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A novel recognition method was put forward to identify the producing areas of the flue-cured 
tobacco leaves rapidly and non-destructively by using a near-infrared (NIR) spectrometer and 
a multi-layer-extreme learning machine (ML-ELM) algorithm. In contrast to traditional linear 
discriminant analysis (LDA) and extreme learning machine (ELM) algorithms, the accuracy, 
sensitivity and specificity were the highest for the proposed ML-ELM algorithm. The ML-ELM 
models for different producing areas of Yunnan tobacco leaves had the best generalization ability 
and prediction results. Besides, the above three algorithms were also identified by using the chemical 
index data. The experimental results indicated that the NIR spectroscopy technology together with 
ML-ELM algorithm achieved the best prediction performance both using the NIR spectral data 
and chemical index data. It indicates that the combination of NIR and ML-ELM can recognize 
different producing areas of Yunnan tobacco leaves rapidly, accurately, and non-destructively.
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Introduction

Tobacco is a high economic crop in China. The quality 
of cigarette product is significantly affected by the intrinsic 
attribute of the tobacco leaf itself. The partition for tobacco 
leaves producing area and quality level play crucial roles in 
the final cigarette products quality management. Nowadays, 
the producing area recognition of a tobacco leaf is mainly 
dependent on the chemical analysis and human sensory 
responses.1,2 The chemical analysis method is expensive, 
time-consuming and cannot be synchronized to the tobacco 
producing and processing. Meanwhile, the results reliability 
of human sensory responses is not quantified and sometimes 
it is subjective.3 Herein, it is very important and necessary 
to develop a new method which is rapid, cheap, highly 
efficient and more objective.

As a useful analytical chemistry tool, near infrared 
(NIR) spectroscopy exhibits advantages such as non-
destructive, cheap, accurate, and fast.4,5 It has been widely 

used in the fields of agriculture,6 medicine,7 food,8-10 
traditional Chinese medicine11-13 and so on. In the previous 
research,14 the different producing areas of tobacco leaves 
were classified by artificial neural networks together with 
NIR spectroscopy. The pattern recognition for tobacco 
leaves planted in different producing areas, positions and 
levels was carried out by Mahalanobis distance criterion 
based on principal components of the leaves characterized 
by NIR.15 Du et al.16 has built 115 models of destination 
tobacco leaves of different producing areas, levels and 
varieties with soft independent modeling of class analogy 
method and NIR. Besides, NIR with least-support vector 
machines was applied to determine producing areas of 
tobacco leaves.17 The previous reports cited above were 
mainly focused on the recognition of the producing areas 
of tobacco leaves that were planted in different provinces 
of China. There were few researches concerning on the 
recognition of the producing areas of tobacco leaves that 
were cultivated in different cities of one province, especially 
in Yunnan Province. As the largest tobacco leaf planting area 
in China, the tobacco leaf production of Yunnan Province 
accounted for 45% of China’s total production in 2020. In 
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fact, the chemical and style characteristics of the tobacco 
leaves are very different like the climate and altitude 
variation of different cities in Yunnan province. Therefore, 
it is also necessary study to determine differences of the 
chemical and style characteristics of the tobacco leaves 
from different cities using a rapid method.

Extreme learning machine (ELM) put forward by 
Huang  et al.18 has been widely used in classification,19 
regression,20 feature selection21 and so on. However, 
ELM still has some key problems to be solved, especially 
processing the high-dimensional spectral data. Deep learning 
is used to analyze the characteristics of the spectral data. 
Multi-layer extreme learning machine (ML-ELM) is one of 
the unsupervised learning methods using both deep learning 
and extreme learning machine. This learning process of the 
method is layer by layer. Comparing with the traditional 
ELM algorithm, ML-ELM algorithm can not only obtain 
the essential features of the original spectral data, but also 
can reduce the dimensionality. Meanwhile, as a kind of 
deep neural network, ML-ELM algorithm can approximate 
the complicated function and does not need iteration 
when building the calibration model. Comparing with the 
traditional ELM algorithm and other machine learning 
algorithms, the generalization performance and speed of 
ML-ELM algorithm are better. It has several advantages over 
ELM algorithm in processing the spectral data. ML-ELM is 
already been used in image recognition, hyperspectral data 
classification, speech recognition and so on.22 However, there 
are few applications in the classification of NIR spectral data. 
Considering the above discussion and analysis, ML-ELM is 
very suitable for the processing of NIR spectral data.

