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ABSTRACT: Artificial neural networks (ANN) are computational models inspired by the neural 
systems of living beings capable of learning from examples and using them to solve problems 
such as non-linear prediction, and pattern recognition, in addition to several other applications. 
In this study, ANN were used to predict the value of the area under the disease progress curve 
(AUDPC) for the tomato late blight pathosystem. The AUDPC is widely used by epidemiologic 
studies of polycyclic diseases, especially those regarding quantitative resistance of genotypes. 
However, a series of six evaluations over time is necessary to obtain the final area value for this 
pathosystem. This study aimed to investigate the utilization of ANN to construct an AUDPC in the 
tomato late blight pathosystem, using a reduced number of severity evaluations. For this, four in-
dependent experiments were performed giving a total of 1836 plants infected with Phytophthora 
infestans pathogen. They were assessed every three days, comprised six opportunities and 
AUDPC calculations were performed by the conventional method. After the ANN were created it 
was possible to predict the AUDPC with correlations of 0.97 and 0.84 when compared to con-
ventional methods, using 50 % and 67 % of the genotype evaluations, respectively. When using 
the ANN created in an experiment to predict the AUDPC of the other experiments the average 
correlation was 0.94, with two evaluations, 0.96, with three evaluations, between the predicted 
values of the ANN and they were observed in six evaluations. We present in this study a new 
paradigm for the use of AUDPC information in tomato experiments faced with P. infestans. This 
new proposed paradigm might be adapted to different pathosystems. 
Keywords: Phytophthora infestans, ANN, AUDPC, artificial intelligence, plant breeding

1Santa Catarina State Agricultural Research and Rural 
Extension Agency − Experimental station of Ituporanga, 
Estr. Geral Lageado Águas Negras, 453 − 88400-000 − 
Ituporanga, SC − Brazil.
2São Paulo State University/College of Technology and 
Agricultural Sciences, Rod. Cmte João Ribeiro de Barros, km 
65 − 17900-000 − Dracena, SP − Brazil. 
3Federal University of Viçosa − Dept. of Phytotechny, Av. 
Peter Henry Rolfs, s/n − 36570-000 − Viçosa, MG − Brazil.
4Federal University of Viçosa − Dept. of Animal Science.
5Federal University of Viçosa − Dept. of General Biology.
*Corresponding author <danielalves@epagri.sc.gov.br>

Edited by: Luís Eduardo Aranha Camargo

Artificial neural network for prediction of the area under the disease progress curve 

Daniel Pedrosa Alves1*, Rafael Simões Tomaz2, Bruno Soares Laurindo3, Renata Dias Freitas Laurindo3, Fabyano Fonseca e 
Silva4, Cosme Damião Cruz5, Carlos Nick3, Derly José Henriques da Silva3

Received July 31, 2015
Accepted March 19, 2016

Introduction

Tomato late blight, caused by Phytophthora infes-
tans (Mont.) de Bary, can cause complete loss if it is 
not properly controlled, and has been considered one 
of the most devastating tomato diseases worldwide 
(Irzhansky and Cohen, 2006). Nowicki et al. (2012) 
reported yield losses of up to 100 % caused by the 
pathogen. Genetic resistance is considered the most 
efficient method for controling plant pathogens, since 
it reduces production costs, facilitates disease man-
agement, and does not have the impacts produced by 
fungicides. 

The area under the disease progress curve (AUD-
PC) is a valuable tool for measuring harvest losses due 
to pathogen attack (Ferrandino and Elmer, 1992) and in 
epidemiological studies of polycyclic diseases, especial-
ly those regarding quantitative resistance studies (Jeger 
and Viljanen-Rollinson, 2001). The conventional esti-
mator of AUDPC is the equation developed by Shaner 
and Finney (1977), which considers the information of 
multiple severity evaluations, and yields a single value. 

Jeger and Viljanen-Rollinson (2001) proposed 
a method for calculating the AUDPC with only two 
evaluations for the wheat pathosystem – Puccinia 
striiformis f. sp. tritici, which was later validated by 
Mukherjee et al. (2010) for the rice pathosystem – 
Pyricularia grisea. Nonetheless, Jeger and Viljanen-

Rollinson (2001) reinforce that the methodology has 
three assumptions that should be satisfied: first, the 
resistance must be expressed as the disease rate and 
not as the absence of symptoms; second, the disease 
evaluated has to be present in all plants during the 
same timeframe; and third, the disease progress has 
to be continuous. These assumptions make the appli-
cation of this method to the tomato pathosystem diffi-
cult - Phytophthora infestans. Thus, the artificial neural 
network (ANN) methodology stands out because it is 
based on machine learning, regardless of the model, 
with wide application in agricultural sciences. 

ANN are defined as non-algorithmic computa-
tions characterized by systems that, at a certain level, 
resemble the structure of the human brain (Braga et 
al., 2000). In practice, they constitute data modeling 
tools (Goyal, 2013). This methodology has been wide-
ly used in agriculture, and it can go beyond human 
capacity to evaluate large data banks and relate them 
to a specific desirable characteristic. ANN have been 
used in simulation studies to predict genetic values 
(Silva et al., 2014; Peixoto et al., 2015), and in associa-
tion with genomic analysis (Gianola et al., 2011; Ehret 
et al., 2015).

This study aimed to investigate the prediction ca-
pacity of ANN to obtain AUDPC values for tomato late 
blight using a lower number of evaluations to improve 
the process efficiency. 

of tomato late blight
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Materials and Methods

Plant material, inoculation, and assessment
Experiments were performed in Viçosa, MG − 

Brazil (20°45’14” S and 42°52’53” W, altitude of 648.74 
m). According to Köppen’s classification, the climate is 
Cwa, average relative humidity of 80 %, average yearly 
maximum and minimum temperatures of 26.4 and 14.8 
°C, respectively, and average yearly rainfall of 1.221.4 
mm. Late-blight resistance was assessed in 192 tomato 
(Solanum lycopersicum) accessions (Table 1) from the 
Germplasm Bank of the Universidade Federal de Viçosa 
(BGH-UFV) in the field. 

