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Este artigo propõe um método de espectrometria no infravermelho próximo (NIR) de 
reflectância difusa para a discriminação não-destrutiva de sementes de mamona das cultivares mais 
comumente empregadas nas plantações brasileiras (BRS Nordestina e BRS Paraguaçu). Para esta 
finalidade, duas técnicas de classificação são comparadas, o SIMCA (modelagem independente 
flexível por analogias de classe) e PLS-DA (análise discriminante por mínimos quadrados 
parciais). Ao aplicar a classificação SIMCA a um conjunto de teste contendo 150 sementes, os 
modelos para as classes BRS Nordestina e BRS Paraguaçu apresentaram valores de sensibilidade/
especificidade de 0,91/0,99 e 0,71/1,00, respectivamente. Melhores resultados foram obtidos 
usando PLS-DA, que classificou corretamente todas as amostras de teste, proporcionando assim 
valores de sensibilidade e seletividade de 1,00. Estes resultados sugerem que o método proposto 
é promissor na identificação de genótipos de sementes de mamona, em lotes de sementes ou para 
fins de reprodução, antes de serem plantadas.

This article proposes a near-infrared (NIR) diffuse reflectance spectrometric method for non-
destructive discrimination of castor seeds from the two cultivars most commonly employed in 
Brazilian plantations (BRS Nordestina and BRS Paraguaçu). For this purpose, two classification 
techniques are compared, namely SIMCA (soft independent modelling of class analogies) and 
PLS-DA (partial least squares discriminant analysis). By applying the SIMCA classifier to a test set 
comprising 150 seeds, the BRS Nordestina and BRS Paraguaçu class models yielded sensitivity/
specificity values of 0.91/0.99 and 0.71/1.00, respectively. Better results were obtained by using 
PLS-DA, which correctly classified all test samples, i.e., yielded sensitivity and specificity values 
of 1.00. These findings suggest that the proposed method is a promising approach to identify castor 
seed genotypes, either in seed lots or for breeding purposes, prior to being planted.
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Introduction

The castor oil plant (Ricinus communis L.) is cultivated 
in several regions of the world. The oil extracted from castor 
seeds, which is composed of approximately 90% ricinoleic 
acid (12-hidroxi cis-9-octadecanoic), can be used to 

manufacture a variety of products such as biodiesel, plastics, 
synthetic fibres, resins,  and lubricants.1,2 In addition, the 
castor cake obtained from the crushed seeds after extraction 
of the oil can be used as natural nitrogen fertilizer. Moreover, 
it can be employed as animal feed after being treated for 
inactivation of ricin, which is a toxic protein.3

Over the years, breeding programs have been used to 
develop castor cultivars with reduced ricin content, better 
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productivity,  and resistance or adaptation to biotic  and 
non‑biotic factors.4-7 These cultivars are proprietary products 
which are regulated through plant variety registration laws. 
Indeed, licensing to individual growers or companies may 
constitute a source of revenue (royalties) for the developer 
of the cultivar. For this reason, the unauthorized use of 
such genetically improved seeds is an infringement of the 
developer rights. It is also worth noting that the distribution of 
mixtures of seeds with different genotypes, either intentional 
or accidental, may compromise a plantation. In fact, the 
plants will have different characteristics in terms of size, 
susceptibility to pests and diseases, cycle, maturation, and 
dehiscence of fruits, among others, which complicates the 
handling procedures  and may lead to a reduction in the 
production of grain  and oil. However, detecting such a 
problem might be difficult due to the similarity of the seeds, 
as can be seen in Figure 1.

As a general rule, the identification of cultivars is carried 
out by planting the seed and waiting for the germination and 
development of the plant during at least 30 days until it 
can be identified on a morphological basis. Techniques 
based on molecular markers can also be employed,8-11 but 
they are destructive, time-consuming and cannot be easily 
employed for routine identifications. An alternative to 
circumvent such drawbacks may lie in the use of analytical 
methods based on near-infrared (NIR) diffuse reflectance 
spectrometry with appropriate chemometric modelling. 
Indeed, NIR spectrometry has been successfully used in 
the classification of a wide variety of agricultural products 
such as soybean pods,12 coffee,13 soybeans14 and olives.15 
In particular, a recent review16 pointed out that NIR diffuse 
reflectance has been applied not only to bulk samples, but 
also in the quantitative and qualitative analysis of individual 
seeds. In this context, the potential of this technique for the 
analysis of single castor seeds has been demonstrated in 
a study involving the discrimination of two types of seeds 
with low and high content of oleic acid.17

Verification of genetically improved seeds for castor 
plantations is a problem of special economic  and social 
relevance in Brazil because seed costs are subsidized by the 
federal government to support small farmers. In this context, 
the present article proposes a NIR method for non‑destructive 

discrimination of seeds from BRS Nordestina  and  
BRS Paraguaçu cultivars, which are the two most commonly 
used in Brazil. Despite the visual similarity of the seeds, 
as seen in Figure 1, the two cultivars have different 
phenotypic characteristics, which impact the handling of the 
plantation and the market value of the seeds. For this purpose, 
two classification techniques are compared, namely SIMCA 
(soft independent modelling of class analogies)18,19  and 
PLS‑DA (partial least squares discriminant analysis).20,21