In the study, a novel classification method using NIR 
technology and ML-ELM algorithm was put forward to 
recognize the producing area of flue-cured tobacco leaves 
rapidly and non-destructively. The experimental results 
showed that the combination of NIR spectroscopy and 
ML-ELM algorithm is a promising tool for identifying 
the different producing areas of Yunnan tobacco leaves 
accurately and non-destructively.

Experimental

Sample preparation and test

The NIR spectrometer should be firstly preheated with 
one hour. Then, the tobacco leaves were scanned after 
the tests of the NIR spectrometer performed successfully. 
In the scanning process, all the tobacco leaves should 
be ground into the powder which was then put into the 
rotating sample cup. The absorbance spectra of the tobacco 
leaves samples were acquired by using a NIR-Antaris II 

(Thermo Fisher Scientific America, Massachusetts, USA). 
The range of the wavenumber was 10,000-4000 cm–1. The 
spectral resolution was 4 cm–1 and 64 scans were co-added. 
A polytetrafluoroethylene (PTFE) background disc was 
used as the spectral reference. Each sample was recorded 
with three spectrums and the means of the three spectrums 
were calculated as the final spectrum of each sample.23,24

In the following research, two C1F and C2F classes 
experimental sets from different producing areas were 
chosen. The first C1F experimental set has 501 samples 
and the samples were harvested in 2019 from Jinggu, 
Yaoan, Xinping and Luliang cities, Yunnan Province of 
China. The second C2F experimental set has 643 samples 
and the samples were also harvested in 2019. It contains 4 
different producing areas: Xuanwei, Luxi, Jingdong and 
Malong cities, Yunnan Province of China. The distribution 
of the 8 producing areas are shown in Figure 1. It can be 
seen from Figure 1 that some locations of 8 producing 
areas are very close. As the result, it may be difficult to 
recognize the producing areas of tobacco leaves. In the 
experimental process, the samples were divided into 
3 parts. It contained calibration, validation and testing 
samples. The above 3 types of samples were chosen 
randomly. 345 samples were chosen as the calibration 
set, 89 samples as the validation samples and 67 samples 
as the test set for data set 1. 430 samples were chosen as 
the calibration set, 129 samples as the validation samples 
and 84 samples as the test set for data set 2. The results 
were showed in Table 1 for the details of data sets 1 and 
2. The NIR spectral data of the two sets collected by the 
NIR spectrometer was shown in Figure 2.

The content of total sugar, reducing sugar, potassium, 
total plant alkali, chlorine, and total nitrogen are 6 routine 

Figure 1. Original spectral data of the two data sets.
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chemical indexes of a tobacco leaf. The values of 6 
indexes can reflect the quality of a tobacco leaf to some 
degree and they have also been used for recognizing 
the producing areas of tobacco leaves in the previous 
research.15,16 As the result, the above 6 routine chemical 
indexes of all the tobacco leaf samples were also detected 
by using continuous flow analytical method with Skalar 
SANPWS flow analyzer (Breda, Netherlands).25 The 
results of Table 2 showed the average values and standard 
deviations of the 6 routine chemical indexes of tobacco 
leaves in 8 different producing areas. It can be seen from 
Table 2 that 6 routine chemical indexes of a tobacco leaf 
exhibited some difference although the locations of some 
producing areas are close to each other. For example, 
the maximum average value of total sugar, potassium, 
reducing sugar, total plant alkali, chlorine, total nitrogen 
were 20.29, 52.03, 55.27, 56.41, 222.88, 15.50% higher 
than that of the minimum value in 6 different producing 
areas, respectively. The differences of the 6 routine 
chemical indexes of a tobacco leaf in different producing 
areas are huge. Therefore, it is necessary to recognize 
the tobacco leaves producing areas in different cities of 
Yunnan province.

