Tamanho de amostra para a estimação da média mensal de insolação diária em diferentes locais do Estado do Rio Grande do Sul

Sample size for estimating the average monthly daily insolation in different locations of Rio Grande do Sul State, Brazil

Alberto Cargnelutti Filho Ronaldo Matzenauer Bernadete Radin Jaime Ricardo Tavares Maluf Matzenauer Radin Ronaldo Radin Ronaldo

RESUMO

Com o objetivo de determinar o tamanho de amostra (número de anos) para a estimação da média mensal de insolação diária de 30 locais do Estado do Rio Grande do Sul, utilizaram-se os dados de insolação do período de 1960 a 2007. Em cada uma das 360 séries temporais (12 meses x 30 locais), calcularam-se a média e a variância e testaram-se a aleatoriedade e a normalidade dos dados. Verificou-se a homogeneidade de variâncias entre os meses em cada local e entre os locais em cada mês. Depois, calculou-se o tamanho de amostra em cada mês e local. O tamanho de amostra (número de anos) para a estimação da média mensal de insolação diária é dependente do mês e do local. Para os meses e locais estudados, até 44 anos de observações são necessários para estimar a média mensal de insolação diária, para um erro de estimação igual a $\pm 0,5$ horas dia-1, com grau de confiança de 95%.

Palavras-chave: brilho solar, série temporal, erro de estimação.

ABSTRACT

It was used data from 30 locations of the Rio Grande do Sul State, Brazil, collected from 1960 to 2007, with the objective to determine the sample size (number of years) to estimate the average daily month insolation. The average and variance was calculated for each of the 360 time series (12 months x 30 locations) and the aleatory and normality data were tested. Then it was verified the homogeneity of variance among months in each locality and among places in each month and it was determined the sample size to estimate the average monthly insolation daily in each month and locality. The sample size (number of years) to estimate the average monthly insolation daily is dependent on the month and locality. One concluded that 44 years of data are enough to predict the

average monthly insolation daily, with an estimation error equal to ± 0.5 hours days⁻¹, with a degree confidence of 95%.

Key words: sunshine, time series, error of estimation.

INTRODUÇÃO

A World Meteorological Organization (WMO) recomenda que o número mínimo de anos de dados climáticos para servir como referência para estudos de variabilidade e mudança climática é de 30 anos (WMO, 2004). Diante disso, a estimação de parâmetros de elementos meteorológicos tem sido, comumente, realizada a partir de séries temporais de 30 anos de dados climáticos (normais climatológicas) independentemente da época do ano e do local.

O tamanho de amostra (número de anos) para a estimação da média mensal da temperatura mínima do ar diária (CARGNELUTTI FILHO et al., 2006a), da média mensal da temperatura máxima do ar diária (CARGNELUTTI FILHO et al., 2006b), da média decendial da radiação solar global diária (CARGNELUTTI FILHO et al., 2007) e da média do total mensal de precipitação pluviométrica (CARGNELUTTI FILHO et al., 2010) tem sido investigado em locais do Estado do Rio Grande do Sul. Além disso, o tamanho de amostra para a estimação da média de insolação, radiação solar global e radiação fotossinteticamente

¹Departamento de Fitotecnia, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brasil. E-mail: cargnelutti@pq.cnpq.br. Autor para correspondência.

^{II}Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Porto Alegre, RS, Brasil.

ativa tem sido estimado em locais do Estado de São Paulo (MARTIN et al., 2008). Ainda, estudo comparativo sobre a precisão das estimativas das médias mensais dos totais de precipitação pluviométrica, médias mensais de insolação, de radiação solar global e de temperaturas mínima, média e máxima diárias também foi realizado com os dados de 15 locais do Estado do Rio Grande do Sul (CARGNELUTTI FILHO et al., 2009). Não foram encontrados, na literatura, estudos em outros locais sobre o dimensionamento da amostra para a estimação da média de elementos meteorológicos.

De maneira geral, os estudos realizados nos Estados do Rio Grande do Sul e São Paulo têm revelado que há variabilidade temporal (meses e decêndios), espacial (locais) e entre os elementos meteorológicos. Como consequência, o uso de 30 anos, de forma generalizada, não contempla a variabilidade dos dados de cada local e época do ano e gera estimativas de médias com erros diferenciados.

A insolação é parte da energia solar que se propaga sem necessidade da presença de um meio material e é representada pelas horas do dia que o disco solar permanece visível à superfície terrestre, em local com horizonte desobstruído (VAREJÃO-SILVA, 2001). A insolação é importante para o planejamento adequado de atividades agropecuárias e esse elemento meteorológico, em um determinado período do ano e local, deve ser estimado com a uma determinada precisão estipulada pelo pesquisador. Porém, estudos de tamanho de amostra (número de anos), relacionados à estimação da média mensal de insolação diária no Estado do Rio Grande do Sul, não foram encontrados.

