VNa Intervals LVsb Rcal RMSEP / (mg g-1)

PLS 3351 full 8 0.980 18.05

iPLS10 335 9 3 0.915 24.58

iPLS20 168 19 3 0.929 11.05

iPLS30 112 30 5 0.975 21.86

iPLS40 84 40 6 0.978 20.94

iPLS50 66 43 2 0.900 18.76

si2PLS10 670 4, 10 5 0.974 13.33

si3PLS10 1005 3, 4, 7 6 0.961 35.97

si2PLS20 336 2 , 20 7 0.990 23.56

si3PLS20 504 2, 9, 20 9 0.992 25.20

si2PLS30 224 3, 30 7 0.993 27.94

si3PLS30 336 6, 10, 21 5 0.979 34.34

si2PLS40 168 13, 29 4 0.965 12.21

si3PLS40 252 4, 39, 40 7 0.993 22.67

si2PLS50 132 17, 44 5 0.958 17.58

biPLS10 1675 2, 4, 5, 6, 7 6 0.967 29.03

biPLS20 671 2, 7, 9, 18 11 0.990 24.90

biPLS30 446 10, 21, 23, 27 8 0.967 5.09

biPLS40 503 6, 13, 18, 19, 28, 36 8 0.980 29.39

biPLS50 469 5, 6, 8, 17, 23, 35, 45 7 0.988 23.50
aVN: total variable numbers; bLV: latent variables.

Table 3. Statistical results for the AMO better calibration models and AMO full-spectrum PLS model. The best models iPLS, siPLs and biPLS are showed 
in bold

Model VNa Intervals LVsb Rcal RMSEP / (mg g-1)

PLS 3351 full 7 0.967 39.60

iPLS10 335 9 3 0.897 49.98

iPLS20 168 16 4 0.919 57.78

iPLS30 112 26 5 0.909 55.91

iPLS40 84 31 5 0.932 49.16

iPLS50 66 41 4 0.824 50.58

s2iPLS10 670 4, 10 6 0.954 36.62

s3iPLS10 1005 3, 4, 9 4 0.927 43.16

s2iPLS20 336 7, 11 8 0.997 83.60

s3iPLS20 504 7, 8, 11 7 0.992 74.87

s2iPLS30 224 11, 26 7 0.966 35.14

s3iPLS30 336 10, 11, 16 10 0.999 79.79

s2iPLS40 168 22, 31 10 0.995 54.56

s3iPLS40 252 21, 22, 31 12 0.999 54.14

s2iPLS50 132 12, 43 8 0.968 55.69

biPLS10 1005 3, 4, 9 4 0.927 43.16

biPLS20 503 4, 7, 17 4 0.938 44.57

biPLS30 557 1, 21, 23, 25, 26 10 0.985 33.86

biPLS40 418 22, 28, 31, 34, 38 8 0.982 38.28

biPLS50 268 12, 35, 38, 42 8 0.970 27.22
aVN: total variable numbers; bLV: latent variables.

variables, 168 variable numbers and showed RMSEP equal 
to 11.05 mg g-1. Therefore, iPLS models can reduce noise 
by selecting specific spectral regions. However, useful 
spectral information can be lost.

Results of clavulanic acid siPLS model

The operation of synergy interval PLS algorithm was 
similar to the one used for iPLS. First, spectra were split into 
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a number of intervals (variable-wise) and PLS regression 
model for all possible combinations of two and three were 
obtained. Root mean square error cross-validation was then 
calculated for each combination of intervals. Combination 
of intervals with the lowest RMSECV was chosen and 
compared with full-spectrum RMSECV values.26 Table 2 
shows the statistical results for CA obtained using siPLS. 
The best models using siPLS algorithm were those that 
divided the spectra in 10, 40 and 50 intervals and used 
combinations of 2 and 3 intervals. The lower RMSEP value 
for siPLS was obtained when the spectra were split in 40 
intervals and the interval number 13 and 29 were combined 
(Table 2 in bold). Comparison between RMSEP value 
of the best siPLS model and PLS full-spectrum RMSEP 
value did not show significant difference (F test, 95% 
confidence level). Then, siPLS model was not suitable for 
CA determination in pharmaceutical formulations because 
did not show good prediction ability.

