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This work aimed at employing partial least square discriminant analysis (PLS2-DA), allied 
to mid-infrared (MIR) spectroscopy as an analytical method for simultaneous classification of 
biodiesels from different oils (soybean and used frying oil) and routes (methylic and ethylic). The 
evaluation of the model was verified through values of sensitivity and specificity for each parameter, 
in the interest class. PLS2-DA model showed 100% correct classification in the discrimination of 
types of biodiesels. Therefore, the proposed methodology is fast, because it allows simultaneous 
classification of different types of biodiesels. Consequently, it can be used in quality control of 
this type of biofuel.
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Introduction

Biodiesel is a fuel produced by a transesterification 
reaction in which oils from different oil seeds, animal fats 
and used frying oil react with alcohol, usually methanol or 
ethanol, in the presence of a catalyst.1-3 

Among the feedstocks used in the production of biodiesel 
in Brazil, soy is the most commonly used (ca. 80.35%).4 
However, it has the disadvantage of being used as food. Thus, 
just relying on cultivation as a main supplier of feedstocks for 
biodiesel production can limit the production of fuel for some 
regions according to climatic conditions and soil quality.5 
Consequently, the use of other feedstocks (e.g., used frying 
oil) is necessary. The use of frying oil has promising potential 
for biodiesel production,6,7 because it is a disposal product of 
frying and avoids competition with vegetable oil employed 
in human consumption,8 once the use of used frying oils 
reduces the problem of contamination of waste water, that 

is, for the reuse of these fatty residues may contribute to 
decrease the burden on the government in remove these 
wastes in sewages.9 Furthermore, according to the European 
commission approved directive 2012/0288/EC,10 from 
2020, biofuels produced from oils employed in human food 
should not be subsidized for the purpose of encouraging 
the use of feedstocks that do not take additional demand 
for land and do not enter the human food supply such as  
used frying oil.

The various feedstocks used to produce biodiesel, have 
different characteristics due to the chemical composition 
of fatty acids. Consequently, the final product has different 
physicochemical properties. Therefore, the quality control 
of biodiesel is very important,7 so it is necessary to develop 
methodologies that can identify the feedstock used in the 
biodiesel production.5,10 

Wang et al.11 identified biodiesels with better properties 
due to their similarity with a reference sample using gas 
chromatographic fingerprint data and principal component 
analysis (PCA). However, chromatography is a sensitive 
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method but is slow when compared to vibrational 
spectroscopy techniques.12 Infrared spectroscopy methods 
have advantages, such as the use of relatively low cost 
equipment that allows field analysis; minimal or no 
sample treatment; expeditious analysis; causing no sample 
destruction and demanding no reagents.13 Also, these 
methods allow in situ analysis using portable equipment. 
In this sense, the use of infrared spectroscopy combined 
with multivariate analysis has been applied in several 
areas such as health and food. Yi et al.14 employed near 
infrared (NIR) spectroscopy combined with PCA and 
hierarchical cluster analysis (HCA) to discriminate gastric 
cancer in relation to the type of tissue where 90 samples 
were classified as cancerous or normal tissues. The study 
showed the separation of different groups according to the 
type of tissue with an accuracy of 81.1%. Borras et al.15 
developed a methodology to classify 160 samples of 
almonds in relation to their bitterness by NIR and partial 
least square discriminant analysis (PLS-DA), with an 
accuracy of 95.7%. In this case, the PLS-DA model could 
not only classify the samples according to their similarity 
but was also able to recognize new samples not used in the 
development of the model.16 

Recent studies indicate that the use of mid-infrared 
(MIR) spectroscopy and NIR combined with supervised 
chemometric methods have potential as promising 
methodologies for classifying fuels. Veras et al.17 used 
soft independent modeling of class analogy (SIMCA) to 
classify 108 samples of biodiesel using NIR spectroscopic 
data, which was able to classify, with an accuracy of 
100%, biodiesels in relation to the type of oil used: cotton, 
sunflower, soybean and rapeseed oil. Balabin  et  al.18 
employed NIR spectroscopic data and support vector 
machines discriminant analysis (SVM-DA) to classify 
motor oil according to the feedstock used: synthetic, 
semi‑synthetic and mineral oil. The best result presented 
an error of 6% for classification. Silva et al.13 classified 
the common and additivated gasoline with a correct 
classification of 100% of the test samples using MIR 
spectroscopic data combined with linear discriminant 
analysis and variable selection.