Accessions were evaluated in four experiments in 
a randomized block design with three replications and 
three plants per plot. Experiment 1 was performed from 
Jan to May 2009, consisting of 53 accessions; Experiment 
2 from Apr to Aug 2009, consisting of 47 accessions; Ex-
periment 3 from Feb to May 2010, consisting of 52 acces-
sions; and Experiment 4, from Mar to July 2010, with 52 
accessions (Table 1). The cultivars Santa Clara, Deborah, 
and Fanny were adopted as a susceptibility pattern in 
each experiment. 

Plants were inoculated with a mix of sporangia 
originating from different P. infestans strains collected 
from different regions of Brazil, 45 days after plant-
ing, according to Abreu et al. (2008). Disease sever-
ity evaluations were made following the diagrammatic 
scale proposed by Corrêa et al. (2009), and were started 
3 days after inoculation at regular intervals of 3 days, 
totaling five evaluations (day 3, 6, 9, 12 and 15 after in-
oculation, DAI – evaluations 1 to 5) for experiment 1 
and six evaluations (3, 6, 9, 12, 15 and 18 DAI – evalu-
ations 1 to 6) for the other experiments. The percentage 
of damaged leaf area was measured by visual evalua-
tion. The following evaluations were used for the area 
under the disease progress curve (AUDPC) calcula-
tion, according to the methodology proposed by Sha-
ner and Finney (1977), using the following equation: 

( ) ( )}{ 1
1 1 1 / 2 *n

i i i i iAUDPC y y t t−
= + += ∑  +  −  , where: yi and 

yi+1 correspond to the percentage of damaged leaf area 
observed in the evaluations i and (i+1); ti and ti +1 are 
the time considered in days i and (i +1); and n is the total 
number of evaluations. 

Phenotypic data analysis
Variance analysis was performed using the GENES 

computer application (Cruz, 2013), which considers the 
AUDPC estimates. Scott and Knott (p < 0.05) clustering 
was used for mean grouping and definition of genotype 
groups, where those that showed lower means were 
considered representative groups of the most resistant 
genotypes. 

ANN construction and statistical analysis
We considered an ANN Multilayer Perceptron 

(MLP) having an input layer with one to three neurons 
for experiment 1; and one to four neurons for experi-

ments 2, 3, and 4; a hidden layer with two to 16 neurons 
iteratively established; and a single neuron output layer. 
The ANN were generated using the MATLAB® software 
(MATLAB, 2010) through the integration module script 
of the GENES computer application (Cruz, 2013). Train-
ing algorithm trainlm and 1000 timings were used for 
ANN training. Logistic sigmoid activation and hyper-
bolic tangent functions were considered in the hidden 
neuron layer. 

ANN input consisted of severity evaluations, mea-
sured as a percentage of damaged leaf area. As input val-
ues, all 14 possible evaluation combinations were con-
sidered for experiment 1 ( 4 4 4

3 2 1 14C C C+ + = , see Table 
2), and 30 possible combinations for the other experi-
ments ( 5 5 5 5

4 3 2 1 30C C C C+ + + = ), vide Table 2). For each 
evaluation combination, the ANN were deployed five 
times. Genotypes used during the training process were 
randomly taken in each experiment, as well as replica-
tions used for training. One thousand three hundred and 
twenty ANN architectures were assessed, considering 
the number of neurons, the hidden layer activation func-
tions, and the number of evaluations in the input layer. 
Evaluations were made as a sample of a random variable 
X, transformed into a random variable Z, by the equa-
tion: Zi=(X1 + (Xi – Max) (X1 –X0)) / (Max – Min); where 
the Max corresponds to the maximum of Xi; Min, to the 
minimum of Xi; X0 and X1, to the minimum and maxi-
mum of Zi, respectively, established as being zero and 
one. ANN input and output pairs were randomly applied 
to the training process. Two criteria were used for ANN 
stop, a minimum mean squared error (MSE) of 10−10 or a 
maximum of 1000 training timings.

The ANN values predicted during validation were 
back-transformed into the random variable X in order 
to recover actual values and for further comparisons. 
Correlation between estimated AUDPC and predicted 
ANN values was used to define the best evaluated com-
binations for estimating the AUDPC (Shaner and Finney, 
1977).

Thereafter, the evaluations (or measurements) that 
provided the best AUDPC predictions in all experiments 
were used in 100 new analyses, generating new AUDPC 
values predicted by ANN. Then, Scott-Knott clustering 
was performed, at 5 % probability, for comparison of 
grouped results obtained from conventionally calculat-
ed. AUDPC. 

Three scenarios (1, 2 and 3) were considered. 
The first scenario consisted of utilizing severity assess-
ment of all genotypes, considering all evaluations and 
four plants per genotype during the training stage, the 
validation being performed on the five plants remaining. 
This scenario aimed to generate information that would 
allow inferring ANN capacity to train and predict the 
AUDPC with the data available. In the second scenario, 
all genotypes were considered during the training stage. 
Four plants per genotype were taken for training and 
the five remaining for the validation process, consider-
ing all evaluation combinations. Such procedures aimed 
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Table 1 − Area under the disease-progress curve (AUDPC) averages for one hundred and ninety tomato accessions, assessed for late-blight 
caused by Phytophythora infestans in four independent experiments.

