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INTRODUCTION

Urban feral pigeons (Columba livia f. 
urbana) are birds with a worldwide distribution 
commonly reported in most large cities (fERMAN et 
al., 2010; Gargiulo et al., 2014; Spennemann 
& Watson, 2017). The large population densities of 

urban pigeons in cities are mainly related to the large 
availability of food, lack or less number of predators, 
and the built environment resembling the original 
habitat of urban pigeon ancestors (Spennemann 
& Watson, 2017). They are known for their 
capacity to harbor and spread several zoonotic agents, 
such as Cryptococcus neoformans and Salmonella 
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ABSTRACT: Pigeons are known for their capacity to harbor and spread several zoonotic agents. Studies have suggested that pigeons are 
also relevant disseminators of multidrug-resistant strains. In this study, pigeons surrounding a veterinary hospital were sampled and tested 
for the presence of pathogenic Escherichia coli, Salmonella spp., Staphylococcus spp., and Clostridioides (Clostridium) difficile. E. coli 
isolates from 19 (40.4%) pigeons tested positive for the E. coli heat-stable enterotoxin 1 (EAST1)-encoding gene. The intimin-encoding gene 
(eae) of enteropathogenic E. coli (EPEC) was found in one isolate (2.1%). Salmonella spp. were found in nine (19.1%) pigeons, all from 
the first capture event (P < 000.1). S. Typhimurium and S. Heidelberg were isolated from six and three pigeons, respectively. Enterobacterial 
repetitive intergenic consensus (ERIC-PCR) of the Salmonella spp. isolates suggested that eight of the nine strains had a high genetic similarity, 
supporting the hypothesis of an outbreak of salmonellosis in these pigeons. Twenty (42.5%) staphylococcal isolates were recovered from 18 
(38.3%) pigeons. Eight different species were detected, with S. xylosus being the most frequent. Two (4.3%) C. difficile strains were isolated. 
Three isolates, one each of S. Typhimurium, S. aureus, and C. difficile, were classified as multidrug-resistant strains. The present research 
suggested that pigeons residing in urban areas can act as reservoirs and disseminators of pathogenic bacteria, including nosocomial pathogens, 
such as diarrheagenic E. coli and multidrug-resistant Staphylococcus spp., C. difficile, and Salmonella spp. 
Key words: Salmonella, Clostridioides (Clostridium) difficile, pigeons, Staphylococcus, synanthropes.

RESUMO: Pombos urbanos são conhecidos pela sua capacidade de carrear e disseminar diversos agentes zoonóticos. Estudos tem sugerido 
que pombos são também relevantes na disseminação de estirpes resistentes a múltiplas drogas. No presente estudo, pombos no ambiente de um 
hospital veterinário foram amostrados em três diferentes períodos e testados para a presença de Escherichia coli patogênica, Salmonella spp., 
Staphylococcus spp. e Clostridioides (Clostridium) difficile. Isolados de E. coli de 19 pombos (40.4%) foram positivos para o gene codificador 
da toxina EAST1. O gene codificador de intimina (eae) do patotipo E. coli enteropatogênica foi encontrada em um isolado (2.1%). Salmonella 
spp. foi encontrada em nove pombos (19.1%), sendo todos isolados do primeiro período de captura (P < 000.1). S. Typhimurium foi isolado 
de seis animais e S. Heidelberg de três. A tipagem molecular de isolados de Salmonella spp. por ERIC-PCR demonstrou que oito estirpes 
possuíam alta similaridade genética entre si, sugerindo a ocorrência de um surto de salmonelose nos animais carreadores. Vinte Staphylococcus 
(42.5%) foram isolados de 18 animais (38.3%). Oito diferentes espécies foram detectadas, sendo S. xylosus a mais frequente. Duas estirpes 
de C. difficile não-toxigênica (4.3%) foram isoladas. Uma estirpe de S. Typhimurium, uma de S. aureus e um isolado de C. difficile foram 
classificados como resistentes a múltiplas drogas antimicrobianas. O presente estudo sugere que pombos capturados no ambiente do hospital 
veterinário podem atuar como reservatórios e disseminadores de bactérias patogênicas e envolvidas em infecção hospitalar, incluindo E. coli 
diarreiogênica e Staphylococcus sp., C. difficile e Salmonella spp multirresistente.
Palavras-chave: Salmonella, Clostridioides (Clostridium) difficile, pestes, Staphylococcus, sinantrópicos.
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spp. (Haag-Wackernagel & Moch, 2004; 
DuttA et al., 2013; Haesendonck et al., 2016; 
Spennemann & Watson, 2017). Recently, 
studies have suggested that pigeons can also be 
relevant carriers of multidrug-resistant (MDR) 
bacteria (Borges et al., 2017; Torres-Mejía et 
al., 2018; Cunha et al., 2019). Thus, close contact 
with pigeons and their feces is a risk for people who 
frequently share the same environment with these 
animals (Haag-Wackernagel & Moch, 
2004; Tanaka et al., 2005; Gargiulo et al., 
2014). This is the scenario for employees, students, 
owners, and animals in the Veterinary Hospital of the 
Federal University of Minas Gerais (HV-UFMG), 
where the pigeon population has increased markedly 
in the last few years.