Ao dimensionar o tamanho de amostra em um determinado período do ano e local de um determinado elemento meteorológico, é preciso estabelecer um erro de estimação máximo aceitável com um determinado grau de confiança. Em relação à estimação da média mensal de insolação diária, não há um valor que possa ser definido como erro máximo tolerável. Porém, deve ser considerada a possibilidade de obter uma estimativa da média com a máxima confiabilidade possível.

O objetivo deste trabalho foi determinar o tamanho de amostra (número de anos) para a estimação da média mensal de insolação diária em diferentes locais do Estado do Rio Grande do Sul.

MATERIAL E MÉTODOS

Foram utilizados os dados de insolação diária de 30 estações agrometeorológicas, oriundas de 30 locais do Estado do Rio Grande do Sul (Tabela 1).

Estes foram obtidos do Banco de Dados do Centro de Meteorologia Aplicada, da Fundação Estadual de Pesquisa Agropecuária (FEPAGRO/SCT-RS), e coletados no período de 1960 a 2007.

Em cada local e ano, a partir dos dados diários de insolação, calculou-se a média mensal de insolação, em horas dia⁻¹, de cada mês do ano. Assim, formaram-se 360 séries temporais de média mensal de insolação diária (12 meses x 30 locais), com número diferenciado de anos de observações em cada série, definidas em função da disponibilidade de dados meteorológicos.

Em cada uma das 360 séries temporais de média mensal de insolação diária, foi anotado o número de anos de observações (n) e calculada a média (m) e a variância (s²). A fim de identificar possíveis tendências de acréscimo ou decréscimo da média mensal de insolação diária no período estudado, verificou-se a aleatoriedade dos dados em cada série temporal, por meio do teste de sequência (run test) (SPIEGEL et al., 2004; SIEGEL & CASTELLAN JÚNIOR, 2006). Foi aplicado um teste bilateral à hipótese H₀: a série é aleatória (sem tendência) versus a hipótese H1: a série não é aleatória (com tendência). No teste, os dados de média mensal de insolação diária foram utilizados em ordem cronológica, e o número de sequências foi calculado com base na média. Nas séries em que a hipótese H₀ foi rejeitada, em nível de 5% de probabilidade de erro, foi calculado o coeficiente de correlação de Kendall para avaliar se no período a tendência foi de acréscimo ou decréscimo. A seguir, foi verificada a normalidade dos dados de cada série temporal, por meio do teste de Kolmogorov-Smirnov (CAMPOS, 1983; SIEGEL & CASTELLAN JÚNIOR, 2006).

Aplicou-se também o teste de Bartlett (STEEL et al., 1997) às médias mensais de insolação diária, para verificar a homogeneidade de variâncias entre os meses do ano, em cada local (30 testes), e entre os locais, em cada mês do ano (12 testes).

Em seguida, calculou-se o tamanho de amostra (número de anos - η) para a estimação da média mensal de insolação diária de cada uma das 360 séries temporais. Nesses cálculos, considerou-se a semiamplitude do intervalo de confiança (erro de estimação) igual a 0,5 horas dia-1, com grau de confiança (1- α) de 95%. Usou-se a expressão

$$\eta = \frac{t_{\alpha/2}^2 \ s^2}{e^2}$$

(FONSECA & MARTINS 1995; BARBETTA et al., 2004; BUSSAB & MORETTIN, 2004; SPIEGEL et al., 2004), na qual e é a semiamplitude do intervalo de confiança (fixado em 0,5 horas dia⁻¹), t_{c/2} é o valor da distribuição

Tabela 1 - Valores de P obtidos no teste de aleatoriedade (*run test*) em relação a 360 séries temporais de média mensal de insolação diária, em horas dia⁻¹, em locais do Estado do Rio Grande do Sul.