Experiment 1   Experiment 2   Experiment 3   Experiment 4
Access AUDPC   Access AUDPC   Access AUDPC   Access AUDPC

BGH-2284 667.00 a Débora 579.33 a BGH-2030 515.33 a BGH-2121 341.00 a
BGH-2306 619.67 a BGH-3383 548.67 a Fanny 454.17 a BGH-2073 339.83 a
Santa Clara 611.00 a Santa Clara 538.33 a BGH-2010 454.00 a Fanny 339.00 a

Débora 604.33 a BGH-3318 534.00 a BGH-0971 418.67 a BGH-2076 332.67 a
BGH-2329 596.33 a BGH-2420 524.50 a BGH-2060 409.00 a BGH-2072 330.67 a
BGH-2327 585.33 a BGH-2419 522.83 a BGH-2027 405.17 a Débora 320.67 a
BGH-2266 583.00 a BGH-2395 520.67 a BGH-2033 403.17 a BGH-2105 289.33 a
BGH-2348 580.33 a BGH-3320 520.33 a BGH-2019 400.17 a BGH-2128 281.33 a
BGH-2370 574.00 a BGH-3394 519.67 a BGH-2013 372.33 b BGH-2145 280.17 a

Fanny 565.67 a BGH-3115 518.00 a BGH-20391 367.67 b BGH-2133 277.33 a
BGH-2317 562.33 a BGH-2393 509.00 a BGH-2048 367.67 b Santa Clara 275.83 a
BGH-2302 556.00 a Fanny 504.33 a BGH-20392 367.50 b BGH-2068 266.67 a
BGH-2294 554.00 a BGH-3319 502.67 a BGH-887 359.00 b BGH-2069 263.17 a
BGH-2364 551.83 a BGH-2100 500.17 a BGH-2029 352.17 b BGH-2116 258.17 a
BGH-2336 550.67 a BGH-2098 498.67 a BGH-1985 349.00 b BGH-2132 241.33 a
BGH-2326 549.67 a BGH-3385 498.17 a BGH-2051 339.67 b BGH-2081 240.67 a
BGH-2345 544.50 a BGH-3459 497.33 a Débora 339.67 b BGH-2071 239.83 a
BGH-2369 541.33 a BGH-2087 495.33 a BGH-2041 337.00 b BGH-2074 229.00 a
BGH-2289 539.00 a BGH-2390 492.17 a BGH-2050 328.67 b BGH-2141 222.83 a
BGH-2283 538.33 a BGH-2091 492.00 a BGH-2038 326.33 b BGH-2114 216.50 a
BGH-2334 536.50 a BGH-2705 488.50 a BGH-2049 323.83 b BGH-2083 211.83 a
BGH-2339 532.83 a BGH-3380 487.83 a BGH-2045 321.50 b BGH-2062 211.17 a
BGH-2362 517.17 a BGH-2482 481.33 a BGH-2002 313.17 b BGH-2143 208.33 a
BGH-2330 514.00 a BGH-2092 480.33 a BGH-2026 312.67 b BGH-2144 204.17 a
BGH-2293 513.50 a BGH-3384 479.17 a BGH-2054 311.17 b BGH-2082 203.83 a
BGH-2338 502.67 b BGH-2402 477.17 a BGH-2003 310.83 b BGH-2064 191.83 b
BGH-2319 501.83 b BGH-3460 476.67 a BGH-2020 305.83 b BGH-2118 188.00 b
BGH-2267 498.67 b BGH-3388 472.33 b BGH-2018 304.67 b BGH-2138 177.83 b
BGH-2299 496.67 b BGH-2097 471.50 b BGH-2011 301.67 b BGH-2134 175.00 b
BGH-2318 496.00 b BGH-3008 469.33 b BGH-2025 299.83 b BGH-2131 169.83 b
BGH-2324 493.00 b BGH-3386 463.50 b Santa Clara 292.67 b BGH-2075 169.67 b
BGH-2280 491.83 b BGH-3007 462.67 b BGH-2057 291.67 b BGH-2122 168.67 b
BHG-2245 491.50 b BGH-3465 460.50 b BGH-2006 283.83 c BGH-2124 163.67 b
BGH-2337 488.33 b BGH-2442 460.00 b BGH-2021 278.33 c BGH-2070 163.17 b
BGH-2300 484.67 b BGH-2089 452.17 b BGH-2044 274.67 c BGH-2065 156.67 b
BGH-2342 479.83 b BGH-3464 451.00 b BGH-2008 272.83 c BGH-2125 156.50 b
BGH-2287 478.67 b BGH-3463 448.50 b BGH-2035 270.33 c BGH-2120 143.50 b
BGH-2328 478.00 b BGH-2096 444.33 b BGH-2014 270.17 c BGH-2115 143.17 b
BGH-2305 475.17 b BGH-3317 442.33 b BGH-2052 254.83 c BGH-2129 141.00 b
BGH-2321 470.17 b BGH-3462 442.17 b BGH-2004 251.17 c BGH-2113 138.00 b
BGH-2267 462.17 b BGH-3381 440.00 b BGH-2009 250.83 c BGH-2077 126.50 b
BGH-2285 459.00 b BGH-2088 423.17 b BGH-2034 244.83 c BGH-2086 115.67 b
BGH-2316 458.83 b BGH-2765 422.83 b BGH-2016 241.17 c BGH-2110 107.33 b
BGH-2314 450.17 b BGH-3382 421.00 b BGH-2046 229.83 c BGH-2123 106.00 b
BGH-2320 447.33 b BGH-2095 413.67 b BGH-2023 221.50 c BGH-2080 93.67 b
BGH-2322 430.83 b BGH-2102 392.00 b BGH-2032 215.50 c BGH-2109 92.50 b
BGH-2288 426.83 b BGH-2093 381.83 b BGH-0996 213.00 c BGH-2135 92.33 b
BGH-2298 419.50 b BGH-2040 207.83 c BGH-2136 80.17 b
BGH-2307 414.33 b BGH-0984 201.33 c BGH-2078 73.33 b
BGH-2282 405.33 b BGH-2017 87.83 d BGH-2127 70.17 b
BGH-2343 404.50 b BGH-1025 67.33 d BGH-2117 67.17 b
BGH-2333 356.00 c BGH-0973 31.00 d BGH-2130 49.17 b
BGH-2332 245.83 d                  
Average 505.58 479.19 302.38 195.11
CV (%) 11.48     9.19     20.82     37.61

Means followed by similar letter in the column belong to the same group, according to Scott- Knott clustering, p < 0.05. CV: Coefficient of variation. 1Access BGH-
2039 with red fruits; 2Access BGH-2039 with yellow fruits. The cultivars/hybrids Débora, Fanny and Santa Clara are known as susceptible to late-blight.
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to create information able to measure ANN capacity to 
establish an optimum evaluation number for AUDPC 
prediction. In the third scenario, the replicates of 70 % 
of the genotypes were taken at the training stage and the 
genotypes remaining for validation processing, also con-
sidering all evaluation combinations. This last scenario 
aimed to create information capable of establishing an 
optimum number of measurements and to evaluate net-
work capability to extrapolate a learning curve for dif-
ferent genotypes. 