Despite the known importance of pigeons 
as reservoirs of several pathogens, no studies have 
evaluated them in a university environment, and their 
possible role in the epidemiology of some relevant 
nosocomial infections in companion animals is still 
unknown. In addition, the presence of Staphylococcus 

sp. and Clostridioides (previously Clostridium) 
difficile in pigeons has been reported in a few studies; 
however, none of the studies have been conducted in 
Brazil. Thus, this study investigated the occurrence 
and antimicrobial susceptibility of enteric bacteria 
isolated from pigeons captured in an urban area 
surrounding a veterinary hospital in Belo Horizonte, 
Minas Gerais, Brazil.

MATERIALS   AND   METHODS

Samples
This study was conducted at the Veterinary 

Hospital of the Federal University of Minas Gerais 
(HV-UFMG), which receives approximately 35,000 
animals per year, including dogs, cats, horses, 
cattle, and wild animals. It is located inside the 
university campus and is surrounded by a green area 
(Figure 1). This study was motivated by the increase 
in pigeon population in the last few years in HV-
UFMG, raising the need for a better understanding 
of the risks associated with these birds. Forty-seven 

Figure 1 - Mapping showing the location of the Veterinary School of Federal University of Minas Gerais, located in 
the city of Belo Horizonte, Minas Gerais, Brazil. A. Map of Brazil with the location of the Minas Gerais 
state. B. Map of Minas Gerais state with the location of Belo Horizonte. C. Map of Belo Horizonte showing 
the location of the Federal University of Minas Gerais and the Veterinary School. 
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pigeons (Columba livia) were sampled after three 
capture campaigns (January/2019, July/2019, and 
January/2020), captured using mist nets (30 mm 
mesh size; four shelves, ap. 3 m high x 9 m length) 
during early mornings, in places where large animals 
fed. The first capture event occurred in January 
2019 during the wet season, with a monthly mean 
precipitation of 2.3 mm and a mean temperature of 
25.6 ºC (INMET, 2019), with 18 birds captured. The 
second capture event occurred in July of the same 
year during the dry season, with 0 mm of precipitation 
and a mean temperature of 19.2 ºC (INMET, 2019), 
with 13 birds captured. The third and last capture 
occurred in January 2020, with a monthly mean 
precipitation of 1.3 mm and a mean temperature of 
21.5 °C (INMET, 2020), with 16 birds captured. The 
pigeons were physically restrained, given colored 
leg rings for identification and monitoring purposes, 
and left to rest in individual cages. Fresh feces were 
collected immediately after dropping and stored 
in microtubes using sterile spatulas (Rosario 
Medina et al., 2017). The samples were stored in a 
transport box with ice packs and sent to the Bacterial 
and Research Laboratory of the Veterinary School of 
UFMG for immediate processing. Each pigeon was 
returned to its environment once sample collection 
was completed. 