Notably, the simultaneous classification using MIR 
spectroscopy and PLS2-DA was not previously used to 
classify more than two types of biodiesels. The simultaneous 
classification using PLS2-DA is advantageous, for analysis 
of several properties of interest, in single calibration19 that 
can be used in industry in order to gain time. Thus, this 
work aims to classify the different types of biodiesels 
regarding their feedstock and the alcohol used in the 
transesterification process using MIR spectroscopy coupled 
with the multivariate technique PLS2-DA. 

Experimental

Biodiesel production and characterization

The soybean refined oil used in the synthesis of 
biodiesel was acquired in the local market, and soybean 
used frying oil (UFO) were collected from local 
restaurants. To obtain each batch of biodiesels, 200.0 g 
of oil and a mixture containing potassium ethoxide or 
methoxide (60.0 g of ethanol or methanol (PA) and 2.0 g 
of KOH) were stirred at 400 rpm. After 1 h, the resultant 
solution was concentrated in a rotary evaporator to remove 
the excess of alcohol. Then the solution was allowed 
to stand for 24 h to separate production residues and 
coproducts. After the two-layer separation, the obtained 
esters were purified by washing with distilled water at 
90 °C and drying using vacuum distillation. In a rotary 
evaporator with a bath temperature of 90 °C, the flash 
point was measured hourly until a constant value was 
reached.

For the production of biodiesel from UFO, esterification 
was performed before the transesterification process 
for the purpose of reducing the level of acidity and 
increasing the efficiency in the conversion of ethyl and  
methyl esters.

The methods used to characterize the biodiesel were as 
follows: the moisture content was analyzed using a Karl 
Fischer colorimetric titrator (model 831 KF) according 
to standard ASTM D-6304. Acidity was determined 
according to the official procedures recommended by 
ABNT NBR 14448. Free and total glycerin fractions were 
determined according to the methodology described by 
ABNT NBR 15771 and ABNT NBR 15344, respectively. 
The range of conversion in biodiesel were determined by 
ABNT NBR 15764.

Sample preparation

In this work, four models of classification were built: 
four using PLS2-DA. The types of biodiesels evaluated 
were: used frying oil ethyl esters (UFEE), soybean oil 
methyl esters (SME), used frying oil methyl esters (UFME) 
and soybean oil ethyl esters (SEE). All of the biodiesels used 
were synthesized in the Laboratory of Biofuels Institute of 
Chemistry of the Federal University of Uberlândia, Minas 
Gerais, Brazil. In constructing the model, 22 batches of 
different samples of each type of biodiesel (UFEE, SME, 
UFME and SEE) were used, making a total of 88 samples. 
The spectral data for each type of biodiesel were randomly 
split in 2/3 for the sample training (n = 15) and 1/3 for the 
sample test (n = 7).20
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Acquisition of spectral data

The MIR spectra were acquired using a PerkinElmer 
Spectrum Two spectrometer equipped with an attenuated 
total reflectance (ATR) sample holder and ZnSe crystal. 
The spectra were recorded in the range of 4000-600 cm-1 
with 4 cm-1 resolution and were acquired using 16 scans for 
each of the quintuplicates. The average spectra of replicate 
(n = 5) for construction of the multivariate models were 
obtained. 

Due to fluctuation of the spectral baseline these were 
submitted to correction by a baseline algorithm.21 For this, 
the spectral ranges 2500-1850 cm–1 and 4000-3150 cm–1 

were selected. In order to minimize the unwanted systematic 
variation, in this study, before any chemometric analysis 
was performed, pre-processing of the data was carried out 
using a mean-centered approach for the variables in the 
X block and Y block.22 

Chemometrics analysis

To execute the multivariate procedures, MATLAB 
software version 7.5 (Mathworks Inc.) and PLS_Toolbox, 
version 7.5 (Eigenvector Research) were used.

The PLS2-DA models were developed based on the 
PLS algorithms.23 PLS2-DA is a version of the PLS-DA 
method, where the variables in the X block (spectral data) 
were related to classes contained in the Y matrix, in which 
each column vector represent the class of interest. The 
integer values of the class were arranged in each column 
of Y matrix, where 1 was used for the interest class and 
0 for the class without interest.