Analyses were performed using the GENES soft-
ware (Cruz, 2013) and R Core team. ANN was performed 
with MATLAB® (Matrix Laboratory, version 7.10) using a 
script presented in the integration module of the GENES 
computer application (Cruz, 2013).

Data extrapolation
The implemented ANN with the best results in 

their respective experiments were considered for AUD-
PC prediction in all experiments, i.e., for the experi-

ments for which they were trained and for those they 
were not trained. Only ANN that used two to three in-
puts were considered. 

Results and Discussion

Five evaluations were performed for phenotypic 
analysis in experiment 1, since, due to the fast progres-
sion of disease, severity reached the plateau between the 
fourth and fifth evaluation. For the other experiments, 
six evaluations were performed. Accessions were sorted 
into groups using Scott-Knott clustering, according to the 
AUDPC. The groups with comparatively lower AUDPC 
values versus groups which had a susceptibility pattern 
were considered a possible source of resistance. There-
fore, groups “c” and “d” of Experiment 1, group “b” of Ex-
periment 2, groups “c” and “d” of Experiment 3, and group 
“b” of Experiment 4 (Table 1) were considered potential 
sources of resistance to late blight because they showed 
lower severity than the susceptibility pattern groups. 

Table 2 − Average correlation for training and validation using different severity evaluation combinations. Training and validation were performed 
with four and five plants, respectively, using the same accession.

Experiment 1   Experiment 2   Experiment 3   Experiment 4 

Evalu. Comb.
r2

Evalu. Comb
r2

Evalu. Comb
r2

Evalu. Comb
r2

Tr. Val. Tr. Val. Tr. Val. Tr. Val.
2, 3 and 4 0.9975 0.9973 2, 3, 4 and 5 0.9942 0.9927 2, 3, 4 and 5 0.9902 0.9863 2, 3, 4 and 5 0.9867 0.9831
2, 3 and 5 0.9503 0.9344 2, 3, 4 and 6 0.9189 0.9163 2, 3, 4 and 6 0.9576 0.9431 2, 3, 4 and 6 0.9732 0.9603
2, 4 and 5 0.9536 0.9509 2, 4, 5 and 6 0.9693 0.9567 2, 4, 5 and 6 0.9947 0.9937 2, 4, 5 and 6 0.9964 0.9942
3, 4 and 5 0.9665 0.9632 3, 4, 5 and 6 0.9970 0.9965 3, 4, 5 and 6 0.9986 0.9984 3, 4, 5 and 6 0.9989 0.9982
2 and 3 0.9158 0.9137 2, 3, 5 and 6 0.8575 0.8417 2, 3, 5 and 6 0.9785 0.9759 2, 3, 5 and 6 0.9937 0.9920
2 and 4 0.9459 0.9364 2, 3 and 4 0.8689 0.8490 2, 3 and 4 0.8055 0.7734 2, 3 and 4 0.8892 0.8687
2 and 5 0.8228 0.7811 2, 3 and 5 0.8144 0.8342 2, 3 and 5 0.9641 0.9585 2, 3 and 5 0.9753 0.9738
3 and 4 0.9534 0.9551 2, 3 and 6 0.7076 0.5974 2, 3 and 6 0.9189 0.9091 2, 3 and 6 0.9477 0.9395
3 and 5 0.9155 0.9117 2, 4 and 5 0.9632 0.9525 2, 4 and 5 0.9843 0.9810 2, 4 and 5 0.9770 0.9735
4 and 5 0.8583 0.8462 2, 4 and 6 0.8886 0.8616 2, 4 and 6 0.9465 0.9291 2, 4 and 6 0.9632 0.9609
2 0.6309 0.6067 2, 5 and 6 0.7854 0.7422 2, 5 and 6 0.9560 0.9554 2, 5 and 6 0.9822 0.9819
3 0.8781 0.8626 3, 4 and 5 0.9931 0.9913 3, 4 and 5 0.9879 0.9859 3, 4 and 5 0.9854 0.9827
4 0.8508 0.8305 3, 4 and 6 0.9278 0.9021 3, 4 and 6 0.9555 0.9411 3, 4 and 6 0.9634 0.9636
5 0.5738 0.4447 3, 5 and 6 0.8735 0.8312 3, 5 and 6 0.9734 0.9706 3, 5 and 6 0.9919 0.9897

4, 5 and 6 0.9461 0.9408 4, 5 and 6 0.9899 0.9843 4, 5 and 6 0.9912 0.9898
2 and 3 0.4503 0.3904 2 and 3 0.5572 0.5961 2 and 3 0.7819 0.7799
2 and 4 0.8040 0.8087 2 and 4 0.7641 0.7602 2 and 4 0.8617 0.8346
2 and 5 0.7803 0.7383 2 and 5 0.9302 0.9437 2 and 5 0.9547 0.9515
2 and 6 0.5081 0.4392 2 and 6 0.8549 0.8622 2 and 6 0.9399 0.9095
3 and 4 0.8499 0.8584 3 and 4 0.7852 0.7849 3 and 4 0.8875 0.8747
3 and 5 0.8628 0.7853 3 and 5 0.9654 0.9502 3 and 5 0.9746 0.9708
3 and 6 0.6768 0.6391 3 and 6 0.9087 0.9055 3 and 6 0.9378 0.9349
4 and 5 0.9419 0.9355 4 and 5 0.9780 0.9713 4 and 5 0.9719 0.9663
4 and 6 0.8397 0.8370 4 and 6 0.9223 0.9179 4 and 6 0.9574 0.9536
5 and 6 0.7598 0.7366 5 and 6 0.8998 0.9283 5 and 6 0.9681 0.9642