SIMCA is a full-spectrum classification method based 
on the use of Principal component analysis (PCA). A model 
for each class under consideration is developed on the basis 
of the principal components (PCs) of a training data set 
containing only samples from that class. The similarity of 
an unknown sample with respect to the class is evaluated 
by projecting the sample onto the PC subspace of the 
class and comparing the resulting residual variance with 
the average residual variance of the samples in the training 
set. For this purpose, two measures are usually employed, 
namely the leverage (distance to the center of the model 
within the PC subspace) and the sample-to-model distance 
(distance to the PC subspace). The classification is carried 
out by comparing these distances with critical values at a 
given confidence level.18,19,22

PLS-DA is an extension of PLS modelling for use in 
classification problems. PLS is a multivariate calibration 
technique which aims to establish a relation between the 
instrumental response data and some physical or chemical 
property of the sample. The PLS model is built by using 
a set of instrumental responses from n samples, recorded 
over m analytical channels (wavelengths in the case of 
spectrometric data). These data are usually disposed in 
the form of a calibration matrix X (n × m). In addition, the 
values of the property of interest are arranged in the form 
of a column vector y (n × 1). A relation between X and y 
is then derived on the basis of latent variables, which are 
defined in order to describe the variability in the X data 
mostly associated with the variability in the y data. In the 
PLS-DA algorithm for binary classification problems, the y 
data of the training set correspond to either 0 or 1, depending 
on the class of the sample.20,21 After the PLS-DA model is 
built, the classification of an unknown sample is carried out 
by calculating the associated y-value and adopting a suitable 
threshold, usually 0.5, which is the midpoint between 0 and 1.

Experimental

Samples

Three hundred seeds from each cultivar (BRS 
Nordestina and BRS Paraguaçu) were provided by Embrapa 

Figure 1. Castor seeds from BRS Nordestina and BRS Paraguaçu cultivars.
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Algodão (Campina Grande, Paraíba, Brazil). These 
seeds were harvested in 2009 at the experimental field of 
Embrapa Algodão in Patos city (Paraíba, Brazil) and were 
all subjected to the same plantation, harvesting and storage 
conditions. The seeds were conditioned at 21 ºC and 70% 
relative humidity for at least 1 h before spectral recording. 
No chemical treatment was employed.

NIR spectrum acquisition

Diffuse reflectance spectra were obtained by using a XDS 
Rapid ContentTM Analyzer VIS-NIR spectrophotometer 
(Foss Analytical, Hogans, Sweden), fitted with a circular 
quartz cell with diameter of 3 cm. Each spectrum was 
acquired as the result of 32 scans in the range 1100‑2500 nm 
with resolution of 0.5 nm. The measurements were repeated 
four times for each seed. The average of the four spectra 
thus obtained was employed throughout the work.

Data analysis and software

A second derivative Savitzky-Golay23 filter with 
second‑order polynomial and 15-point window was applied 
to the spectra in order to correct for scattering effects. The 
derivative spectra were used in all the subsequent calculations.

PCA was employed for a preliminary inspection of the 
overall spectral data set. The Kennard-Stone24 (KS) algorithm 
was then applied to the spectra in order to divide the 600 
samples into training, validation and test sets with 300, 150 and 
150 samples, respectively. Each of these sets comprised equal 
proportions of BRS Nordestina and BRS Paraguaçu samples.

Savitzky-Golay derivative filtering, PCA, PLS-DA and 
SIMCA were carried out by using The Unscrambler® 9.7, 
whereas KS was implemented in Matlab® R2010.

The number of PCs in SIMCA was selected in order to 
minimize the total number of type I (sample not included 
in its own class model) and type II (sample included in a 
wrong class model) errors in the validation set.

The test samples were used as an external set for the 
final performance assessment of the classifiers. PLS-DA 
was employed by assigning y-values of 0 and 1 to the BRS 
Nordestina  and BRS Paraguaçu classes, respectively. A 
threshold of 0.5 was applied to the predicted y-values in 
order to discriminate the samples in the test set.

Results and Discussion

NIR spectra

As can be seen in Figure 2, the main bands in the 
NIR spectra of the castor seeds are in the ranges 1400-

1500 and 1900-2000 nm. The former is associated to the 
first OH and NH overtone, as well as CH combination 
bands, whereas the latter is associated to the second 
C=O overtone, as well as OH combination bands.25,26 In 
addition, several other bands of smaller magnitude are 
found throughout the spectra. A clear separation between 
the two classes (BRS Nordestina and BRS Paraguaçu) is 
observed, but the spectra also display substantial within-
class dispersion associated to baseline variations, which 
can be ascribed to scattering effects.27 These baseline 
features were removed by the second derivative procedure, 
which resulted in the spectra presented in Figure 3. The 
differences between the two classes are now more subtle 
compared to Figure 2. Indeed, the effects of scattering, 
which may have been associated to physical differences 
in the seed coats, were largely eliminated. Chemometric 
tools were then employed to determine whether the 
remaining differences in the derivative spectra are enough 
to provide an appropriate discrimination between the two 
types of seeds.