Local	Mês													
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez		
Alegrete	0,222	0,925	0,300	0,727	0,393	0,861	0,214	0,460	0,879	0,999	0,603	0,37		
Bagé	0,999	0,289	0,999	0,001	0,183	0,367	0,139	0,921	0,654	0,103	0,871	0,31		
Bom Jesus	0,614	0,999	0,742	0,131	0,171	0,222	0,961	0,734	0,641	0,999	0,640	0,22		
Cachoeirinha	0,999	0,999	0,522	0,733	0,999	0,841	0,566	0,566	0,999	0,329	0,841	0,74		
Caxias do Sul	0,285	0,881	0,369	0,367	0,367	0,048	0,445	0,649	0,009	0,095	0,091	0,01		
Cruz Alta	0,617	0,727	0,461	0,305	0,727	0,999	0,999	0,685	0,900	0,614	0,877	0,27		
Encruzilhada do Sul	0,973	0,016	0,237	0,132	0,100	0,296	0,053	0,345	0,284	0,057	0,891	0,21		
Erechim	0,096	0,872	0,641	0,647	0,204	0,999	0,996	0,431	0,582	0,755	0,872	0,99		
Farroupilha	0,214	0,318	0,804	0,039	0,865	0,004	0,006	0,696	0,406	0,320	0,925	0,61		
Guaíba	0,818	0,310	0,999	0,661	0,999	0,114	0,503	0,827	0,932	0,992	0,827	0,99		
Ijuí	0,272	0,852	0,995	0,002	0,874	0,008	0,752	0,874	0,927	0,603	0,999	0,99		
Iraí	0,724	0,754	0,357	0,054	0,241	0,051	0,754	0,777	0,999	0,213	0,333	0,57		
Júlio de Castilhos	0,887	0,827	0,466	0,026	0,639	0,572	0,163	0,582	0,244	0,094	0,754	0,11		
Maquiné	0,466	0,763	0,763	0,494	0,977	0,089	0,999	0,795	0,070	0,007	0,908	0,49		
Passo Fundo	0,871	0,999	0,871	0,057	0,999	0,345	0,193	0,103	0,325	0,484	0,891	0,44		
Pelotas	0,539	0,999	0,189	0,180	0,654	0,999	0,482	0,601	0,085	0,734	0,461	0,92		
Porto Alegre	0,871	0,057	0,179	0,103	0,999	0,000	0,462	0,999	0,591	0,193	0,973	0,05		
Quaraí	0,500	0,618	0,152	0,748	0,887	0,823	0,006	0,267	0,999	0,641	0,128	0,15		
Rio Grande	0,891	0,301	0,663	0,301	0,999	0,174	0,388	0,999	0,325	0,301	0,522	0,83		
Santa Maria	0,515	0,132	0,889	0,237	0,237	0,999	0,048	0,539	0,228	0,598	0,149	0,01		
Santa Rosa	0,710	0,088	0,640	0,154	0,672	0,060	0,822	0,047	0,957	0,822	0,999	0,46		
Santa Vitória do Palmar	0,839	0,543	0,999	0,007	0,825	0,369	0,889	0,547	0,274	0,379	0,011	0,87		
São Borja	0,999	0,999	0,996	0,101	0,096	0,410	0,507	0,236	0,069	0,661	0,611	0,31		
São Gabriel	0,865	0,314	0,880	0,183	0,882	0,882	0,367	0,742	0,101	0,385	0,371	0,24		
São Luiz Gonzaga	0,891	0,347	0,881	0,103	0,690	0,025	0,212	0,867	0,644	0,891	0,074	0,21		
Taquari	0,709	0,128	0,141	0,709	0,253	0,258	0,480	0,824	0,999	0,999	0,542	0,56		
Torres	0,700	0,994	0,363	0,592	0,468	0,003	0,468	0,468	0,832	0,460	0,098	0,48		
Uruguaiana	0,106	0,999	0,827	0,040	0,100	0,839	0,296	0,999	0,964	0,548	0,656	0,21		
Vacaria	0,452	0,999	0,999	0,001	0,824	0,018	0,866	0,452	0,557	0,999	0,999	0,23		
Veranópolis	0,406	0,999	0,365	0,518	0,742	0,019	0,418	0,869	0,999	0,813	0,572	0,88		

t de Student, cuja área à direita é igual a $\alpha/2$, isto é, é o valor de t, tal que: $P(t>t_{\alpha/2})=\alpha/2$, com (n-1) graus de liberdade, com $\alpha=5\%$ de probabilidade de erro, n é o número de anos de observações em cada série e s² é a variância amostral. O tamanho de amostra (η) foi calculado iterativamente até sua convergência.

RESULTADOS E DISCUSSÃO

O valor de P (nível mínimo de significância) do teste de aleatoriedade (run test), em relação a 360 séries temporais de média mensal de insolação diária, oscilou entre 0,000 e 0,999, e a média dos 360 valores de P foi de 0,539. Em nível de 5% de probabilidade de erro, valor comumente utilizado, o valor de P do teste de aleatoriedade evidenciou que, no período estudado, em 335 séries temporais (93,05%), a média mensal de insolação diária não apresentou tendência de acréscimo

ou decréscimo (Tabela 1). Percentuais semelhantes foram obtidos em relação à aleatoriedade de 312 séries de radiação solar global (BURIOL et al., 2006) e 228 séries temporais de precipitação pluviométrica mensal de locais do Estado do Rio Grande do Sul (CARGNELUTTI FILHO et al., 2010).