2 0.0528 0.0158 2 0.2987 0.2781 2 0.6009 0.5274
3 0.3918 0.4096 3 0.5922 0.5753 3 0.7655 0.7783
4 0.7987 0.7891 4 0.7650 0.7583 4 0.8539 0.8264
5 0.6929 0.7347 5 0.9009 0.9039 5 0.9332 0.9187

        6 0.4260 0.3842   6 0.7714 0.7741   6 0.8956 0.8896

Evalu. Comb.: Evaluation combinations; Tr.: training; Val.: validation.
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Using ANN to analyze the data in scenario 1 to 
evaluate tomato - P. Infestans pathosystem, resulted in 
expectations being met and were very efficient. ANN 
construction in this scenario provided a correlation 
coefficient (r2) similar to that observed in the training 
(Figure 1A) and validation (Figure 1B) stages, showing 
ANN capacity to predict the AUDPC, regardless of the 
model. Average quadratic error reached acceptable lev-
els at both stages (9.4183.10−7 and 3.067.10−5, respec-
tively). The best ANN had two neurons in the hidden 
layer, using the logistic sigmoid activation function. Sev-
eral authors (Goyal, 2013) have reported the efficiency 
of neural networks in studies in terms of classification, 
prediction, and mainly in model adjustment, which was 
the case in the present study. 

For scenario 2, which aimed at establishing a mini-
mum optimum number of evaluations (measurements) 
to predict the AUDPC, it was demonstrated that ANN 
are an efficient and appropriate tool for identifying with 
the lower number of evaluations during training and val-
idation using the same set of genotypes. Results of the 
average correlation coefficient 2( )r  between AUDPC val-
ues and ANN predicted values during training and vali-
dation stages are presented in Table 2. Using the fourth 
and fifth evaluation provided an 2( )r , during the net-
work validation stage, greater than 84 % for Experiment 
1, and greater than 93 % for the remaining experiments. 
In this case, three neurons were usually enough for the 
prediction process, regardless of the activation function. 
Considering the third, fourth and fifth evaluation, the 

2( )r  exceeded 96 %, using four neurons in the hidden 
layer, where the logistic sigmoid activation function 
showed the best results. Results of this scenario imply 
the realization of a full evaluation in a reduced number 
of plants per genotype followed by a reduced number of 
evaluations in the plants to be predicted by ANN. 

ANN were effective in predicting the AUDPC us-
ing a lower number of evaluations to validate non trained 
genotypes in scenario 3, demonstrating their capacity to 
predict and extrapolate values. This implies using ANN 
to predict AUDPC without being necessarily trained for 
a given group of genotypes, since previous ANN training 
has been performed under the conditions of the current 
experiment, or that it does not have outstanding pecu-
liarities when compared to the experiments for which 
ANN was trained. Considering only the fourth and fifth 
evaluation, the ANN was capable of predicting AUDPC 
with an 2( )r  greater than 87 % in all experiments. AUD-
PC values predicted by ANN showed an 2( )r  greater 
than 93 % when using the third, fourth and fifth evalua-
tions. Results are shown in Table 3. The ANN construct-
ed showed architecture similar to the previous cases. 

Grouping of the prediction averages performed by 
ANN were very similar, sometimes equal, to that formed 
through the conventional method (Table 4). Even though 
in both cases, AUDPC averages were very similar, some-
times genotype classification had changed, but this 
change was not an obstacle to the selection of sources 
of resistance. 

Potential ANN candidates were selected in sce-
nario 3 where the extrapolation capacity was confirmed. 
The ANN were considered using two evaluations - the 
fourth and fifth – and then three evaluations – the third, 
fourth and fifth. Results were promising and are shown 
in Table 5. The 2( )r results between AUDPC and ANN 
predicted values, of an ANN trained to one experiment 
predicting the others considering two and three evalua-
tions, exceeded 91 and 95 %, respectively.

Research concerning artificial intelligence has 
been showing remarkable advances since 1980’s, reflect-
ing the practical use of ANN (Ding et al., 2013). The 
capacity of learning from a set of examples and of accu-

Figure 1 − Area under the disease-progress curve (AUDPC) estimates - transformed data - of the genotypes considered during training (A) and 
validation (B) for scenario 1. (×) corresponds to estimates calculated according to Shaner and Finney (1977) and () the artificial neural networks 
predicted values.
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rately predicting desired responses has made possible an 
incremented ANN use in agricultural sciences as well as 
making valuable studies available for researchers in this 
field of study (Goyal, 2013). With respect to plant disease 
evaluations, the ANN have been used in image process-
ing, as a means of evaluating disease severity, thus re-
ducing the subjectivity of evaluation (Patil and Kumar, 
2011; Tiger and Verma, 2013). 

Considering that disease evaluation represents a 
significant investment in time, space, human and eco-
nomic resources, the use of an efficient methodology to 
evaluate disease progress that saves resources is highly 
desirable. The AUDPC measurement of quantitative re-
sistance evaluation for polycyclic pathogens, resulting 
from calculations from periodic evaluations, is extreme-
ly common and necessary, such as in the present study. 
In this sense, ANN utilization represents an interesting 
alternative, since it has allowed for the selection of pu-
tative sources of resistance with a reduced number of 
evaluations. Also, according to Mukherjee et al. (2010), 

when evaluations are frequent during the outbreak they 
can inadvertently affect disease progress, given anthrop-
ic interference. 