Escherichia coli
For E. coli isolation, the samples were plated 

onto MacConkey agar (Difco, USA) and incubated at 
37 °C for 24 h (RAMOS et al., 2019a). Three lactose-
fermenting colonies were identified using polymerase 
chain reaction (PCR) and subjected to subsequent 
reactions for phylogenetic group characterization 
(A, B1, B2, C, D, E, and F) (McDaniels et 
al., 1996; Clermont et al., 2013). Virulence 
genes associated with pathogenic E. coli, such as 
enterotoxigenic E. coli (ETEC), enteropathogenic E. 
coli (EPEC), Shiga toxin-producing E. coli (STEC), 
enterohemorrhagic E. coli (EHEC), necrotoxigenic 
E. coli (NTEC), and enteroaggregative E. coli 
(EAEC), were also identified using PCR (Blanco 
et al., 1996; Yamamoto & Nakazawa, 1997; 
Franck et al., 1998). Antibiotic resistance patterns 
of all E. coli isolates that tested positive for virulence 
factors were evaluated using the disc diffusion 
method (DDM), according to the Clinical and 
Laboratory Standards Institute (CLSI) manual (CLSI, 
2017; CLSI, 2018). The following antimicrobial 
agents, commonly used in human and animal clinical 
practice, were tested: chloramphenicol (30 μg), 
trimethoprim/sulfamethoxazole (25 μg), ceftriaxone 

(30 μg), ceftiofur (30 μg), amoxicillin/clavulanic 
acid (30 μg), ampicillin (10 μg), tetracycline (30 μg), 
enrofloxacin (5 μg), ciprofloxacin (5 μg), gentamicin 
(10 μg), and amikacin (30 μg) (DME, BRA).

Salmonella spp.
For Salmonella spp. isolation, cloacal 

samples were pre-enriched in Rappaport broth (Oxoid, 
USA) and plated onto Hektoen enteric agar (Oxoid, 
USA) (RAMOS et al., 2019a). Sulfite-reducing 
colonies were identified as Salmonella spp. by genus-
specific PCR, according to KUANG et al. (2015). 
Antigenic characterization was done according to the 
White-Kauffmann-Le Minor Scheme (Le Minor & 
Popoff, 1987) at the Brazilian National Reference 
Laboratory of Enterobacteria of the Oswaldo Cruz 
Foundation, followed by species, subspecies, and 
serotype identification (Grimont & Weill, 
2007). Salmonella spp. strains were fingerprinted 
using enterobacterial repetitive intergenic consensus 
(ERIC)-PCR and analyzed using Bionumerics 7.6 
software (Applied Maths NV, Belgium) to evaluate 
the genetic diversity between isolates from different 
pigeon samples (Versalovic et al., 1991; 
Ramos et al., 2019b). Additionally, DDM was used 
to evaluate the resistance patterns of Salmonella spp. 
isolates to antimicrobial agents (CLSI, 2017; CLSI, 
2018) using the following drugs: chloramphenicol 
(30 μg), trimethoprim/sulfamethoxazole (25 μg), 
ceftriaxone (30 μg), ceftiofur (30 μg), amoxicillin/
clavulanic acid (30 μg), ampicillin (10 μg), tetracycline 
(30 μg), nalidixic acid (30 μg), enrofloxacin (5 μg), 
and ciprofloxacin (5 μg) (DME, BRA).

Staphylococcus spp.
For Staphylococcus spp. isolation, fecal 

samples were first suspended in 0.85% saline 
solution. The resultant solution (100 μL) was then 
streaked onto mannitol salt agar (Difco Laboratories 
Inc., USA), which was incubated at 37 °C for 24 h. 
Colonies were sub-cultured on brain heart infusion 
agar (Difco Laboratories Inc., USA) and identified by 
matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS; Bruker 
Daltonics, Germany). A cutoff log score of 2 was 
used to validate identification at the species level, 
as recommended by the manufacturer. The strains 
were then subjected to DNA extraction (Pitcher 
et al., 1989), and methicillin-resistant staphylococci 
were investigated by detecting the mecA gene 
(Murakami et al., 1991). In addition, isolates 
identified as Staphylococcus intermedius group 
(SIG) using MALDI-TOF were further confirmed by 
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multiplex PCR of the nuc gene (Sasaki et al., 2010). 
Non-SIG isolates with MALDI-TOF score under 2.0 
were subjected to sequencing of the 16S ribosomal 
RNA gene as described by FOX et al. (2011). 
Antimicrobial susceptibility tests were performed 
using DDM in agar, according to the Clinical and 
Laboratory Standards Institute (CLSI) documents 
M100-S30 and VET08 (CLSI 2018; CLSI, 2020). The 
following antimicrobials were tested: cefoxitin (30 μg), 
penicillin (10 units), tetracycline (30 μg), trimethoprim/
sulfamethoxazole (25 μg), chloramphenicol (30 μg), 
erythromycin (15 μg), clindamycin (2 μg), gentamicin 
(10 μg), and ciprofloxacin (5 μg) (DME, BRA). 
Staphylococcus aureus ATCC 25923 was used as the 
control strain. Isolates were considered MDR when 
resistant to three or more classes of antimicrobial 
agents (Sweeney et al., 2018).

