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ABSTRACT: The use of data mining is a promising alternative to predict soil respiration from 
correlated variables. Our objective was to build a model using variable selection and decision 
tree induction to predict different levels of soil respiration, taking into account physical, chemical 
and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The 
original dataset was composed of 19 variables (18 independent variables and one dependent 
(or response) variable). The variable-target refers to soil respiration as the target classification. 
Due to a large number of variables, a procedure for variable selection was conducted to remove 
those with low correlation with the variable-target. For that purpose, four approaches of variable 
selection were evaluated: no variable selection, correlation-based feature selection (CFS), chi-
square method (χ2) and Wrapper. To classify soil respiration, we used the decision tree induction 
technique available in the Weka software package. Our results showed that data mining tech-
niques allow the development of a model for soil respiration classification with accuracy of 81 %, 
resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particu-
lar, the wrapper method for variable selection identified a subset of only five variables out of 18 
available in the original dataset, and they had the following order of influence in determining soil 
respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.
Keywords: soil CO2 emission, data mining, variable selection, soil temperature, soil organic 
matter
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Introduction

Soil respiration is defined as carbon dioxide 
(CO2) released from the soil surface into the atmo-
sphere through the combined activity of the roots 
and decomposing organisms of soil organic matter 
(Stockmann et al., 2013). It is a significant compo-
nent in the global carbon balance (C), since it is the 
main contributor in the transmission of C from the 
pedosphere into the atmosphere (Vicca et al., 2014). 

Moisture and temperature have a strong influ-
ence on soil respiration (Fang and Moncrieff, 2001), 
as well as precipitation (Moitinho et al., 2015), soil 
drainage (Lal, 2004), availability and quality of or-
ganic matter (Campos et al., 2011), soil texture (Di-
lustro et al., 2005), topography (Brito et al., 2009), 
soil preparation system (Lal, 2004), application of 
limestone (Marcelo et al., 2012), porosity, pH (Or-
chard and Cook, 1983) and erosion processes (Lal, 
2001).

Currently, an ultimate objective in carbon cycle 
science is to understand the spatial and temporal con-
trols of CO2 dynamics in terrestrial ecosystems (Leon 
et al., 2014). Thus, a more detailed understanding 
of the components of the global C balance allows to 
identify sources and drains of C and develop strat-
egies to mitigate the risks of climate change (Lal, 
2004). However, estimating sequestration or soil res-
piration into the atmosphere in production systems 
is difficult and complex due to the diversity of agri-

decision tree

cultural practices in large areas and significant varia-
tions of both soil and climate (Smith et al., 2010). 

In this sense, data mining, defined by Berry and 
Linoff (1997) as the use and analysis of large amounts 
of data to discover significant patterns and rules, be-
comes an interesting tool to estimate different levels 
of soil respiration from related variables. Among the 
data mining techniques, we highlight the algorithms 
for decision trees (Monard and Baranauskas et al., 
2002), mainly due to the interpretative potential of the 
symbolic model generated (Han et al., 2011). 

Decision tree is a supervised learning method 
that provides a model represented graphically by 
nodes and branches, similar to a tree, but in the in-
verted sense. The decision nodes are: root node, lo-
cated at the structure top, and the internal nodes, 
which contain a value test on one of the most rel-
evant attributes where the results of these tests form 
the branches. The leaf-knots refer to the classes of 
the response variable and represent the result of 
the prediction obtained by the model (Witten et al., 
2011). This study is based on the hypothesis that data 
mining techniques are efficient to generate models 
to predict soil respiration through related variables. 
Therefore, our objective was to build a model using 
variable selection and decision tree induction to pre-
dict different levels of soil respiration, taking into 
account physical, chemical and microbiological vari-
ables of soil and precipitation in renewal of sugar-
cane areas. 
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Materials and Methods

The experiment was conducted in a sugarcane 
crop belonging to the Iracema sugarcane Mill, located 
in the municipality of Iracemápolis, São Paulo, Brazil 
(22º34’50” S, 47º31’07” W; 608 m above sea level). The 
climate is CWa, humid temperate climate, with dry win-
ter and hot summer according to the Köppen and Ge-
inger classification (Köppen and Geinger, 1928). In the 
region, the average annual precipitation is 1294 mm and 
relative air temperature is 20.4 °C. 