Em 25 séries temporais (6,95%), houve evidências de possíveis tendências (P≤0,05). Maior número de séries não aleatórias ocorreu nos meses de abril e junho, que apresentaram, respectivamente, sete e oito locais com séries não aleatórias. As demais 10 séries não aleatórias ocorreram nos meses de fevereiro, julho, agosto, setembro, outubro, novembro e dezembro. Nesses 25 casos, o coeficiente de correlação de Kendall oscilou entre -0,529 e 0,347, e houve 14 coeficientes significativos (P≤0,05), sendo dois positivos e os demais negativos. Por outro lado, nos demais 11 casos, apesar do *run test* detectar não

aleatoriedade (P≤0,05), o coeficiente de correlação de Kendall não confirmou tal inferência. Diferenças de poder dos diferentes testes podem explicar tal discordância. Esses resultados sugerem evidências predominantes de decréscimo da média mensal de insolação diária em determinados meses de alguns locais. No entanto, estudos mais detalhados sobre a tendência da média mensal de insolação diária são necessários para conclusões definitivas e não são objetos de estudo deste trabalho.

Nas 360 séries temporais, o valor de *P* do teste Kolmogorov-Smirnov oscilou entre 0,175 e 0,999, e a média foi de 0,814 (Tabela 2). Esses resultados evidenciam boa aderência dos dados de média mensal de insolação diária à distribuição normal (P>0,174). O número de anos de observações oscilou entre 16 e 46 anos, e a média entre as 360 séries temporais foi de 37 anos. De acordo com o teorema limite central, mesmo

que a população básica seja não normal, a distribuição da média amostral será aproximadamente normal para amostras superiores a 30 observações (FONSECA & MARTINS 1995; BUSSAB & MORETTIN, 2004). Então, de maneira geral, diante das considerações em relação à aleatoriedade, à normalidade e ao número de observações, pode-se inferir que os dados dessas 360 séries temporais de média mensal de insolação diária conferem credibilidade ao estudo do tamanho de amostra (SIEGEL & CASTELLAN JÚNIOR, 2006).

Diante da boa aderência dos dados de média mensal de insolação diária à distribuição normal, nas 360 séries temporais, pode-se inferir a adequabilidade da média como medida de tendência central. Entre as 360 séries temporais, a média da média mensal de insolação diária oscilou entre 3,97 horas dia-1 no mês de junho, em Bagé, e 9,36 horas dia-1 no mês de dezembro, em Alegrete (Tabela 3). Os maiores escores

Tabela 2 - Valores de P obtidos no teste de normalidade (Kolmogorov-Smirnov) em relação a 360 séries temporais de média mensal de insolação diária, em horas dia 1, em locais do Estado do Rio Grande do Sul.