Clostridioides difficile
Samples were incubated in 96% ethanol 

for 30 min (1:1), and aliquots of 10 μL were 
plated on cycloserine-cefoxitin fructose agar 
supplemented with 7% horse blood and 0.1% 
sodium taurocholate (Sigma, USA) (Silva 
et al., 2013). After incubation in an anaerobic 
atmosphere at 37 °C for 72 h, characteristic C. 
difficile isolates (flat, irregular, and with a ground-
glass appearance) were subjected to multiplex 
PCR to identify the housekeeping gene (tpi) and 
virulence genes of toxin A (tcdA), toxin B (tcdB), 
and binary toxin (cdtB) (Silva et al., 2011). 
The minimal inhibitory concentrations (MICs) 
of metronidazole, vancomycin, clindamycin, 
moxifloxacin, ciprofloxacin, erythromycin, 
rifampicin, and tetracycline were determined using 
Etest strips (bioMérieux Marcy l’Etoile, France) in 
Brucella agar (Oxoid, USA) with 5% lysed blood 
supplemented with hemin (Difco Laboratories, 
USA) and vitamin K (Sigma-Aldrich Co., USA). 
MIC values were interpreted according to the 
clinical breakpoints of the CLSI and European 
Committee on Antimicrobial Susceptibility 
Testing guidelines (Pirš et al., 2013; CLSI, 2015; 
EUCAST, 2019).

Statistical analysis
The association between capture events, 

presence of the tested pathogens, and frequency of 
each isolated microorganism was evaluated using chi-
square and Fisher’s exact tests. The chi-squared test 
for adherence was used to evaluate the distribution 
of variables. All statistical analyses were performed 
using GraphPad Prism v.8 (GraphPad Software, 

San Diego, CA, USA). Differences were considered 
statistically significant at P < 0.05. 

RESULTS

Escherichia coli
E. coli was identified in 42 (89.3%) 

pigeons, with a total of 120 isolated strains (Table 1). 
All seven phylogenetic groups of E. coli were identified 
(Table 2) in the sampled pigeons, with B1 being the 
most common phylogroup (52/120 strains, 43.3%). 
A total of 41 strains (34%) from 19 (40.4%) pigeons 
tested positive for enteroaggregative E. coli heat-
stable enterotoxin 1 (EAST1) encoding gene. The 
intimin-encoding gene (eae) of EPEC was detected 
in one isolate (2.1%), which was also positive for 
EAST1. No resistance to the tested antimicrobials 
was observed in the 41 E. coli isolates that tested 
positive for virulence factors.

Salmonella spp.
Salmonella spp. were found in nine 

(19.1%) pigeons, all from the first capture event 
(n=18; isolation rate of 50%), indicating a strong 
difference between the first and the other two events 
(P < 000.1). S. Typhimurium and S. Heidelberg 
were isolated from six (66.7%) and three pigeons, 
respectively. One bird died a few days after the capture 
event (Figure 2; isolate “PB13”). Macroscopically, 
the bird had hepatomegaly, and the serosa of the small 
intestine was diffusely hyperemic with hemorrhagic 
intestinal contents. S. Typhimurium was isolated again 
from the excreta and liver of this bird. ERIC-PCR of 
the Salmonella spp. isolates suggested that eight out of 
the nine strains had high genetic similarity (Figure 2). 
These strains showed no resistance to all antimicrobials 
tested, while the remaining strain (S. Typhimurium) was 
resistant to trimethoprim/sulfamethoxazole, amoxicillin/
clavulanic acid, ampicillin, tetracycline, enrofloxacin, 
ciprofloxacin, and nalidixic acid. Thus, it was classified 
as an MDR strain (Magiorakos et al., 2012).