This new paradigm could save land, fertilizers, 
water, supplies for training and management of tomato 
fields, besides the human resources that are necessary 
for maintenance of the experiments. The application of 
this approach is highly practical for the evaluation of ex-
periments regardless of the model, still considering that 
factors like unbalancing are not a great problem. There-
fore, ANN could improve the efficiency of the screening 
process of sources of resistance.

ANN also ensures the researcher, considering the 
tomato × late-blight pathosystem, uses all convention-
al evaluations in only a few replicates of the experi-
ment to train the ANN and later to estimate AUDPC 
for the other replicates of each genotype. This would 
imply a 0.97 correlation between estimated value, us-
ing three evaluations as input, at nine, twelve and fif-
teen dpi; and that would be obtained with six evalua-

Table 3 − Average correlations for training and validation using different combinations of severity evaluations. Training was used in 70 % of the 
accessions and validation in the other 30 % for each experiment.

Experiment 1   Experiment 2   Experiment 3   Experiment 4 

Evalu. Comb. 
r2

Evalu. Comb 
r2

Evalu. Comb
r2

Evalu. Comb
r2

Tr. Val. Tr. Val. Tr. Val. Tr. Val.
2, 3 and 4 0.9948 0.9816 2, 3, 4 and 5 0.9955 0.9913 2, 3, 4 and 5 0.9910 0.9829 2, 3, 4 and 5 0.9872 0.9805
2, 3 and 5 0.9510 0.9408 2, 3, 4 and 6 0.9283 0.9014 2, 3, 4 and 6 0.9546 0.9319 2, 3, 4 and 6 0.9658 0.9741
2, 4 and 5 0.9529 0.9513 2, 4, 5 and 6 0.9728 0.9593 2, 4, 5 and 6 0.9954 0.9962 2, 4, 5 and 6 0.9967 0.9931
3, 4 and 5 0.9597 0.9745 3, 4, 5 and 6 0.9974 0.9961 3, 4, 5 and 6 0.9980 0.9988 3, 4, 5 and 6 0.9990 0.9982
2 and 3 0.9210 0.9020 2, 3, 5 and 6 0.9452 0.6202 2, 3, 5 and 6 0.9723 0.9911 2, 3, 5 and 6 0.9934 0.9925
2 and 4 0.9442 0.9397 2, 3 and 4 0.8720 0.8610 2, 3 and 4 0.7971 0.7435 2, 3 and 4 0.8824 0.8787
2 and 5 0.8160 0.7854 2, 3 and 5 0.9380 0.5986 2, 3 and 5 0.9589 0.9702 2, 3 and 5 0.9788 0.9666
3 and 4 0.9525 0.9626 2, 3 and 6 0.7160 0.5360 2, 3 and 6 0.9176 0.9034 2, 3 and 6 0.9572 0.9331
3 and 5 0.9084 0.9218 2, 4 and 5 0.9655 0.9519 2, 4 and 5 0.9848 0.9795 2, 4 and 5 0.9798 0.9715
4 and 5 0.8374 0.8744 2, 4 and 6 0.9138 0.8382 2, 4 and 6 0.9469 0.9126 2, 4 and 6 0.9707 0.9449
2 0.6091 0.6345 2, 5 and 6 0.8837 0.5545 2, 5 and 6 0.9484 0.9747 2, 5 and 6 0.9838 0.9788
3 0.8720 0.8674 3, 4 and 5 0.9926 0.9895 3, 4 and 5 0.9894 0.9827 3, 4 and 5 0.9863 0.9796
4 0.8224 0.8630 3, 4 and 6 0.9277 0.9027 3, 4 and 6 0.9539 0.9280 3, 4 and 6 0.9724 0.9492
5 0.4869 0.5369 3, 5 and 6 0.9273 0.5851 3, 5 and 6 0.9681 0.9879 3, 5 and 6 0.9902 0.9902

4, 5 and 6 0.9273 0.5851 4, 5 and 6 0.9871 0.9903 4, 5 and 6 0.9913 0.9874
2 and 3 0.4758 0.2661 2 and 3 0.5669 0.6290 2 and 3 0.7925 0.7597
2 and 4 0.8254 0.7958 2 and 4 0.7835 0.7143 2 and 4 0.8518 0.8412
2 and 5 0.8721 0.5105 2 and 5 0.9337 0.9548 2 and 5 0.9587 0.9421
2 and 6 0.5239 0.3738 2 and 6 0.8660 0.8405 2 and 6 0.9415 0.8968
3 and 4 0.8642 0.8710 3 and 4 0.7885 0.7510 3 and 4 0.8793 0.8815
3 and 5 0.9200 0.5466 3 and 5 0.9521 0.9699 3 and 5 0.9767 0.9635
3 and 6 0.6953 0.5426 3 and 6 0.9123 0.9000 3 and 6 0.9479 0.9260
4 and 5 0.9456 0.9351 4 and 5 0.9772 0.9741 4 and 5 0.9725 0.9694
4 and 6 0.8631 0.8084 4 and 6 0.9316 0.8892 4 and 6 0.9656 0.9332
5 and 6 0.8254 0.5126 5 and 6 0.8943 0.9706 5 and 6 0.9678 0.9610

2 0.0545 0.0116 2 0.2868 0.2600 2 0.6077 0.4844
3 0.4519 0.2538 3 0.5692 0.6348 3 0.7776 0.7696
4 0.8039 0.7827 4 0.7542 0.6878 4 0.8200 0.8491
5 0.8117 0.4555 5 0.8836 0.9515 5 0.9240 0.9193

        6 0.4246 0.3514   6 0.7677 0.7928   6 0.8864 0.9059
Evalu. Comb.: Evaluation combinations; Tr.: training; Val.: validation.
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Table 5 − Average correlations between predicted values by artificial neural networks (ANN) and conventional calculation according to Shaner 
and Finney (1977). The ANN used in each case predicted the area under the disease-progress curve of all plants from the other experiments. 