The threshold value was predicted between 0 and 1 
based on Bayes theorem, in order to minimize the errors in 
the prediction of the class through an appropriate number 
of latent variables (LV).24 The number of latent variables 
chosen for the PLS-DA models followed the criterion of 
the lowest prediction error in leave-one-out cross-validation 
and evaluation of the explained variance in the X and Y 
blocks. The outlier detection parameter was based on the 
identification of samples with high leverage values and Q 
residuals at 95% confidence.25

Performance analysis

The criteria used to evaluate the quality of the PLS2‑DA 
model were sensitivity (Sens) and specificity (Spec) in the 
test sample set. Sensitivity is number of samples predicted 
to be in the class divided by number actually in the class 
and specificity is number of samples predicted not to be 
in the class divided by actual number not in the class.26 
These parameters were related to the concepts of statistical 
inference as false positive (FP) and false negative (FN) 
errors.27-29 Sens and Spec were calculated according to 
equations 1 and 2, respectively.30 

TP
Sens =

TP + FN
 	 (1)

TN
Spec =

TN + FP
 	 (2)

where TP and TN denote the numbers of true positives 
and true negatives, respectively. For example, in the 
classification of UFEE from the others type of biodiesels, 
UFEE was considered as “positive” and others types of 
biodiesels was considered as “negative”.

Results and Discussion

Table 1 presents the physicochemical properties of the 
UFEE, SME, UFME and SEE. The parameters are found 
to be within the established by National Petroleum Agency 
for Natural Gas and Biofuels of Brazil (ANP).31 

The MIR spectra of the samples of biodiesel are shown in 
Figure 1. According to Almeida et al.,32 the 3000‑2850 cm-1 
is characteristic of the symmetric and asymmetric CH 
stretching vibrations of the methylene and terminal 
methyl groups. Thus, the prominent band at 2920 cm-1 is 
attributed to symmetric vibration of CH3 bond, near 2855 
and 3010 cm-1 are attributed to methylene symmetric and 
asymmetric stretching vibrations, respectively; at 1740 cm-1 
is observed an intense band assigned to the stretching of 
the C=O bond of an ester.

The region of 1500-900 cm-1 is known as the fingerprint 
region of complex spectra that include many coupled 

Table 1. Physicochemical properties of the UFEE, SME, UFME, SEE 

Property Unit UFEE SME UFME SEE ANP

Moisture content mg kg-1 195.11 225.15 205.13 212.87 < 350

Acidity mg of KOH g-1 0.37 0.15 0.31 0.20 < 0.50

Free glicerin %, m/m 0.009 0.011 0.008 0.012 < 0.02

Total glicerin %, m/m 0.23 0.20 0.22 0.21 < 0.25

Ester content %, m/m 96.7 97.4 97.1 96.9 > 96.5
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vibrational bands, that is, particular bands in this region can 
hardly be attributed to a single chemical bond or group.33 In 
this perspective, peaks around 1460 cm-1 are due to bending 
vibration of the CH2 and CH3; near 1435 cm-1 is assigned to 
rocking vibration of CH bonds of cis-disubstituted olefins;34 
near 1245 cm-1 may be attributed to antisymmetric axial 
stretching vibrations of CC(=O)-O bonds of the ester, while 
peaks near of 1195 cm-1 may be assigned to asymmetric 
axial stretching vibrations of O-C-C bonds.35

In the region of low frequency from 900-700 cm-1, the 
significant vibrations were attributed to out of the plane 
deformation of the groups C=CH-τ (olefinic CH) and ω 
(olefinic CH) to the unsaturated derivatives.32 Therefore, 
as shown in Figure 1, it was observed that there is great 
similarity between the profiles of the different biodiesels 
due to the high degree of similarity between the spectral 
profiles of the biodiesels, and that the use of chemometric 
techniques is needed to discriminate between these 
biodiesels.

To verify the presence of outliers in the PLS2-DA 
model, the leverage versus graphic Q residual was used 
(Figure 2). We noted that none of the samples were 
considered an outlier. 

During the analysis, it was found that the PLS1-DA 
models for each class showed 100% correct classification, 
in other words, the sensitivity and specificity equal to 1. 
The PLS2-DA model developed also obtained values of 
sensitivity and specificity equal to 1, which shows 100% 
correct classification. Nevertheless, when the dependent 
variables are strongly correlated, PLS2 provides models 
with predictive abilities similar to that of PLS1.36 Thus, 
the PLS2-DA model was used, once it is able to classify or 
predict multiple classes in the single calibration.37 

The 2461 variables from the 88 samples in the PLS2‑DA 
model to classify each type of biodiesel (UFEE, SME, 
UFME and SEE) were reduced to three latent variables with 
99.72% of the variance explained. The first latent variable 
(LV1) is the main variable responsible for the separation 

Figure 1. The MIR spectra of the samples of biodiesel: (a) UFEE, (b) SME, (c) UFME and (d) SEE.
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routes (methylic and ethylic), explaining 93.71% of the 
original variance (Figure 3). 