Local				Mês								
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Alegrete	0,994	0,885	0,379	0,992	0,977	0,913	0,715	0,692	0,690	0,992	0,815	0,732
Bagé	0,836	0,917	0,993	0,729	0,872	0,639	0,628	0,953	0,868	0,705	0,932	0,930
Bom Jesus	0,983	0,911	0,928	0,837	0,998	0,871	0,989	0,927	0,543	0,692	0,825	0,932
Cachoeirinha	0,826	0,888	0,804	0,573	0,781	0,999	0,844	0,978	0,626	0,701	0,890	0,776
Caxias do Sul	0,981	0,566	0,774	0,894	0,871	0,734	0,792	0,849	0,988	0,759	0,876	0,919
Cruz Alta	0,878	0,999	0,995	0,980	0,595	0,498	0,874	0,903	0,496	0,946	0,979	0,762
Encruzilhada do Sul	0,591	0,834	0,784	0,877	0,941	0,943	0,975	0,852	0,646	0,788	0,920	0,787
Erechim	0,994	0,970	0,810	0,614	0,680	0,999	0,645	0,725	0,969	0,718	0,941	0,581
Farroupilha	0,953	0,999	0,685	0,931	0,996	0,393	0,320	0,960	0,725	0,383	0,653	0,686
Guaíba	0,997	0,916	0,976	0,882	0,977	0,712	0,337	0,776	0,736	0,856	0,978	0,978
Ijuí	0,537	0,961	0,923	0,884	0,952	0,399	0,809	0,545	0,909	0,404	0,969	0,940
Iraí	0,691	0,917	0,957	0,851	0,990	0,998	0,738	0,899	0,810	0,984	0,618	0,763
Júlio de Castilhos	0,537	0,975	0,992	0,942	0,903	0,584	0,521	0,904	0,665	0,842	0,991	0,973
Maquiné	0,978	0,974	0,817	0,883	0,386	0,521	0,923	0,934	0,798	0,899	0,949	0,710
Passo Fundo	0,957	0,998	0,999	0,893	0,958	0,919	0,801	0,586	0,217	0,738	0,849	0,994
Pelotas	0,929	0,641	0,925	0,981	0,958	0,787	0,929	0,928	0,627	0,542	0,440	0,779
Porto Alegre	0,985	0,478	0,902	0,925	0,951	0,931	0,932	0,487	0,193	0,988	0,923	0,962
Quaraí	0,344	0,757	0,920	0,993	0,991	0,804	0,677	0,994	0,899	0,996	0,979	0,999
Rio Grande	0,958	0,862	0,973	0,989	0,817	0,999	0,543	0,579	0,526	0,553	0,878	0,853
Santa Maria	0,491	0,810	0,803	0,852	0,817	0,450	0,759	0,726	0,932	0,983	0,990	0,232
Santa Rosa	0,971	0,922	0,921	0,724	0,993	0,371	0,895	0,756	0,798	0,683	0,758	0,927
Santa Vitória do Palmar	0,982	0,958	0,752	0,866	0,600	0,553	0,910	0,739	0,833	0,387	0,966	0,555
São Borja	0,673	0,984	0,965	0,981	0,977	0,374	0,986	0,923	0,664	0,547	0,975	0,993
São Gabriel	0,875	0,740	0,999	0,903	0,992	0,581	0,981	0,579	0,705	0,916	0,954	0,996
São Luiz Gonzaga	0,765	0,946	0,890	0,863	0,988	0,939	0,715	0,981	0,979	0,973	0,288	0,772
Taquari	0,978	0,918	0,840	0,791	0,972	0,883	0,486	0,950	0,921	0,986	0,862	0,828
Torres	0,964	0,696	0,996	0,965	0,726	0,967	0,981	0,883	0,875	0,988	0,637	0,548
Uruguaiana	0,764	0,308	0,963	0,848	0,974	0,809	0,996	0,971	0,175	0,993	0,885	0,980
Vacaria	0,356	0,403	0,381	0,992	0,987	0,867	0,882	0,857	0,481	0,998	0,998	0,851
Veranópolis	0,891	0,974	0,933	0,988	0,795	0,912	0,653	0,987	0,564	0,529	0,694	0,515

Tabela 3 - Estimativa da média (m) de cada uma das 360 séries temporais de média mensal de insolação diária, em horas dia⁻¹, em locais do Estado do Rio Grande do Sul.

Local	Mês													
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez		
Alegrete	8,95	8,34	7,51	6,90	6,25	4,98	5,36	5,75	6,21	7,51	8,75	9,36		
Bagé	7,86	7,05	6,41	5,43	5,07	3,97	4,49	4,48	5,11	6,41	7,45	8,19		
Bom Jesus	6,30	5,95	5,89	5,36	4,89	4,31	4,52	4,52	4,76	5,79	6,57	6,45		
Cachoeirinha	7,99	7,48	7,09	6,15	5,54	4,65	4,80	4,99	5,58	6,41	7,63	8,04		
Caxias do Sul	6,99	6,59	6,22	5,72	5,41	4,72	4,99	5,01	5,16	5,92	6,80	7,20		
Cruz Alta	7,97	7,45	7,14	6,34	5,81	4,91	5,39	5,52	5,75	6,83	7,71	8,29		
Encruzilhada do Sul	7,58	6,79	6,44	5,64	5,29	4,50	4,69	4,77	4,90	5,81	7,18	7,72		
Erechim	7,70	7,27	6,92	6,35	5,96	5,37	5,60	6,08	5,94	6,65	7,70	8,04		
Farroupilha	7,26	6,67	6,26	5,92	5,27	4,47	4,85	5,04	5,26	6,06	6,95	7,14		
Guaíba	8,05	7,62	6,84	6,47	5,66	4,82	5,29	5,32	5,82	6,83	7,84	8,63		
Ijuí	8,11	7,72	7,17	6,60	5,92	4,94	5,44	5,60	5,74	7,13	7,72	8,22		
Iraí	7,82	7,09	6,74	6,05	5,44	4,68	5,15	5,05	4,91	6,18	7,39	8,12		
Júlio de Castilhos	8,57	8,12	7,42	6,65	6,01	5,11	5,33	5,78	6,02	7,29	8,37	8,97		
Maquiné	6,45	6,21	6,20	5,48	5,49	5,12	4,93	5,06	4,88	5,79	6,68	6,76		
Passo Fundo	7,75	7,33	6,74	6,15	5,85	5,12	5,45	5,38	5,21	6,28	7,54	8,20		
Pelotas	8,16	7,24	6,83	6,21	5,62	4,74	4,87	5,26	5,42	6,44	7,83	8,57		
Porto Alegre	7,71	7,14	6,64	5,82	5,23	4,37	4,62	4,82	5,08	6,17	7,22	7,73		
Quaraí	8,92	8,20	7,49	6,72	5,85	4,68	5,33	5,93	6,52	7,52	8,67	8,93		
Rio Grande	8,25	7,34	6,60	5,82	5,27	4,25	4,38	4,81	5,16	6,25	7,42	8,32		
Santa Maria	7,63	7,01	6,49	5,67	5,09	4,16	4,50	4,81	5,20	6,38	7,42	7,97		
Santa Rosa	7,73	7,72	7,21	6,14	5,49	4,79	5,46	5,86	5,86	6,66	7,46	7,85		
Santa Vitória do Palmar	8,59	7,64	6,83	6,24	5,46	4,59	4,76	5,18	5,50	6,57	7,83	8,40		
São Borja	9,06	8,41	7,69	6,75	6,30	5,37	5,59	5,98	6,39	7,67	8,80	9,29		
São Gabriel	8,56	7,77	7,46	6,48	5,81	4,65	5,05	5,65	6,14	7,20	8,23	8,9		
São Luiz Gonzaga	7,52	7,12	6,93	6,14	5,71	4,51	5,04	5,23	5,27	6,30	7,19	7,60		
Taquari	8,34	7,68	6,92	6,44	5,78	4,80	5,13	5,15	5,57	6,79	7,78	8,39		
Torres	6,81	6,43	6,17	6,27	5,75	4,95	5,32	5,13	4,93	5,75	6,44	7,0		
Uruguaiana	8,75	7,83	7,05	6,22	5,72	4,45	5,17	5,68	6,14	7,15	8,41	8,8		
Vacaria	7,21	6,94	6,26	5,83	5,43	4,72	5,29	5,52	5,46	6,48	7,06	7,60		
Veranópolis	7,50	7,32	6,86	6,29	5,81	5,24	5,54	5,54	5,79	6,74	7,48	7,8		