Theory of ELM algorithm

ELM algorithm was put forward by Huang et al.18 and 
the hidden nodes of ELM algorithm were usually performed 
randomly. If the input data is mapped to L dimensional 
ELM random feature space, then the network output can 
be defined as equation 1:

	 (1)

where β = [β1, … , βL]T is the output weight matrix, 
h(x) = [g1(x), … , gL(x)] are the hidden node outputs and 
gi(x) is the output of the i-th hidden node. Given N training 
samples , ELM is to resolve the following learning 
problems:

Hβ = T	 (2)

where T = [t1, … , tN]T are the target labels and H = [hT(x1), 
… , hT(xN)]T. The output weights β can be calculated by 
equation 3:

β = H†T	 (3)

Table 1. Details of data set 1 and data set 2

Data Year Producing area Class No. features No. samples
No. calibration 

samples
No. validation 

samples
No. testing 

samples

Data set 1

2019 Jinggu, Puer C1F 1609 152 105 27 20

2019 Yaoan, Chuxiong C1F 1609 114 79 20 15

2019 Xinping, Yuxi C1F 1609 136 92 24 20

2019 Luliang, Qujing C1F 1609 99 69 18 12

Data set 2

2019 Xuanwei, Qujing C2F 1609 114 79 20 15

2019 Luxi, Honghe C2F 1609 223 146 47 30

2019 Jingdong, Puer C2F 1609 195 130 40 25

2019 Malong, Puer C2F 1609 111 75 22 14

Figure 2. Original spectral data of the two data sets: (a) data set 1; (b), data set 2.
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where H† is the Moore-Penrose generalized inverse of 
matrix H.

If the solution wants to be more robust and has better 
generalization performance, a regularization term needs to 
be added and it is shown in equation 4.

	 (4)

where C is the regularization coefficient and the values 
of this parameter will be assigned randomly after the 
appropriate hidden layer numbers are set.

Theory of ML-ELM algorithm

Multi layer neural networks perform poorly when 
trained with back propagation (BP) only. Hence hidden 
layer weights in a deep network are initialized using layer 
wise unsupervised training and the whole neural network 
is fine-tuned using BP further. Similar to deep networks, 
each ML-ELM hidden layer weights are initialized using 
extreme learning machine auto encoder (ELM-AE) which 
performs layer wise unsupervised training. However, in 
contrast to deep networks, ML-ELM does not require fine 
tuning. 

The activation functions of ML-ELM hidden layer can be 
either linear or nonlinear piecewise. If the number of nodes 
Lk in k-th hidden layer is equal to the number of nodes Lk–1 
in the (k – 1)-th hidden layer, g could be linear, otherwise, 
g could be nonlinear piecewise, e.g., sigmoidal function.

	 (5)

where Hk represents the outputs of ML-ELM k-th hidden 
layer. If k-1= 0, this layer is the input layer, and Hk 
represents the inputs of ML-ELM. βk represents the output 

weights of ELM-AE, and the inputs of ELM-AE are Hk 
at this time. The output weights βk of ML-ELM can be 
analytically calculated using regularized least squares.

The flow chart is shown in Figure 3 for recognizing 
the producing area of a flue-cured tobacco leaf by using 
ML-ELM algorithm. The calibration and test samples were 
serial treated by spectral pre-processing, feature extraction 
using principal component analysis (PCA), parameters 
determination and classification of ML-ELM.

Measures of classification performance

Confusion matrix is a concept from machine learning, 
and it contains information about actual and predicted 
classifications done by a classification system. A confusion 
matrix has two-dimensions, one dimension is indexed by 
the actual class of an object, the other is indexed by the 
class that the classifier predicts. Figure 4 presents the basic 
form of confusion matrix for a classification task. 

Table 2. Average values and standard deviations of routine chemical indexes with different tobacco leaves producing areas

Chemical index
Data set 1 (C1F) Data set 2 (C2F)