The soil under investigation is classified as Rhod-
ic Hapludox, according to the Soil Taxonomy System 
(Soil Survey Staff, 2014), and is described as a Latos-
solo Vermelho Eutroférrico, according to the Brazilian 
Soil Classification, with very clayey texture. In the site 
characterization, the soil presented a pH around 4.6, an 
average organic carbon content of 10.5 g C dm–3, base 
saturation of 50 %, cation exchange capacity 10.25 cmolc 
dm–3, N-NH4 content of 3.21 mg kg–1, N-NO3 content of 
15.10 mg kg–1, from 0-40 cm depth. The distribution of 
particle sizes of sand, silt, and clay were 140 g kg–1, 194 
g kg–1 and 666 g kg–1 respectively.

The experimental design was randomized blocks 
with a layout of plots subdivided into four replications. 
Each plot was split into an area with and without crop 
rotation, and each subplot received one of two types of 
soil tillage (minimum tillage and conventional tillage). 
Each experimental unit comprised 15 rows of sugarcane, 
at 1.5 m spacing and 34 m in length.

The treatments in this study are detailed as fol-
lows: Management system: i) area without crop rotation 
(WR); ii) area with crop rotation (CR) that used sunn 
hemp during the renewal of the sugarcane crop.

Soil Tillage systems: i) conventional tillage (CT) in 
the form of subsoiling, two harrowing procedures, and 
furrowing; ii) minimum tillage (MT) which consisted 
only of subsoiling and furrowing. For both treatments, 
we adopted conventional traffic held at the mill, even 
during harvesting (Figure 1).

The soil location of the experimental area has 
been used for sugarcane production in the last 70 years; 
however, the experiment began at the time of sugarcane 
crop renewal. The experiment was set up initially by 
mechanical elimination of ratoons followed by subsoil-
ing into a 0.40 m depth across the entire area. Subse-
quently, sunn hemp was line-planted by distributing 25 
kg ha–1 of seeds at a 0.5 m spacing during the recom-
mended period of leguminous planting. 

During this period, the area without crop rotation 
remained fallow, with only the presence of spontaneous 
sugarcane plants and weeds. At the end of the crop cy-
cle, four metal frames covering 1 m2 were randomly re-
leased to evaluate dry matter production of sunn hemp; 
8 t ha–1 of sunn hemp dry matter were produced. In Apr 
2013, the sunn hemp was desiccated. 

Subsequently, the conventional tillage plots were 
prepared with two light harrowing procedures at a 0.40 

m depth. For plots with minimum cultivation, only one 
furrowing was applied at a 0.40 m depth using the same 
equipment as applied to the conventional tillage. Plant-
ing was done manually, where the stalks were distrib-
uted in rows, cut into smaller pieces and later covered 
mechanically. At that time, it was applied 0.5 L ha–1 of 
fungicide and 250 g ha–1 of insecticide and planting fer-
tilization performed with 300 kg ha–1 formulated as 12-
23-23. Sugarcane grown in the experimental area was 
the variety RB96 6928 recommended for environments 
of high potential. 

Analysis of soil respiration, temperature and 
moisture

Temporal variability of soil respiration was evalu-
ated using a portable system. This system consists of 
a closed chamber connected to PVC collars previously 
installed in the soil, with an internal volume of 991 cm3 
and a soil contact area of 71.6 cm2. In the measurement 
mode, CO2 concentration of the air inside the chamber 
is continuously measured by optical absorption spec-
troscopy in the infrared region - IRGA (Infra-red Gas 
Analyzer).

Evaluations were made in five PVC collars insert-
ed 3 cm into the soil (diameter = 10 cm and height = 
7 cm), distributed in 16 experimental plots (80 collars 
total). The collars were inserted 24 h before the first 
measurement, after tillage, in order to minimize distur-
bances due to placing the chamber into the soil. The 
measurements were always performed in the morning 
between 8h00 and 10h00 a.m., and each reading lasted 1 
min and 30 s. Readings were performed daily in the first 
days after soil tillage. After the stabilization of CO2 emis-
sions, the readings were held weekly and later biweekly, 

Figure 1 – Sketch of the data collection of soil respiration. CTCR 
= conventional tillage crop rotation; CTWR = conventional tillage 
without crop rotation; MTCR = minimum tillage with crop rotation; 
MTWR = minimum tillage without crop rotation.
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and were conducted for 97 d after soil tillage in order 
to plant sugarcane. Soil respiration recorded in each of 
the five collars of each experimental unit (2 lines and 3 
between the lines) was aggregated into a single measure-
ment by the weighted average (assuming an area of 27 % 
for the line and 73 % between the lines). The daily soil 
respiration during the study period was estimated by the 
integral area method under the curve versus time.