Staphylococcus spp.
A total of 20 (42.5%) staphylococcal 

isolates were recovered from 18 (38.3%) pigeons 
of the 47 captured pigeons. Eight different species 
were detected, with S. xylosus (30%) being the most 
common (Table 1). Overall, 7 (35%) isolates were 
resistant to at least one antimicrobial agent, whereas 
13 (65%) were susceptible to all the tested compounds. 
Some isolates were resistant to tetracycline (35.5%), 
penicillin G (15%), erythromycin (5%), and 
clindamycin (5%). No significant differences were 
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reported in resistance to these antimicrobials. One 
S. aureus isolate showed resistance to penicillin G, 
erythromycin, and clindamycin; and therefore, was 
classified as MDR. All isolates were susceptible 
to cefoxitin, chloramphenicol, gentamicin, 
ciprofloxacin, and trimethoprim-sulfamethoxazole 
and were negative for mecA. 

Clostridioides difficile
Two (4.3%) C. difficile isolates were recovered 

from the pigeons. Both were nontoxigenic (A-B-CDT-). 

One isolate was classified as MDR due to resistance to 
erythromycin, rifampicin, and tetracycline, while both 
isolates were susceptible to all other antimicrobials tested, 
including metronidazole and vancomycin. 

DISCUSSION

Despite the known importance of pigeons 
as reservoirs of several pathogens, no studies have 
evaluated them in a university environment and their 
role in the epidemiology of nosocomial bacteria. 

Table 1 - Frequency of Escherichia coli, Salmonella spp., Staphylococcus spp., and Clostridioides difficile isolated from free-living 
pigeons (n=47) in three capture events in the Veterinary Hospital of Federal University of Minas Gerais (Belo Horizonte, 
Minas Gerais, Brazil). 

 

Pathogen ---------------------------------------------Capture (%)---------------------------------------------- Total (n=47) 

 First Second Third  
E. coli 18/18 (100) 10/13 (76.9) 14/16 (87.5) 42/47 (89.3) 
EAST-1 8/18 (44.4) 6/13 (46.1) 5/16 (31.3) 19/47 (40.4) 
EPEC (eae) 1/18 (5.5) 0/13 (0) 0/16 (0) 1/47 (2.1) 
Salmonella spp. 9/18 (50)a 0/13 (0)b 0/16 (0)b 9/47 (12.8) 
S. Typhimurium 6/18 (33.3) 0/13 (0) 0/16 (0) 6/47 (6.4) 
S. Heildeberg 3/18 (18.7) 0/13 (0) 0/16 (0) 3/47 (6.4) 
Staphylococcus spp. 7/18 (38.9) 6/13 (46.1) 7/16 (43.7) 20/47 (42.5) 
S. xylosus 3/18 (16.7) 2/13 (15.4) 1/16 (6.3) 6/47 (12.8) 
S. sciuri 2/18 (11.1) 1/13 (7.7) 2/16 (12.5) 5/47 (10.6) 
S. lentus 0/18 (0) 0/13 (0) 3/16 (18.7) 3/47 (6.4) 
S. haemolyticus 0/18 (0) 2/13 (15.4) 0/16 (0) 2/47 (4.2) 
S. aureus 0/18 (0) 0/13 (0) 1/16 (6.3) 1/47 (2.1) 
S. intermedius 1/18 (5.6) 0/13 (0) 0/16 (0) 1/47 (2.1) 
S. succinus 0/18 (0) 1/13 (7.7) 0/16 (0) 1/47 (2.1) 
S. schleiferi 1/18 (5.6) 0/13 (0) 0/16 (0) 1/47 (2.1) 
C. difficile (Non-toxigenic) 2/18 (11.1) 0/13 (0) 0/16 (0) 2/47 (4.2) 

 
Different lower-case letters indicate a significant difference (P < 0.05). 
Legend: EPEC - Enteropathogenic Escherichia coli; EAST-1 - Enteropathogenic Escherichia coli. 
 

Table 2 - Phylogroups of Escherichia coli isolates (n=120) from pigeons (n=47) captured in the Veterinary Hospital of Federal 
University of Minas Gerais (Belo Horizonte, Minas Gerais, Brazil). 