Jinggu Yaoan Xinping Luliang Xuanwei Luxi Jingdong Malong

Total sugar / %
average value 

standard deviation
31.315 
4.189

37.469 
3.350

34.395 
4.469

36.562 
3.527

33.088 
4.133

31.150 
3.640

33.047 
3.619

34.466 
3.881

Potassium / %
average value 

standard deviation
2.285 
0.305

1.503 
0.308

1.662 
0.350

1.729 
0.291

1.693 
0.264

1.711 
0.306

2.063 
0.311

1.822 
0.365

Reducing sugar / %
average value 

standard deviation
24.935 
3.082

28.053 
2.509

37.080 
3.258

27.545 
2.545

23.881 
3.373

25.533 
2.794

23.940 
2.846

24.447 
3.022

Total plant alkali / %
average value 

standard deviation
2.717 
0.624

1.958 
0.561

2.373 
0.691

1.967 
0.388

1.755 
0.467

2.745 
0.472

2.348 
0.504

1.755 
0.379

Chlorine / %
average value 

standard deviation
0.433 
0.189

0.762 
0.461

0.566 
0.240

0.483 
0.249

0.236 
0.131

0.676 
0.288

0.394 
0.177

0.346 
0.271

Total nitrogen / %
average value 

standard deviation
2.148 
0.280

1.922 
0.293

2.112 
0.289

2.073 
0.260

1.987 
0.237

2.220 
0.260

2.038 
0.274

2.079 
0.261

Figure 3. Diagram of recognizing the producing area on tobacco leaves 
by using ML-ELM algorithm.
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A number of measures of classification performance can 
be defined based on the confusion matrix. Some common 
measures are given as follows.

Accuracy is the proportion of the total number of 
predictions that were correct:

	 (6)

where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative.

Sensitivity is a measure of the ability of a prediction 
model to select instances of a certain class from a data set, 
which is defined by the formula:

	 (7)

Specificity is the proportion of actual negatives 
measured that were correct:

	 (8)

Results and Discussion

According to the pre-processing and PCA operation 
methods used in previous reports,23-25 firstly Savitzky-
Golay derivative pre-processing operation is performed 
on the spectral data to smooth and remove the noise.23 

Here first derivative with a 11-point number of smoothing 
points and two polynomial order methods were chosen. 
Figure 5 shows the spectra after pre-processing. The 
band assignments are: total sugar, 5050, 5200, and 
7194  cm–1; potassium, 5050 and 5200 cm–1; reducing 
sugar, 4194, 4444, and 4789 cm–1; total plant alkali, 4444 
and 4664 cm–1; chlorine, 4194, 4789, and 5200 cm–1; total 
nitrogen, 4789 and 7194 cm–1. It could also be seen from 
Figure 5 that the resolution of the spectral data has been 
improved after the pre-processing operation.23,24 However, 
the dimension of the spectral data is still huge after 
pre-processing operation. Therefore, PCA was used for 
reducing the dimension of the data.25 Here, mean centering 
operation was used in the PCA analysis. The result of 
PCA showed that the first six principal components are 
99.32 and 99.78% for data sets 1 and 2, respectively. This 
means that the first six principal components contained 
vast majority of information for both data sets 1 and 2.

Then, linear discriminant analysis (LDA), ELM, and 
ML-ELM algorithms were applied using the loadings and 
scores obtained by PCA operation. Accordingly, they were 
also used to identify the spectral data of different producing 
areas of tobacco leaves. To achieve the fair comparison 
and avoid the randomness in test results, all the calibration 
and testing samples were randomly chosen and the three 
algorithms ran on the same calibration and test splits for 
each calculation. For ML-ELM, the number of layers was 
an important parameter. Therefore, the first work was 
to define the number of hidden layers of the ML-ELM 
algorithm in order to achieve the better performance with 
less parameters. Here, sigmoid was set as the activation 
function and the number of hidden nodes was set as 10 and 
500. It can be seen from Figure 6 that the overall accuracies 
of both data sets were increasing firstly and then decreasing 
with the number of the hidden layers increasing. The 
accuracy was the highest when the number was 3. Three 

Figure 4. Confusion matrix.

Figure 5. Pre-processing results by using Savitzky-Golay derivative and two polynomial order methods. (a) Data set 1; (b) data set 2.
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hidden layers of the ML-ELM algorithm will be chosen in 
the following experiment.

As mentioned above, the samples were divided into 
3 parts. It contained calibration, validation and testing 
samples. The above 3 types of samples were chosen 

randomly. Here we use accuracy, sensitivity, and specificity 
to evaluate the performances of the calibration models, 
validation results and testing results for each producing 
area and each algorithm. In order to reflect the performance 
of the different predictors faithfully and to avoid over-
fitting, the experiment is performed and verified using a 
ten-fold cross validation. It means all the three algorithms 
were calculated 10 times. For the sake of comparison, 
the performance of LDA, ELM and ML-ELM algorithms 
are shown in Tables 3 and 4 for data sets 1 and 2 in the 
form of a confusion matrix. As shown in Tables 3 and 4, 
the accuracy, sensitivity, specificity of the ML-ELM 
algorithm were the highest for the calibration, validation 
and prediction samples compared with the LDA and ELM 
algorithms. The above results show the ML-ELM algorithm 
has the best performance to build the different calibration 
models for different producing areas of Yunnan tobacco 
leaves with NIR spectral data. Besides, the calibration 
models built by the ML-ELM algorithm also have the 
better prediction performance than the other LDA and 

Figure 6. Overall accuracy via different hidden layer numbers.