Results of clavulanic acid biPLS models

Backward interval PLS algorithm used in this work 
was previously developed by Leardi et al.28 As in the 
iPLS model, the spectra were split in a selected number of 
intervals. However, PLS models are calculated with each 
interval left out, i.e. if one chooses 30 intervals then each 
model is based on 29 intervals, leaving out one interval at 
a time. The first left out interval is the one that when left 
out gives the poorest performing model with respect to 
RMSECV. This procedure was continued until one interval 
remains. Table 2 shows the statistical results for best CA 
models using biPLS (Table 2 in bold). It can be observed 
that the best biPLS model was that which divided the 
spectrum in 30 intervals and it selected the interval numbers 
10, 21, 23 and 27 (Figure 1). This model showed equivalent 
correlation coefficient, RMSEP three times lower and 
reduction of 87% of the variable numbers when compared 
with PLS full-spectrum model. Backward interval PLS 
model showed results with good correlation between 
reference and prediction values as shown in Figure  2. 
The selected intervals included the regions of 2890 to 
3002 cm-1 (interval 10) that corresponds to CH2 symmetric 
stretching, 1658 to 1770 cm-1 (interval 21) that corresponds 
to C=C stretching, 1434 to 1546 cm-1 (interval  23) that 
corresponds to =C−H out-of-plane bending of vibration 
(C=C) and 986 to 1098 cm-1 that corresponds to =C−H 
in-plane bending of vibration (C=C) (interval 27).34 
These groups are constituents of CA chemical structure. 
In a general way, the elimination of intervals that did not 
present correlation with CA chemical structure allowed the 
reduction of RMSEP values. The comparison between the 

results obtained for CA using the best biPLS calibration 
model and results obtained by reference method are shown 
in Table 4. Backward interval PLS model developed using 
intervals 10, 21, 23 and 27 resulted in low relative standard 
error of prediction (RSEP = 3.8%), suggesting that the used 
method is accurate. The systematic error provided by model 
was not significant (bias = 0.5176 and tsist < tcrit) due to the 
non-tendency for the prediction errors. Backward interval 
PLS model was the most suitable for CA determination 
in pharmaceutical formulations because showed better 
prediction ability (lower RMSEP value).

Results of amoxicillin iPLS models 

In the same way as for the CA determination, the models 
for AMO were obtained using iPLS algorithm. In Table 3, 
it is possible to compare the prediction performance of 
all models obtained for AMO using ATR. The best iPLS 
model was that used spectra divided in 30 intervals, 5 latent 
variables and selected the interval number 26 (Table  3 
in bold). Root mean square error of prediction values 
obtained for iPLS models and PLS full-spectrum model 

Figure 1. Spectral region selected by biPLS algorithm for the 
determination of CA.

Figure 2. Values obtained by reference method versus values obtained 
by biPLS model for the CA determination using intervals 10, 21, 23 and 
27, and 8 latent variables.
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were compared and significant difference was not obtained 
(F test, 95% confidence level). It is possible because 
the information was spread on the whole spectral range 
and a variable selection per interval could automatically 
reduce the information and induce an increase of RMSEP 
compared with PLS full-spectrum model.24

Results of amoxicillin siPLS models 

For determination of AMO in pharmaceutical 
formulation, siPLS algorithm was also used. Table 3 
shows the statistical results for AMO obtained with use of 
siPLS algorithm. The best models using siPLS algorithm 
were that divided the spectra in 10 and 30 intervals using 
combinations of 2 intervals (Table 3 in bold). The lower 
RMSEP was obtained when the spectra were split in 
30 intervals and the interval numbers 11 and 26 were 
combined. However, significant difference was not obtained 
when compared with PLS full-spectrum RMSEP value 
(F test, 95% confidence level).

Results of amoxicillin biPLS models

In Table 3, it is possible to observe the statistical results for 
best models obtained using biPLS algorithm (Table 3 in bold). 
The best biPLS model was that which divided spectra in 50 
intervals and used interval numbers 12, 35, 38 and 42 (Figure 3).  
It showed significant reduction of RMSEP (F test, 95% 
confidence level) and used about 92% less variables when 
compared with PLS full-spectrum model. This biPLS model 
showed results with good correlation between reference and 
prediction values (correlation coefficient of 0.970) as shown 
in Figure 4. The selected intervals included the regions of 
3197 to 3254 cm-1 (interval 12) that corresponds to O–H 
stretching of the phenol, 1656 to 1723 cm-1 (interval 35) 
that corresponds to NH2 in-plane bending of vibration, 1455 
to 1522 cm-1 (interval 38) that corresponds to bending of 

vibration N−H of the secondary amine or C=C stretching 
of the aromatic and 1187 to 1254 cm-1 that corresponds to 
C−N stretching of the primary amine (interval 42).34 All 
these groups are present in the AMO chemical structure. 
In a general way, the elimination of intervals that do not 
contain relevant information of chemical structure reduced 
RMSEP values. Comparison between results obtained using 
the best biPLS model and results obtained by reference 
method are shown in Table 4. Backward interval PLS model 

Table 4. Results obtained for the prediction samples using biPLS algorithm (mg g-1)

Samples
Clavulanic acid Amoxicillin

HPLC method / (mg g-1) ATR/FTIR method / (mg g-1) HPLC method / (mg g-1) ATR/FTIR method / (mg g-1)

1a 89.02 91.05 520.97 552.74

2a 80.45 87.20 509.27 496.52

3a 100.02 96.57 387.54 404.91

4a 86.14 90.61 520.17 510.96

5b 127.66 128.60 686.07 636.71

6b 167.59 160.15 580.70 576.31

7b 154.61 153.90 493.63 536.78

8b 159.38 152.50 473.16 465.96
aSynthetic samples; bcommercial samples.