Principal component analysis

Figure 4a presents a score plot of the first versus second 
principal components (PC1 and PC2) obtained by applying 
PCA to the overall set of derivative spectra. A separation 
between the two classes can be clearly observed. This 
finding indicates that the spectral differences between the 
two seed types, although subtle, are systematic  and can 
be used for discrimination purposes. Moreover, it can be 
argued that these differences are not restricted to scattering 
since these physical effects were largely eliminated by 
the second derivative procedure. It is also worth noting 
that the first principal component is mainly related to the 
separation between the classes, which indicates that the 

Figure 2. Raw spectra of the 600 castor seeds.
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differences between the two seed types are the main source 
of variability in the spectral data. As seen in Figure 4b, 
the PC1 loadings have a profile similar to the derivative 
spectra in Figure 3, i.e., all spectral peaks are present in 
the PC1 loadings. It can thus be concluded that the entire 
spectrum contributes to the separation of the classes. This 
result stands to reason since the major chemical components 

are the same in both types of seeds, with minor changes 
in composition.

Assuming that the spectral differences between the two 
classes are indeed related to chemical features, and not only 
to scattering effects, a question remains as to whether these 
features are associated to the interior of the seed or only to 
the seed coat. In fact, in reflectance mode, the penetration of 

Figure 3. (a) Second derivative spectra of the 600 castor seeds, with expanded views in (b), (c) and (d).

Figure 4. (a) PC1 × PC2 score plot for the 600 samples and (b) plot of PC1 loadings.
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the NIR radiation is restricted to a few millimeters into the 
sample.16 However, as reported elsewhere,28 the thickness of 
the coat in castor seeds is smaller than 0.3 mm, on average. 
Therefore, it can be argued that the penetration of the NIR 
radiation is enough to probe the interior of the seed.

SIMCA and PLS-DA classifications

A SIMCA model was built for each of the two classes: 
BRS Nordestina (one principal component)  and BRS 
Paraguaçu (two principal components). Figures 5a and 5b 
present the resulting boundaries of the BRS Nordestina and 
BRS Paraguaçu models, respectively, at the default 
significance level (5%) of the software package. These 
boundaries were used in the classification of the 150 test 
samples, which are also shown in each plot. In the analysis 
of these results, it is worth noting that SIMCA errors can 

be of type I (sample not included in its own class model) 
or II (sample included in a wrong class model). The BRS 
Nordestina model (Figure 5a) yielded a single type-I 
error and seven type-II errors. The BRS Paraguaçu model 
(Figure 5b) yielded 22 type-II errors and no type-I error. 
These errors can be translated into percent sensitivity/
specificity29 values of 0.91/0.99 for the BRS Nordestina 
model and 0.71/1.00 for the BRS Paraguaçu model.

A PLS-DA model with five latent variables was chosen 
as the best compromise between explained variance and 
number of errors by using the validation set (150 samples), 
as shown in Figure 6a. As can be seen in Figure 6b, all the 
150 test samples (external set) were correctly classified, 
i.e., the sensitivity and specificity values were both 1.00.

It may be argued that such a better discrimination is 
achieved because PLS-DA employs samples from both 
classes in the model-building process. In contrast, the 

Figure 5. SIMCA boundaries of the (a) BRS Nordestina and (b) BRS Paraguaçu class models.

Figure 6. PLS-DA results: a) explained y-variance (green line) and number of errors (blue line) versus latent variables included by using validation set, 
and b) Y predicted for the test set. The classification threshold is indicated by a horizontal line. 
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two SIMCA models are built separately, i.e., the BRS 
Nordestina samples are not considered in the construction 
of the BRS Paraguaçu model and vice versa.

Conclusion

This article proposed a method for non-destructive 
discrimination of castor seeds from the two cultivars 
most commonly employed in Brazilian plantations (BRS 
Nordestina and BRS Paraguaçu). For this purpose, NIR 
diffuse reflectance spectra were employed to develop 
SIMCA and PLS-DA classification models. An inspection 
of the NIR spectra, followed by a PCA investigation, 
indicated that the spectral measurements can indeed be 
used to discriminate the two types of seeds. By applying 
the SIMCA classifier to a test set comprising 150 seeds, the 
BRS Nordestina and BRS Paraguaçu class models yielded 
sensitivity/specificity values of 0.91/0.99  and 0.71/1.00, 
respectively. Better results were obtained by using the 
PLS-DA model, which correctly classified all test samples, 
i.e., yielded sensitivity and specificity values of 1.00. These 
findings suggest that the proposed method is a promising 
approach to identify castor seed genotypes, either in seed 
lots or for breeding purposes, prior to being planted.
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