 

E. coli -----------------------------------------------------Phylogenetic groups------------------------------------------------- Total 

 A B1 B2 C D E F Clade2 Unassignable¹  
Isolates (%) 11 

(9.2) 
52 

(43.3) 
12 

(10) a 
18 

(15) 
3 

(2.5) 
16 

(13.3) a 
1 

(0.8) 
4 

(3.3) 
3 

(2.5) 
120 

(100) 
 
1Identified as E. coli but not corresponding to any of the phylogroups according to CLERMONT et al. (2013).  
2Clade 1, 2, 3, 4, or 5. 
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This study revealed the presence of zoonotic MDR 
pathogens in pigeons captured in the surroundings 
of a veterinary hospital, suggesting that pigeons can 
act as reservoirs and disseminators of diarrheagenic 
E. coli and MDR Staphylococcus spp., C. difficile, 
and Salmonella spp. 

The high isolation rate of E. coli from 
phylogroup B1 was similar to that reported in previous 
studies on urban pigeons (Gordon & Cowling, 
2003; Silva et al., 2009; Ghanbarpour 
& Daneshdoost, 2012). Interestingly, we 
identified two virulence factors in the E. coli isolates. 
E. coli isolates positive for the EAST-1 encoding gene 
were detected in more than 40% of the birds, whereas 
the eae encoding gene from EPEC was detected in a 
single isolate. The high frequency of pigeons positive 
for EAST-1 was surprising, since this virulence factor, 
previously associated with outbreaks of diarrhea 
in humans (Zhou et al., 2002; Sukkua et al., 
2017), has never been reported in E. coli isolates 
from pigeons. Further, pigeons are known reservoirs 
of EPEC (Silva et al., 2009; Ghanbarpour 
& Daneshdoost, 2012; Sacristán et al., 
2014; Borges et al., 2017; Torres-Mejía 
et al., 2018), a major cause of childhood diarrhea 
worldwide (Croxen et al., 2013; Torres-
Mejía et al., 2018). Together, these results reinforce 

the role of pigeons as potential reservoirs of zoonotic 
E. coli pathotypes. 

We tested all 42 E. coli isolates that 
were positive for virulence factors for antimicrobial 
resistance. Results revealed that all isolates were 
susceptible to all antimicrobials tested, surprisingly 
showing that despite living in a heavily anthropized 
environment, the sampled pigeons had E. coli isolates 
with no drug resistance. Our results are in contrast 
with previous studies that described the occurrence 
of MDR E. coli strains in pigeons in several countries 
(Ghanbarpour & Daneshdoost, 2012; 
Borges et al., 2017; Karim et al., 2020).

The fecal shedding of Salmonella spp. 
in the sampled pigeons (19.1%) was higher than 
that found in several previous studies, which often 
reported frequencies of up to 10% (Dovc et al., 
2004; Tanaka et al., 2005; Pedersen et al., 
2006; Gargiulo et al., 2014; Haesendonck 
et al., 2016; Carvalho et al., 2020; Kaczorek-
Łukowska et al., 2020). Interestingly, the 
isolation of Salmonella spp. was significantly 
associated with the first capture event (P < 000.1) 
conducted during the rainy season. This result raised 
the hypothesis of an outbreak of salmonellosis in 
the pigeons during this sampling period, which was 
reinforced after the re-isolation of Salmonella from 

Figure 2 - Dendrogram of nine Salmonella spp. strains from urban pigeons and one Salmonella 
Typhimurium ATCC 14028 fingerprinted by ERIC – PCR. Clustering analysis was based on 
the Dice similarity coefficient and the unweighted pair group method with arithmetic mean 
(UPGMA) algorithms using Bionumerics 7.6 (Applied Maths, Belgium). The strains at the 
right side labeled as PB1, PB9, PB5, PB13, PB6, PB17, and PB10 shared 100% of genetic 
similarity, and 97% of similarity with PB8 strain, as demonstrated on the left of dendrogram.
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the intestinal content and liver of a pigeon that died 
a few days after the capture event. Furthermore, the 
post-mortem alterations observed in this pigeon are 
commonly reported in pigeons and other species with 
salmonellosis (Sawa & Hirai, 1981; Oliveira 
et al., 2019; Ramos et al., 2021).