ANN predicted in:

2r
Predicted for: (2 evaluations) Predicted for: (3 evaluations)

Exp. 1 Exp. 2 Exp. 3 Exp. 4 2r * Exp. 1 Exp. 2 Exp. 3 Exp. 4 2r *
Exp. 1 0.925 0.898 0.942 0.961 0.934 0.983 0.971 0.957 0.982 0.970 
Exp. 2 0.903 0.962 0.82 0.976 0.954 0.970 0.962 0.973 0.980 0.974 
Exp. 3 0.905 0.958 0.985 0.983 0.949 0.943 0.957 0.948 0.974 0.958 
Exp. 4 0.880 0.905 0.955 0.984 0.913 0.953 0.969 0.950 0.982 0.957 
*Average correlation estimates considering only the experiments in which ANN was not trained. 

Table 4 − Accession grouping according to Scott-Knott clustering, comparing area under the disease-progress curve (AUDPC) averages 
conventionally calculated, with six evaluations, and by artificial neural networks (ANN), with three evaluations (A) - 3rd, 4th and 5th - and two 
evaluations (B) - 4th and 5th. 

A

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Access AUDPC ANN Access AUDPC ANN Access AUDPC ANN Access AUDPC ANN
BGH-2284 667.00 a 600.17 a BGH-3383 548.67 a 551.47 a BGH-971 418.67 a 417.76 a  BGH-2105 289.33 a 296.55 a
BGH-2266 583.00 b 582.29 a BGH-2393 509.00 b 507.52 b BGH-887 359.00 a 363.47 a BGH-2121 341.00 a 334.65 a
BGH-2364 551.83 b 547.09 a BGH-2100 500.17 b 500.93 b Débora 339.67 b 333.28 b Débora 320.67 a 321.94 a
BGH-2336 550.67 b 554.82 a BGH-3385 498.17 b 496.90 b BGH-2045 321.50 b 317.58 b Fanny 339.00 a 329.90 a
BGH-2326 549.67 b 564.27 a BGH-2087 495.33 b 494.78 b BGH-2003 310.83 b 299.04 b BGH-2062 211.17 b 216.68 b
BGH-2289 539.00 b 536.58 a BGH-2390 492.17 b 493.20 b BGH-2018 304.67 b 305.98 b BGH-2074 229.00 b 239.72 b
BGH-2339 532.83 b 532.53 a BGH-2091 492.00 b 490.71 b BGH-2011 301.67 b 307.02 b BGH-2064 191.83 b 199.33 b
BGH-2330 514.00 b 508.68 a BGH-2402 477.17 c 474.10 c BGH-2021 278.33 b 273.53 b BGH-2118 188.00 b 201.15 b
BGH-2293 513.50 b 509.03 a BGH-3388 472.33 c 471.40 c BGH-2008 272.83 b 260.43 c BGH-2132 241.33 b 231.79 b 
BGH-2245 491.50 c 493.45 b BGH-2097 471.50 c 476.11 c BGH-2004 251.17 c 241.91 c BGH-2143 208.33 b 194.78 b
BGH-2337 488.33 c 485.61 b BGH-3008 469.33 c 470.38 c BGH-2009 250.83 c 243.02 c BGH-2144 204.17 b 203.74 b
BGH-2321 470.17 c 475.35 b BGH-2096 444.33 d 443.28 d BGH-2016 241.17 c 252.60 c BGH-2071 239.83 b 236.13 b
BGH-2285 459.00 c 458.03 b BGH-3462 442.17 d 443.48 d BGH-2023 221.50 c 223.97 c BGH-2120 143.50 c 139.21 c
BGH-2298 419.50 d 417.07 c BGH-2765 422.83 d 422.68 d BGH-2040 207.83 c 178.66 c BGH-2065 156.67 c 155.72 c
BGH-2282 405.33 d 405.06 c BGH-984 201.33 c 205.44 c BGH-2070 163.17 c 167.54 c
BGH-2343 404.50 d 406.38 c           BGH-2017 87.83 d 95.06 d BGH-2117 67.17 d 66.37 d
B
Access AUDPC ANN Access AUDPC ANN Access AUDPC ANN Access AUDPC ANN
BGH-2306 619.67 a 585.70 a BGH-3318 534.00 a 536.61 a BGH-2010 454.00 a 485.30 a BGH-2145 280.17 a 268.77 a
BGH-2266 583.00 a 575.78 a Fanny 504.33 a 504.41 a BGH-2033 403.17 a 407.11 b BGH-2116 258.17 a 246.87 a
BGH-2294 554.00 a 571.32 a BGH-3319 502.67 a 508.86 a BGH-2019 400.17 a 399.35 b BGH-2071 239.83 a 222.34 a
BGH-2336 550.67 a 548.26 a BGH-2100 500.17 a 495.55 a BGH-2048 367.67 a 376.75 b BGH-2114 216.50 a 236.31 a 
BGH-2339 532.83 b 535.09 a BGH-3385 498.17 a 494.42 a BGH-2039 367.67 a 385.52 b BGH-2083 211.83 a 210.67 a 
BGH2362 517.17 b 525.75 b BGH-2092 480.33 a 488.09a BGH-2039 367.50 a 363.48 b BGH-2062 211.17 a 215.40 a 
BGH-2283 538.33 b 520.05 b BGH-2097 471.50 b 480.76a BGH-887 359.00 a 365.38 b BGH-2082 203.83 a 191.84 a
BGH-2330 514.00 b 502.60 b BGH-3386 463.50 b 467.65 b BGH-2041 337.00 a 342.44 b BGH-2064 191.83 a 188.55 a 
BGH-2245 491.50 b 491.53 b BGH-3007 462.67 b 468.02 b BGH-2003 310.83 a 294.80 c BGH-2122 168.67 a 149.04 b
BGH-2300 484.67 b 489.36 b BGH-3476 460.50 b 462.54 b Santa Clara 292.67 b 287.34 c BGH-2124 163.67 a 146.66 b
BGH-2276 498.67 b 488.88 b BGH-2089 452.17 b 453.04 b BGH-2006 283.83 b 274.49 c BGH-2115 143.17 b 134.85 b
BGH-2321 470.17 c 476.19 b BGH-3317 442.33 b 452.07 b BGH-2021 278.33 b 267.60 c BGH-2086 115.67 b 113.03 b
BGH-2322 430.83 c 443.79 c BGH-2765 422.83 c 425.98 c BGH-2052 254.83 b 244.59 c BGH-2135 92.33 b 80.43 b
BGH-2288 426.83 c 427.93 c BGH-2093 381.83 c 383.91 d BGH-2046 229.83 b 242.47 c BGH-2136 80.17 b 82.28 b
BGH-2298 419.50 c 424.07 c BGH-0984 201.33 b 207.42 c BGH-2127 70.17 b 76.07 b
BGH-2333 356.00 c 346.93 d           BGH-2017 87.83 c 103.90 d BGH-2130 49.17 b 40.51 b