Measurements the soil temperature and soil mois-
ture were taken at the exact same time of the soil respi-
ration measurements. Soil temperature (St) was evaluat-
ed at all points studied with the sensor, which is part of 
the portable CO2 analysis system. This sensor consisted 
of a 20 cm rod inserted into the soil perpendicular to the 
surface near the PVC collars used to measure the soil 
respiration. Soil moisture (Sm) was measured simultane-
ously with the measurement of CO2 concentration by 
the TDR (Time Domain Reflectometer). The probe Thet-
aprobe ML2 is a tool that directly measures soil water 
content, corresponding to the volumetric moisture con-
tent, using the principle of wave generation that releases 
an electromagnetic pulse to a set of rods with reflection 
measured in the time domain (TDR).

After collecting CO2, disturbed and undisturbed 
soil samples, with aluminum rings to determine soil 
chemical and physical variables, were collected at 
depths of 0.00-0.10 m, 0.10-0.20 m, 0.20-0.30 m and 
0.30-0.40 m. 

Soil physical variables
Total soil total porosity (TP), macroporosity (Mac-

ro), microporosity (Micro), and bulk density (Bd) were 
determined according to Brazilian Agricultural Research 
Corporation methodologies (Donagema et al., 2011). The 
resistant to penetration (RP) was obtained by the Stolf 
formula (1991) and water content in soil was determined 
by the gravimetric method in disturbed samples (Don-
agema et al., 2011). The mean diameter of the aggre-
gates (MDA) was determined according to the method 
described by Kemper and Chepil (1965) and the calcula-
tion of the aggregate tensile strength (Ts) was performed 
as described by Dexter and Kroesbergen (1985).

Soil chemical variables 
All samples were taken to the laboratory, air dried 

and then passed through a 2.0 mm mesh. It was deter-
mined soil pH (CaCl2 0.01 mol L–1), exchangeable cations 
(Ca2+, Mg2+ and K+), phosphorus available in resin (P), 
organic carbon (wet oxidation), acidity potential, CTC 
potential and base saturation in accordance to the meth-
odology proposed by Raij et al. (2001). 

Soil microbiological variable 
For the analysis of this variable, undisturbed soil 

samples were collected at the same depths for the chemi-
cal and physical variable (0.00-0.10 m, 0.10-0.20 m, 0.20-
0.30 m and 0.30-0.40 m). The samples were collected and 
placed in a cooler and refrigerated during transportation 

to the laboratory where they were preserved in cold stor-
age at 4 °C until the time of analysis. The microbial bio-
mass carbon (MBC) was determined by the fumigation-
extraction method proposed by Vance et al. (1987). 

Data analysis and modeling
The original dataset was composed of 19 vari-

ables (one dependent (or response) variable and 18 in-
dependent (or explanatory) variables) (Table 1) that were 
added to the dataset totaling 1,552 observations. The 
variable-target refers to soil respiration and is the clas-
sification target. 

The 18 independent variables were formed by nine 
soil physical variables (Sm, Ts, MDA, Macro, Micro, TP, 
Bd, RP Ts), eleven soil chemical variables (H+Al, Al3+, 
Ca2+, Mg2+, K+, P, C-org), a soil microbial variable (MBC) 
and a climatic variable (daily precipitation obtained at 
the weather station located at the sugarcane mill) (Table 
1).

To identify different soil respiration levels, a dis-
cretization of the variable-target into categories was 
necessary, that is, continuous data was transformed into 
discrete data (intervals). 

The categorization of the response variable in-
tervals simplifies information, which facilitates the 
interpretation and decision making when analyzing a 
decision tree. However, it was not possible to produce 
rankings for different soil respiration levels in analyzing 
the literature, since this information is scarce or non-
existent. For that purpose, soil respiration values (g m–2 

h–1), present in the database, were ordered increasingly 
and equally divided into three soil respiration classes: 
low, medium and high (Table 2). 

Table 1 – Description of 18 independent variables (physical, 
chemicals, microbiological and climatic) used in the composition of 
the database aimed at decision tree induction to predict different 
levels of soil respiration.

Variable Description Unit

Physical

Sm Soil moisture %
St Soil temperature °C
MDA Mean diameter of the aggregate mm
Macro Soil macroporosity m3 m–3

Micro Soil microporosity m3 m–3

TP Total porosity m3 m–3

Bd Bulk density kg dm–3

PR Penetration resistance Mpa
Ts Tensile strength of the aggregate kPa

Chemical

H+Al Acidity potential cmolc dm–3

Al3+ Exchangeable aluminum cmolc dm–3

Ca2+ Exchangeable calcium cmolc dm–3

Mg2+ Exchangeable magnesium cmolc dm–3

K+ Exchangeable potassium cmolc dm–3

P Exchangeable phosphorus mg dm–3

C-org Organic carbon mg dm–3

Microbiological MBC Microbial biomass carbon µg C g–1 d–1

Climatic P Precipitation mm d–1
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Variable selection
To select the variables to be included in each repe-

tition, the most common methods are based on informa-
tion theory, such as information gain, which represents 
the expected reduction in entropy caused by partitioning 
the examples according to a variable (Han et al., 2011).