de média mensal de insolação diária ocorreram nos meses de dezembro e janeiro, com diminuição gradativa em direção aos meses centrais do ano (junho e julho). Comportamento semelhante foi observado em relação à radiação solar, em locais do Estado do Rio Grande do Sul (CARGNELUTTI FILHO et al., 2004), e a ocorrência desse comportamento foi atribuída ao solstício de verão, que acontece na segunda quinzena de dezembro, com redução gradativa da insolação e aumento da declinação solar até o solstício de inverno, na segunda quinzena de junho.

O teste de Bartlett aplicado entre as variâncias dos 12 meses, em cada local, constatou que estas foram heterogêneas (P≤0,05) em Encruzilhada do Sul, Porto Alegre, Santa Maria e Santa Vitória do Palmar, o que indica tamanho de amostra diferenciado entre os meses nesses locais. Nos outros 26 locais (86,67%), as variâncias foram homogêneas, o que revela que, para

esses locais, o uso da média do tamanho de amostra entre os meses é adequado para estimar a média mensal de insolação diária. Entre as variâncias dos 30 locais, o teste de Bartlett identificou variâncias heterogêneas no mês de dezembro e homogêneas nos demais meses (Tabela 4). Isso indica que o tamanho de amostra deve ser específico para cada local no mês de dezembro e para os demais meses usar a média dos 30 locais é adequado para todos os meses. De maneira geral, predomínio de variâncias heterogêneas no tempo (entre meses e decêndios) e no espaço (entre locais) tem sido constatado em relação às séries temporais de elementos meteorológicos (CARGNELUTTI FILHO et al., 2006a, 2006b, 2007, 2010; MARTIN et al., 2008). No presente estudo, os resultados evidenciaram um predomínio de homogeneidade de variâncias entre os 12 meses, em cada local, e entre os locais nos 12 meses. Mesmo assim, não é adequado estimar o tamanho de amostra

Tabela 4 - Tamanho de amostra (número de anos) para a estimativa da média mensal de insolação diária em locais do Estado do Rio Grande do Sul, com 95% de confiança e semiamplitude do intervalo de confiança de 0,5 horas dia⁻¹. Valor calculado do teste de Bartlett das variâncias entre os meses em cada local (χ^2_{calc} mês) e das variâncias entre os locais em cada mês (χ^2_{calc} local).