Figure 3 demonstrates a separation for the discriminated 
classes, showing that the MIR spectra present chemical 
information that makes it possible for PLS2-DA to 
discriminate between the four types of biodiesel. This result 
shows that the PLS2-DA model is able to differentiate 
samples of biodiesel obtained from soybean oil refined, 
as the frying oil used, from different routes (methylic and 
ethylic). However, if a sample of biodiesel of the same route 
was prepared from a mixture of soybean oil and used frying 
oil, the PLS2-DA model predicts in the class to which the 

sample presents greater similarity according to content of 
each of the types of oils in the mixture.

The loadings (Figure 4) show the wavenumbers 
responsible for this separation. Analyzing the graph of the 
loadings, the separation of the ethylic route (UFEE and 
SEE) in relation to the methylic route (SME and UFME) 
by LV1 was mainly determined by spectral vibration at 
1740 and 1195 cm–1, these vibration bonds can be assigned 
to C=O and O-C-C, respectively. The variables that have 
the greatest contribution to LV2 correspond to regions 
of low frequency from 900-700 cm–1, which correspond 
to deformation out of the plane of the groups C=CH-τ 
(olefinic CH) and ω (olefinic CH) to the unsaturated 
derivatives. Finally, LV3 loadings indicate the contribution 
of the band at 2920 cm-1 attributed to symmetric vibration 
of CH3.

The class assignment of result is expressed in a value 
from 0 to 1. Thus, these values are normally distributed 
around 0, when the prevision is not the class of interest 
and near 1, when the prevision is the class of interest. For 
this reason is possible to obtain prevision value below 
0 (negative value) and also values above 1.38 Therefore, it 
is necessary to calculate a threshold value to assume that a 
sample belongs or not to a determinate class of biodiesel.39 
Its calculus is done by Bayes theorem, minimizing the 
number of false positives and false negatives for future 
prediction of model.38

Table 2 shows the results of the classification parameters 
obtained for PLS2-DA model, where all types of biodiesel 
were separated between the estimated class value, 

Figure 2. Plot of the spectral residuals versus the leverage at a significance level of 5% for PLS2-DA model, where ( training set) UFEE, ( training 
set) SME, ( training set) UFME, ( training set) SEE. The graph of model was generated using 3 LVs.

Figure 3. Scores plot of PLS2-DA analysis of type of biodiesels, where 
( training set and  test set) UFEE, ( training set and  test set) SME, 
( training set and  test set) UFME, ( training set and  test set) SEE.
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Table 2. Classification parameters obtained for PLS2-DA model 

Class No. of LV
Threshold 

value 
Sensitivity Specificity

UFEE 3 0.57 1.00 1.00

SME 3 0.60 1.00 1.00

UFME 3 0.62 1.00 1.00

SEE 3 0.61 1.00 1.00

Table 3. Result of prediction sample set of PLS2-DA model 

Class N right/N total TP FP TN FN

UFEE 7/7 1.00 0.00 1.00 0.00

SME 7/7 1.00 0.00 1.00 0.00

UFME 7/7 1.00 0.00 1.00 0.00

SEE 7/7 1.00 0.00 1.00 0.00

Figure 4. Loadings plot of LV1 × LV2 × LV3 of PLS2-DA analysis of type of biodiesels.

according the values of sensitivity and specificity, equal 
to 1 (maximum classification).

The threshold value was used to discriminate between 
classes and was calculated based on the distribution of 
samples in the training prediction obtained using the PLS 
model. If the samples of the class of interest are above the 
threshold value, these are classified as belonging to the 
class of interest, and if below, they are classified as not 
belonging to the class.40 

The PLS2-DA showed excellent levels of sensitivity and 
specificity, which correctly classified 100% of the samples 
in the test set. According to Table 3, we can observe that 
in the PLS2-DA models, we have developed the samples 
in the test set could be classified as belonging to their 
respective classes.

Conclusions

The use of mid-infrared spectroscopy in combination 
with multivariate technique using PLS2-DA classified with 
100% efficiency samples of biodiesel in relation to the type 
of oil and the alcohol used in their production. Thus, this 
methodology is a viable alternative for the quality control 
of biodiesel, which offers fast analysis, non-destructive 
technique and potential in situ analysis using portable 
equipment to classify more than two types of biodiesels 
simultaneously.
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