Table 3. Performance of calibration and validation of various models

Data set Algorithm
Producing 

area

Sample Cal Val

Cal Val AC / % Sn / % Sp / % AC / % Sn / % Sp / %

Data set 1 
(C1F)

LDA

Jinggu 105 × 10 27 × 10 83.96 78.95 86.17 85.28 83.33 86.12

Yaoan 79 × 10 20 × 10 77.96 38.23 89.85 80.00 41.5 91.16

Xinping 92 × 10 24 × 10 80.55 62.93 87.01 83.26 68.75 88.61

Luliang 69 × 10 18 × 10 83.24 66.57 87.28 83.15 62.78 88.31

ELM

Jinggu 105 × 10 27 × 10 96.15 93.23 97.44 91.68 85.92 94.19

Yaoan 79 × 10 20 × 10 88.78 79.24 91.63 78.76 58.00 84.78

Xinping 92 × 10 24 × 10 94.69 94.02 94.94 84.27 78.75 86.31

Luliang 69 × 10 18 × 10 89.24 63.66 95.47 82.25 48.89 90.70

ML-ELM

Jinggu 105 × 10 27 × 10 100 100 100 95.28 94.44 95.64

Yaoan 79 × 10 20 × 10 99.88 99.75 99.92 95.06 91.00 96.23

Xinping 92 × 10 24 × 10 100 100 100 93.26 85.00 96.31

Luliang 69 × 10 18 × 10 99.88 99.71 99.92 93.26 81.11 96.34

Data set 2 
(C2F)

LDA

Xuanwei 79 × 10 20 × 10 78.35 51.39 84.41 83.33 55.00 88.53

Luxi 146 × 10 47 × 10 73.56 56.09 82.53 76.27 68.30 80.85

Jingdong 130 × 10 40 × 10 73.95 44.77 86.60 75.89 57.25 84.27

Malong 75 × 10 22 × 10 78.97 59.60 83.07 82.63 46.36 90.09

ELM

Xuanwei 79 × 10 20 × 10 89.32 70.00 93.67 87.44 65.00 91.56

Luxi 146 × 10 47 × 10 87.27 87.05 87.39 82.01 77.66 84.51

Jingdong 130 × 10 40 × 10 89.56 74.61 96.03 83.49 66.00 91.35

Malong 75 × 10 22 × 10 96.29 93.20 96.96 91.08 77.27 93.92

ML-ELM

Xuanwei 79 × 10 20 × 10 100 100 100 96.43 91.00 97.43

Luxi 146 × 10 47 × 10 99.86 99.79 99.89 96.04 93.83 97.32

Jingdong 130 × 10 40 × 10 99.97 99.92 100 95.74 93.00 96.97

Malong 75 × 10 22 × 10 99.84 99.60 99.89 96.28 88.64 97.85

Cal: calibration; Val: validation; AC: accuracy; Sn: sensitivity; Sp: specificity; LDA: linear discriminant analysis; ELM: extreme learning machine; ML-
ELM: multi-layer extreme learning machine.
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ELM algorithms. This is because they could be the result 
that the minimum Euclidean distance was used for LDA 
algorithm to classify the spectral data and it was ineffective 
when the dimensional spectral data was high. For ELM 
algorithm, the amounts of hidden nodes of ELM algorithm 
were randomly set. However, the ML-ELM classification 
algorithm picked up the best number of hidden nodes by 
using the unsupervised learning, thus learning more abstract 
features of the NIR spectral data.

In order to verify the experimental results as described 
above, different tobacco leaves producing areas were also 
recognized after using 6 routine chemical indexes. The 
classification and cross-validation methods were the same 
as the above experiment using NIR spectral data. The 
experimental results with chemical indexes are shown in 
the last three columns of Table 4. The results showed that 
the accuracy, sensitivity, specificity of ML-ELM algorithm 
was the highest among the three algorithms when using 
chemical indexes. However, the above evaluation results of 

ML-ELM algorithm using chemical index data were much 
lower than using NIR spectral data for each producing 
area. Besides, NIR spectroscopy technology was cheap, 
low-cost, and effective compared with the chemical index 
detection method. Considering experimental results and 
consequences as described above, the NIR spectroscopy 
technology together with ML-ELM algorithm could be 
the most effective tool for recognizing different producing 
areas of tobacco leaves among all the above methods tested.