Local						M	ês						Média	χ^2_{calc}	
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez		mês	
Alegrete	20	32	15	24	18	20	19	21	20	21	28	20	22	9	
Bagé	23	29	16	24	12	18	17	22	16	23	20	17	20	19	
Bom Jesus	28	21	15	27	22	22	22	25	20	20	23	22	22	6	
Cachoeirinha	24	24	19	18	16	11	14	21	14	19	17	12	17	13	
Caxias do Sul	31	23	24	28	25	22	16	27	27	23	27	25	25	8	
Cruz Alta	21	24	17	23	19	20	24	29	14	19	25	15	21	11	
Encruzilhada do Sul	36	37	21	30	21	19	19	24	18	33	30	35	27	24	
Erechim	29	33	21	23	24	22	24	23	16	23	27	29	25	9	
Farroupilha	30	25	17	28	19	14	15	24	17	22	23	19	21	15	
Guaíba	20	29	19	28	18	14	21	22	11	17	21	18	20	12	
Ijuí	24	24	13	29	25	16	18	19	22	17	21	21	21	10	
Iraí	25	25	19	24	16	14	16	17	22	22	33	17	21	17	
Júlio de Castilhos	31	26	17	24	19	18	19	18	19	22	18	18	21	10	
Maquiné	19	25	17	13	16	12	21	22	16	22	24	10	18	12	
Passo Fundo	25	27	20	25	18	14	16	22	22	21	21	17	21	12	
Pelotas	27	31	17	22	14	20	17	20	12	21	18	21	20	17	
Porto Alegre	30	25	13	22	16	12	15	19	18	23	16	19	19	25	
Quaraí	27	27	17	23	17	21	22	21	16	20	16	16	20	11	
Rio Grande	29	30	19	25	19	19	20	19	16	28	25	16	22	17	
Santa Maria	44	41	23	31	29	20	24	29	22	26	27	41	30	20	
Santa Rosa	26	25	19	27	28	16	21	20	14	26	19	15	21	13	
Santa Vitória do Palmar	20	30	16	14	14	23	15	15	14	22	20	16	18	21	
São Borja	25	22	15	24	18	21	15	20	14	19	24	15	19	12	
São Gabriel	30	32	17	34	25	16	18	23	19	20	28	22	24	16	
São Luiz Gonzaga	34	26	17	30	22	21	21	21	20	27	25	28	24	12	
Taquari	27	29	12	29	19	16	19	25	23	17	19	18	21	14	
Torres	19	29	15	22	20	15	20	23	14	21	23	20	20	10	
Uruguaiana	29	41	21	36	23	24	18	21	23	29	28	21	26	18	
Vacaria	30	27	18	29	21	14	19	18	16	26	19	20	21	12	
Veranópolis	27	24	18	26	19	16	13	22	19	22	20	23	21	12	
Média	27	28	18	25	20	18	19	22	18	22	23	20	22	-	
χ^2_{calc} local	24	20	20	26	33	31	20	16	33	17	26	64*	_	_	

^{*} Significativo a 5% de probabilidade de erro pelo teste de Bartlett.

único para todas as 360 combinações (12 meses x 30 locais) devido à heterogeneidade em determinados casos. O que pode ser considerado é que, nos casos de variâncias homogêneas, pode-se usar a média como tamanho de amostra adequado, já no caso de variâncias heterogêneas o tamanho de amostra de cada combinação mês e local deve ser utilizado.

O tamanho de amostra (número de anos) para a estimação da média (m) da média mensal de insolação diária, em locais do Estado do Rio Grande do Sul, com semiamplitude do intervalo de confiança igual a 0,5 horas dia⁻¹ e grau de confiança de 95%, oscilou entre 10 anos no mês de dezembro, em Maquiné, e 44 anos no mês de janeiro, em Santa Maria (Tabela 4).

Portanto, em relação ao mês de dezembro em Maquiné, pode-se inferir, com 95% de confiança, que o intervalo de confiança da média da média mensal de insolação diária obtida com 10 anos de observações é de média±0,5 horas dia⁻¹. Em outro extremo, a precisão de média±0,5 horas dia⁻¹ é obtida com 44 anos de observações, em relação ao mês de janeiro, em Santa Maria. Portanto, tomando-se como referência o maior tamanho de amostra (mês de janeiro em Santa Maria), pode-se inferir, com 95% de confiança, que, com o uso de 44 anos de observações, o erro máximo na estimativa da média (m) da média mensal de insolação diária será de ±0,5 horas dia⁻¹, independentemente do mês e do local.

CONCLUSÃO

O tamanho de amostra (número de anos), para a estimativa da média mensal de insolação diária no Estado do Rio Grande do Sul, é dependente do mês e do local. Para os meses e locais estudados, 44 anos de observações são suficientes para estimar a média mensal de insolação diária, para um erro de estimação de, no máximo, ±0,5 horas dia-1, com grau de confiança de 95%.