To better understand this possible 
outbreak, one Salmonella isolate from each animal 
was subjected to ERIC-PCR, a method with high 
discriminatory power already in use for Salmonella 
typing in outbreaks (Purighalla et al., 2017; 
Ramos et al., 2019b). The high similarity among 
the eight isolates, as suggested by ERIC-PCR, 
strongly suggests the occurrence of an outbreak 
of salmonellosis in these pigeons. Previous 
studies have indicated that; although, pigeons are 
commonly asymptomatic carriers of Salmonella 
spp., salmonellosis may occur in urban pigeons, 
which could significantly increase the isolation 
rate of this agent in the affected pigeons (Sawa & 
Hirai, 1981; Tizard, 2004; Hoelzer et al., 
2011; Dutta et al., 2013; Rocha-e-Silva et 
al., 2014). Additionally, salmonellosis outbreaks in 
animals seem to be more common during the rainy 
season, which may be a risk factor for bacterial spread 
(Pangloli et al., 2008; Ramos et al., 2019b).

Notably, we detected two well-known 
zoonotic Salmonella spp. serovars, S. Typhimurium 
and S. Heidelberg, in our study. Previous studies 
have demonstrated that Salmonella enterica isolates 
from urban pigeons commonly belong to serotype 
Typhimurium (Dutta et al., 2013; Osman 
et al., 2013; Rocha-e-Silva et al., 2014; 
Haesendonck et al., 2016; Torres-Mejía et 
al., 2018; Carvalho et al., 2020; Kaczorek-
Łukowska et al., 2020). It is also known that 
S. Typhimurium and S. Heidelberg are important 
foodborne pathogens (CDC, 2014), which can also 
infect humans after direct contact with healthy or 
diseased animals (Hale et al., 2012; Ramos et al., 
2019b). Transmission of Salmonella spp. from pigeons 
to humans has already been reported; however, studies 
associating human salmonellosis with pigeon contact 
are scarce (Haag-Wackernagel & Moch, 
2004; Spennemann & Watson, 2017). Despite 
this, the common shedding of these zoonotic Salmonella 
serotypes by urban pigeons and their close contact 
with humans should be considered a potential risk to 
human health, especially for those most susceptible, 
such as children and immunocompromised individuals 
(Hale et al., 2012).

Most Salmonella spp. isolates showed no 
resistance to the antimicrobials tested. Interestingly, 

all isolates were genetically similar according to 
ERIC-PCR analysis, which also contributed to 
the hypothesis of an outbreak. Conversely, one 
S. Typhimurium strain was resistant to seven 
antimicrobials and thus, was classified as MDR 
(Magiorakos et al., 2012). According to the 
World Health Organization (WHO, 2019), there are 
specific public health concerns related to the spread 
of fluoroquinolone-resistant Salmonella spp. In 
addition, β-lactams and sulfonamides are commonly 
used antimicrobials for the treatment of Salmonella 
spp. infections in animals and humans, and resistance 
to both important drugs may severely reduce the 
treatment options (Kuang et al., 2015).

More than one-third of the captured 
pigeons were positive for staphylococci and eight 
different species were recovered (Table 1). According 
to other studies, pigeons seem to harbor a high 
diversity of staphylococcal species, whereas other 
animals, such as free-living reptiles and rodents, 
seem to show a more homogeneous colonization 
pattern (Schwarz & Werckenthin, 1994; 
Zigo, 2017; Santana et al., 2021; Santana 
et al., 2022). It may be that the close and daily 
contact of the pigeons with humans and animals, 
combined with the hospital environment, may have 
influenced this large number of recovered species 
(Schwarz & Werckenthin, 1994; Zigo, 
2017; Kamathewatta et al., 2019).

S. xylosus, the most frequent species 
reported in our study, has been previously isolated from 
pigeons and other birds, suggesting commensalism 
(Vela et al., 2012; Mahmmoud, 2013; Zigo, 
2017; Matias et al., 2018). This coagulase-negative 
Staphylococcus (CoNS) has also been found in different 
mammals and reptiles (Becker et al., 2014; Rissi 
et al., 2015; Matias et al., 2018; Santana et al., 
2021; Santana et al., 2022), and despite being 
mostly labeled as non-pathogenic, it has caused several 
opportunistic infections in animals and humans (Won 
et al., 2002; Koksal et al., 2009; Akhaddar et 
al., 2010; Rissi et al., 2015).