tions, or by performing the evaluations only at 12 and 
15 days, and have a 0.87 correlation. At first, the prac-
tical use of this method could seem unviable regard-
ing its practicability, since the researcher would have 

to efficiently separate the plants to be evaluated in all 
measurements from the plants to be evaluated more 
often; however, the use of ANN shows great potential 
for overcoming this. 
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ANN also proved to be efficient in AUDPC pre-
diction of non-trained genotypes. AUDPC values pre-
dicted by the network are very close to those obtained 
using conventional calculation, and the classification of 
genotype groups also proved to be very similar or even 
identical in some cases (Table 4). Sometimes there was 
little change in the groups; however, it was observed 
that this was due to the insertion or exclusion of one 
or a few genotypes in a certain group, which alters the 
groups of the other genotypes. Nevertheless, this is not 
a problem to selecting sources of resistance, since the 
separation of genotypes with lower AUDPC continues 
to occur. Thus, the selection of sources of resistance us-
ing AUDPC predicted by ANN is promising, since even 
with the changes in genotype groups, ANN was efficient 
in distinguishing genotypes which showed lower sever-
ity averages. Apparently, the practical application of the 
strategy utilized in this scenario is difficult, because the 
researcher would have to evaluate 70 % of the plants 
during the measurement period (six measurements or 
evaluations), and only with the remaining is it possible 
to estimate AUDPC with a lower number of replicates. 
Notwithstanding, it is important to highlight the net-
work capacity for extrapolating its learning for another 
group of accessions, and is, thus, effective in a broader 
approach. 

ANN extrapolation that was generated from an 
experiment and test for the others proved to be very ef-
fective in reflecting the conventional calculation (Table 
5), making it the use of neural networks for this purpose 
unquestionable. This demonstrates the importance of 
maintaining databases which have, for example, mea-
surements of disease severity, AUDPC, among others, so 
that in the near future it would be possible to implement 
an evaluation program using ANN, and take advantage 

of all potentialities of this tool. We have demonstrated 
in this study that even when using a limited dataset, 
it was possible to estimate the AUDPC of experiments 
performed in different micro-sites and in different time 
frames. Thus, it was possible, for example, using severity 
data and the AUDPC of Experiment 1 (performed under 
atypical in Jan 2009), to infer about the AUDPC of acces-
sions of Experiment 4 (installed after 10 months) with a 
correlation greater than 96 % using a reduced number 
of evaluations. 

It is important to emphasize that the application 
of structured networks in the present study of AUDPC 
prediction in other experiments, should be recommend-
ed with reservation, since database availability for ANN 
training is limited. Also, as previously reported, the prac-
tical use of the strategies presented in scenario 1, 2 and 3, 
such as they were assessed, is also quite limited because 
it requires evaluations of samples from both plants and 
accessions to be applied. For this reason, the practical 
use of ANN in the routine work of a breeding program 
essentially necessitates a change in the current disease 
evaluation system paradigm (Figure 2A), even for tomato 
× P. infestans pathosystem. The new proposed paradigm 
(Figure 2B) presents a practical course of action which is 
based on planting representative accessions in a fraction 
of the experimental field (considering experimentation 
principles). These will serve as a basis for conventional 
evaluation and following ANN training along with his-
torical data, are to be used in experiment prediction in 
the remaining experimental area, a contemporary of the 
ANN. In this, a reduced number of evaluations should 
be performed. Finally, we would like to emphasize that 
accumulating information in databases to be used in net-
work training upgrading is necessary and should be rou-
tine practice in breeding programs. 

Figure 2 − Change in the paradigm of disease-progress evaluation in tomato. A) Current paradigm, in which i evaluations are performed in 
individual experiments, separated in space and time. B) New paradigm, where an experiment is undertaken for artificial neural networks (ANN) 
prediction/update, using representative genotypes of the other contemporary experiments separated in space; and using historical data with 
genotypes separated in time and exposed to different environmental conditions. The predicted ANN should be able to efficiently predict the 
contemporary experiments where only relevant measurements were performed.
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In this way, with the aim of screening the resistant 
accessions we recommend the application of this new 
paradigm and the performing of only two to three evalu-
ations at 12 and 15 or at 9, 12 and 15 days after inocu-
lation, respectively, followed by prediction using ANN. 

Moreover, ANN could be used for AUDPC predic-
tion following the principles of other methods. Simko 
and Piepho (2012) proposed a series of evaluations for 
the AUDPC calculation, where different weights are at-
tributed to the first and last evaluations, which are often 
penalized in other evaluation systems. ANN could, for 
example, be trained with the first, the last, and a reduced 
series of intermediate evaluations, and still allow for the 
AUDPC to be obtained, and reduce either costs or time. 
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