AGRADECIMENTOS

Aos pesquisadores, aos técnicos, aos observadores meteorológicos, aos estagiários e às demais pessoas que de alguma forma contribuíram para a realização deste trabalho; e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão de bolsa de produtividade em pesquisa para Alberto Cargnelutti Filho.

REFERÊNCIAS

BARBETTA, P.A. et al. **Estatística para cursos de engenharia e informática**. São Paulo: Atlas, 2004. 410p.

BURIOL, G.A. et al. Homogeneidade da radiação solar global medida nas estações agrometeorológicas da Fundação Estadual de Pesquisa Agropecuária do Estado do Rio Grande do Sul, Brasil. **Pesquisa Agropecuária Gaúcha**, v.12, p.65-72, 2006.

BUSSAB, W.O.; MORETTIN, P.A. Estatística básica. 5.ed. São Paulo: Saraiva, 2004. 526p.

CAMPOS, H. de. **Estatística experimental nãoparamétrica**. 4.ed. Piracicaba: Departamento de Matemática e Estatística - ESALQ, 1983. 349p.

CARGNELUTTI FILHO, A. et al. Ajustes de funções de distribuição de probabilidade à radiação solar global no Estado do Rio Grande do Sul. **Pesquisa Agropecuária Brasileira**, v.39, p.1157-1166, 2004. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2004001200001&lng=pt&nrm=iso. Acesso em: 12 jan. 2010. doi: 10.1590/S0100-204X2004001200001.

CARGNELUTTI FILHO, A. et al. Dimensionamento da amostra para a estimação da média de precipitação pluvial mensal em diferentes locais do Estado do Rio Grande do Sul. Ciência Rural, v.40, p.12-19, 2010. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782010000100003&lng=pt&nrm=iso. Acesso em: 16 jun. 2010. doi: 10.1590/S0103-84782009005000226.

CARGNELUTTI FILHO, A. et al. Tamanho de amostra para a estimativa das médias decendiais de radiação solar global no estado do Rio Grande do Sul. **Ciência e Agrotecnologia**, v.31, p.1402-1410, 2007. Disponível em: ">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542007000500020&lng=pt&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542007000500020&lng=pt&nrm=iso>">http://www.scielo.br/scielo.php?scielo.

CARGNELUTTI FILHO, A. et al. Variabilidade temporal e espacial do tamanho de amostra da temperatura mínima do ar no Rio Grande do Sul, Brasil. **Ciência Rural**, v.36, p.1156-1163, 2006a. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782006000400018&lng=pt&nrm=iso. Acesso em: 12 jan. 2010. doi: 10.1590/S0103-84782006000400018.

CARGNELUTTI FILHO, A. et al. Variabilidade temporal e espacial do tamanho de amostra para estimativa das médias mensais de temperatura máxima do ar no Estado do Rio Grande do Sul. **Revista Brasileira de Agrometeorologia**, v.14, p.87-95, 2006b.

CARGNELUTTI FILHO, A. et al. Variabilidade temporal e espacial da precisão das estimativas de elementos meteorológicos no Rio Grande do Sul. **Ciência Rural**, v.39, p.962-970, 2009. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-8478200900400002&lng=pt&nrm=iso. Acesso em: 12 jan. 2010. doi: 10.1590/S0103-84782009005000051.

FONSECA, J.S.; MARTINS, G.A. Curso de estatística. 5.ed. São Paulo: Atlas, 1995. 317p.

MARTIN, T.N. et al. Regiões homogêneas e tamanho de amostra para atributos do clima no Estado de São Paulo, Brasil. **Ciência Rural**, v.38, p.690-697, 2008. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782008000300015&lng=pt&nrm=iso. Acesso em: 12 jan. 2010. doi: 10.1590/S0103-84782008000300015.

SIEGEL, S.; CASTELLAN JÚNIOR, N.J. **Estatística nãoparamétrica para ciências do comportamento**. 2.ed. Porto Alegre: Artmed, 2006. 448p.

SPIEGEL, R.A. et al. **Probabilidade e estatística**. 2.ed. Porto Alegre: Bookman, 2004. 398p.

STEEL, R.G.D. et al. **Principles and procedures of statistics a biometrical approach**. 3.ed. Nova York: McGraw-Hill, 1997. 666p.

VAREJÃO-SILVA, M.A. **Meteorologia e Climatologia**. Ministério da Agricultura e do Abastecimento. 2.ed. Brasília: INMET, 2001. 532p.

WORLD METEOROLOGICAL ORGANIZATION (WMO). Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, 2004. 29p. (WMO/TD n. 1244). Disponível em: http://www.wmo.int/pages/prog/gcos/Publications/gcos-92_GIP_ES.pdf. Acesso em: 09 abr. 2010.