Except for S. succinus, all other CoNS 
isolates have been reported in previous studies on 
pigeons (Schwarz & Werckenthin, 1994; 
Zigo, 2017). Similar to S. xylosus, all these species 
can integrate into the microbiota of skin and mucous 
membranes of different hosts and act as opportunistic 
pathogens causing distinct infections (Rissi et al., 
2015). Notably, S. haemolyticus is highly relevant 
to human health and is the second most frequently 
isolated CoNS from nosocomial infections (Sidhu 
et al., 2007; Czekaj et al., 2015).
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We also isolated S. intermedius 
and coagulase-positive S. aureus in this study. 
Both species have been frequently reported in 
pigeons (Kizerwetter-Świda et al., 2015; 
Chrobak-Chmiel et al., 2021). However, S. 
intermedius is more commonly reported in wild 
pigeons, and its isolation from domestic pigeons is 
scarce (Kizerwetter-Świda et al., 2015). 
In contrast, S. aureus is widespread among humans 
and different animal species, facilitating bilateral 
transmission between distinct hosts (Weese & 
Van Duijkeren, 2010). This microorganism 
is one of the world’s most frequent causes of 
nosocomial infections in humans. It is also a relevant 
pathogen in dogs, and its treatment is often hampered 
by resistance to multiple antimicrobials (Ippolito 
et al., 2010; WALTHER et al., 2017; Turner et 
al., 2019). Interestingly, S. aureus isolated in our 
study was an MDR strain, which reinforces the 
hypothesis that pigeons are potential disseminators 
of MDR staphylococci (Kutkowska et al., 2019; 
Chrobak-Chmiel et al., 2021). 

More than one-third of the staphylococci 
isolates showed resistance to at least one of the 
antimicrobials tested, mainly to tetracycline and 
penicillin, which are widely used in human and 
veterinary medicine (Argudín et al., 2017; 
Cerbo et al., 2019). It is possible that this specific 
environment, where the pigeons can get directly and 
indirectly in contact with humans and healthy and 
sick animal species, may have influenced the diversity 
of staphylococci isolated in our study, as well as the 
frequency of isolates resistant to antimicrobials, as 
previously indicated in other studies on staphylococci 
in different animals and settings (Futagawa-
Saito et al., 2007; Haaber et al., 2017; 
Cerbo et al., 2019; Kamathewatta et al., 
2019; Frosini et al., 2020; Palma et al., 2020). 
Futagawa-Saito et al., (2007) compared the 
resistance profiles of staphylococci isolated from 
pigeons and suggested that isolates from pigeons that 
have direct contact with humans and other animals 
are more associated with resistance to several 
antimicrobials, which supports the idea that resistance 
may be acquired because of the mutual coexistence of 
different species. 

Although, C. difficile is recognized as 
an emerging pathogen causing zoonotic diseases 
in humans (Knight & Riley, 2019) and has 
previously been reported to cause nosocomial 
infections in dogs (WEESE & ARMSTRONG, 
2003), little is known about the role of pigeons in 
the epidemiology of this anaerobic microorganism. 

Previous studies of other avian species have 
suggested that C. difficile is either absent or present at 
a very low frequency (Bandelj et al., 2011; Burt 
et al., 2012; Bandelj et al., 2014). In our study, 
two C. difficile strains were isolated (4.3%), which 
is lower than the previously reported rate (12.5%) 
by Andrés-Lasheras et al. (2017) in a study 
on pigeons and rodents trapped within pest control 
programs in pig farms. Notably, the colonization 
of C. difficile in pigeons and other birds seems to 
be directly linked to environmental contamination 
(Andrés-Lasheras et al., 2017), which 
may explain the difference in its isolation rates. 
Additionally, one isolate in our study was classified 
as MDR due to its resistance to erythromycin, 
rifampicin, and tetracycline. Our results are similar to 
those previously reported by ANDRÉS-LASHERAS 
et al. (2017) and reinforce the hypothesis that pigeons 
may play a role in the transmission of C. difficile, 
including antimicrobial-resistant strains. 

Our research suggested that pigeons 
captured in the surroundings of a veterinary hospital 
can act as reservoirs and disseminators of pathogenic 
and nosocomial bacteria, including diarrheagenic E. 
coli and MDR Staphylococcus sp., C. difficile, and 
Salmonella spp. Together with previous studies, 
our findings reinforce the importance of pigeon 
population control owing to their potential role in the 
spread of zoonotic diseases.
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