The averaged elapsed execution time are usually used to 
estimate the performance of an algorithm. Here the averaged 
elapsed execution time contains the calibration model 
building and the prediction process. All the experiments 
were performed on the same computer. The parameters of 
the computer are Core TM i7-8700h, 3.20GHz, CPU with 
8GB RAM, with Windows 7 Professional operation system. 
All the algorithms were calculated by using the language 
of Matlab.26 The results of Figure 7 showed the computing 
times of LDA, ELM, and ML-ELM algorithms on the two 

Table 4. Testing results using different algorithms with chemical and NIR spectral data

Data set Algorithm
Producing 

area
Sample 
(Pred)

NIR spectral data Chemical data

AC / % Sn / % Sp / % AC / % Sn / % Sp / %

Data set 1 
(C1F)

LDA

Jinggu 20 83.58 80.00 85.11 82.09 75.00 85.11

Yaoan 15 79.10 40.00 90.38 77.61 40.00 88.46

Xinping 20 82.09 70.00 87.23 80.59 70.00 85.11

Luliang 12 83.58 58.33 89.09 82.09 50.00 89.09

ELM

Jinggu 20 92.53 85.00 95.74 86.57 70.00 93.62

Yaoan 15 82.09 55.33 90.38 77.61 53.33 84.61

Xinping 20 88.06 85.00 89.36 86.56 85.00 87.23

Luliang 12 83.58 58.33 89.09 80.59 41.67 89.09

ML-ELM

Jinggu 20 97.01 95.00 97.87 94.03 90.00 95.74

Yaoan 15 95.52 86.67 98.08 92.54 86.67 94.23

Xinping 20 94.03 90.00 95.74 92.53 85.00 95.74

Luliang 12 92.54 83.33 94.54 89.55 66.67 94.54

Data set 2 
(C2F)

LDA

Xuanwei 15 83.13 57.14 88.40 79.76 46.67 86.96

Luxi 30 77.11 66.67 83.02 75.00 66.67 79.63

Jingdong 25 78.31 60.00 86.21 76.19 56.00 84.74

Malong 14 84.33 57.14 89.85 80.95 42.86 88.57

ELM

Xuanwei 15 86.90 66.67 91.30 86.90 66.67 91.30

Luxi 30 84.52 76.67 88.89 85.71 76.67 90.74

Jingdong 25 84.52 72.00 89.83 85.71 76.00 89.83

Malong 14 89.28 71.43 92.86 91.67 78.57 94.28

ML-ELM

Xuanwei 15 96.43 93.33 97.12 92.86 80.00 95.65

Luxi 30 97.62 96.67 98.15 92.86 90.00 94.44

Jingdong 25 96.43 92.00 98.30 92.86 88.00 94.91

Malong 14 95.24 85.71 97.14 92.85 78.57 95.71

NIR: near-infrared; AC: accuracy; Sn: sensitivity; Sp: specificity; LDA: linear discriminant analysis; ELM: extreme learning machine; ML-ELM: multi-
layer extreme learning machine.
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data sets using NIR spectral data. It was obvious that ELM 
and ML-ELM algorithms were much more efficient than 
LDA algorithm. Although the computing time of ML-
ELM algorithm was a bit slower than the ELM algorithm, 
considering the classification accuracy, ML-ELM algorithm 
was also the best option to classify the NIR spectral data of 
the tobacco leaves from different producing areas.

Conclusions

Our study proposed a novel method using NIR 
spectroscopy technology together with ML-ELM algorithm 
to identify the different producing areas of tobacco leaves 
cultivated in Yunnan province. The results showed that 
the method put forward was an alternative strategy to 
discriminate different producing areas of tobacco leaves 
rapidly, accurately, and non-destructively. Besides, the 
ML-ELM algorithm performed much better than traditional 
LDA and ELM algorithms based on both NIR spectral 
data and chemical indexes data. The results indicated that 
application of the NIR spectroscopy technology together 
with ML-ELM algorithm could be useful for determining 
different plantation areas of Yunnan tobacco leaves.
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