Figure 4. Values obtained by reference method versus values obtained 
by biPLS model for the AMO determination using intervals 12, 35, 38 
and 42, and 8 latent variables.

Figure 3. Spectral region selected by biPLS algorithm for determination 
of the AMO.
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developed used interval numbers 12, 35, 38 and 42 and 
showed low relative standard error of prediction (RSEP = 
5.12%), suggesting that the proposed method is accurate. 
Systematic error calculated for the model was not significant 
(bias = 2.80 and tsist < tcrit) due to the non-tendency for the 
prediction errors. Backward interval PLS model was the 
most suitable for AMO determination in pharmaceutical 
formulations because it showed good prediction ability 
(lower RMSEP value) when compared with the models 
PLS, iPLS and siPLS. 

Evaluation of the proposed methods 

The proposed methods were validated using some 
parameters usually recommended by different guidelines: 
accuracy, precision or repeatability and linearity.35

Accuracy
Accuracy was evaluated by comparison of results 

obtained by proposed method and reference method 
(HPLC) for samples not used in calibration model 
(prediction samples).36 Paired t-test was performed 
between the results obtained by proposed and reference 
method (Table 4) to establish the accuracy of the  
ATR/FTIR combined multivariate analysis method. This 
t-test allows checking if the results between the methods 
were significantly different. The acceptance criterion is 
defined by the formula: texp ≤ ttab (where texp is t experimental 
and ttab is t tabulated) and the results for ttab showed value 
of 2.36 for t-test at 95% of confidence and seven degrees 
of freedom. In the CA determination, it was obtained 
texp = 0.29 and in the AMO determination texp = 0.11. The 
proposed method did not showed significant differences 
when compared with reference method. Thus, the proposed 
method could substitute the reference method in the quality 
control of formulations in study.

Precision
The parameter precision was evaluated by repeatability 

or intra-day precision. Repeatability was calculated using 
results from the same analyst on the same day. In this work 
the repeatability was calculated by three replicates of three 
different concentrations, using the following equation 7:

	 (7)

where m is the realized replicate number, n the sample 
number,  –̂yi is the prediction mean values of each replicate  
ŷij.

37 Thus, values of 5.5 mg g-1 for CA and 19.8 mg g-1 

for AMO were obtained and relative standard deviations 
(RSD%) were of 4.2 and 3.7% respectively. The RSD 
values obtained were lower than the widely accepted 5% 
for this type of determination.14

Discussion of the results

Comparing the results obtained by PLS, iPLS, siPLS 
and biPLS models for simultaneous determination of the 
CA and AMO in powder pharmaceutical formulations, 
the biPLS model showed better prediction capacity (lower 
RMSEP) and relative error (%) (Figures 5 and 6). Such 
fact could be explained by the following reasons: PLS full-
spectrum models were performed with full spectrum region 
(3351 variable numbers), thus regions did not correlate 
with CA and AMO were used and high RMSEP values 
were obtained. Interval PLS algorithm divided spectra in 
intervals and this procedure can reduce noise by selecting 
specific spectral information, but only one interval cannot 
be enough to show useful spectral information. Using 
the siPLS algorithm, it was possible to combine 2 and 3 
intervals, then completing spectral information that were 
not obtained in iPLS models. However, the combination 
of number of intervals higher than 3 intervals was not used 
because requires a greater computational time. For biPLS 
algorithm, irrelevant information was excluded and only 
information linked with the structures of interest were 

Figure 6. Comparison among relative errors obtained for the best iPLS, siPLS 
and biPLS models of AMO determination. Black column iPLS error (%),  
white column siPLS error (%) and gray column biPLS error (%).

Figure 5. Comparison among relative error obtained for the best iPLS, siPLS 
and biPLS models of CA determination. Black column iPLS error (%),  
white column siPLS error (%) and gray column biPLS error (%).
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used to build model. With this algorithm, the combination 
of 4 intervals (best models showed RMSEP of 5.09 and 
27.22 mg g-1 for CA and AMO, respectively) was possible. 

Conclusions

In the present study, it was verified that ATR/FTIR 
spectroscopy associated multivariate analysis is a suitable 
method for simultaneous quantification of clavulanic acid 
and amoxicillin in pharmaceutical formulations. Variable 
selection algorithms had ability to produce better models 
when compared with the PLS full-spectrum model. 
Performance of biPLS model was better for both drugs 
when compared with PLS, iPLS and siPLS algorithms. The 
obtained recoveries were 95.8 to 107.7% for CA and 92.8 
to 108.7% for AMO. These results are in agreement with 
range allowed to the content of CA and AMO in power 
mixtures according to the USP requirements (90-120%) for 
solid preparations. In a general way, the proposed method 
was characterized to be less onerous, simple, solvent 
free, fast and reliable, allowing potential applications to 
simultaneous determinations of CA and AMO in solid 
pharmaceutical formulations for routine analyses. 
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