Entropy measures the amount of information car-
ried by a variable, thereby characterizing the random-
ness or uncertainty of a set of examples (Shannon, 1949). 
Thus, given a set of examples for the relative target vari-
able S of interest, and a C categorization of that variable 
in n classes S1, S2, ..., Sn, the entropy H (S) is defined by 
Equation 1, as follows:

H S pi pi
i

n

( ) = −( ) ( )
=
∑ .log

1

	  (1)

where: pi is the proportion of favorable cases of Si class.
Due to a large number of variables generated 

in the data preprocessing, a variable selection proce-
dure was used to remove variables with low correla-
tion values with respect to the target variable. Thus, 
four approaches for variable selection were evaluated: 
(i) No variable selection in which the use of all vari-
ables occurred, characterized by the absence of se-
lection; (ii) Correlation-based feature selection (CFS), 
which searches the set of correlated variables in order 
to prevent reuse of the same information; (iii) The chi-
square method (χ2) is based on the concept of statisti-
cal independence; (iv) The Wrapper approach occurs in 
conjunction with the basic learning algorithm. In other 
words, this method creates a subset of variables, which 
is tested by the learning algorithm of interest. This 
process is repeated for each subset of variables until 
the given stopping criterion is reached. This approach 
evaluates variables using precision estimates provided 
by predetermined learning algorithms (Kohavi and 
George, 1997).

Induction and validation of the classification 
model (decision tree)

The induced models, with the variation of the 
number of objects (instances or observations) per leaf, 
were evaluated using the cross-validation method in 10 
folds and through the following metrics: (i) accuracy 
rate; (ii) number of leaves (number of rules) generated, 
which are generally associated with model interpretabil-
ity; (iii) Kappa coefficient that measures the agreement 
between observed and predicted classes of the classifier; 
(iv) precision per class, which can be thought of as a 
measurement of exactness, i.e., percentage of instances 
labeled as low, medium and high are actually such.

The difference between precision and accuracy 
is that the former is a description of  random errors, a 
measurement of statistical variability, and the latter is a 
description of systematic errors, a measurement of sta-
tistical bias.

As a result of induction of the decision tree model, 
the known matrix of errors or matrix of agreements is 

calculated (Table 3), widely used in statistical analysis of 
agreement (Han et al., 2011).

In the Total column of Table 3, P is the total value 
of positive cases and N is the total of existing negative 
cases in the training set. In the Total, P' is the total num-
ber of cases that the model rated as positive and N' the 
total number of cases classified as negative. The matrix 
of agreements allows to extract the performance evalu-
ation metrics. The rate of accuracy is the percentage of 
examples that were correctly classified by the classifier 
and can be expressed as in Equation 2. 

Accuracy = (TP + TN)/(P+N)	  (2)

To describe the agreement measured between 
predicted and observed classes, which deducts the ex-
pected number of correct answers (using a classification 
at random) of the actual number of the accuracy of the 
classifier, the Kappa measurement is used (Equation 3). 
Their values vary from 0 to 1, representing bad and good 
classification results, respectively. The Kappa coefficient 
can be defined by the following equation (Witten et al., 
2011): 

K = Pr (a) – Pr (e)/1 – Pr (e)	  (3)

where: Pr (a) is the relative agreement observed for a 
given class in the matrix of agreements; Pr (e) is the 
probability of expected agreement for this same class.

The Kappa coefficient is calculated taking into ac-
count all classes. A possible interpretation of the models 
performance from this measure was introduced by Lan-
dis and Koch (1977). 

Finally, precision (P) is the proportion of the pre-
dicted positive cases that were correct and can be calcu-
lated using the equation (4): 

P = TP/(TP + FP)	  (4)

Table 2 – Distribution of soil respiration (g m2–1h–1) according to low, 
medium and high classes and their limits, aimed at decision tree 
induction to predict different levels of Soil respiration.

Class Limit
Low [0.016; 0.124]
Medium [0.125; 0.223]
High [0.224; 3.21]

Table 3 – A 2 × 2 matrix of agreements. TP = true positives; FP = 
false positives; FN = false negative; TN = true negatives.

PREDICT
Class A Class B Total

TRUE
Class A TP = (A, A) FN = (A, B) P
Class B FP = (B, A) TN = (B, B) N

Total P’ N’ P+N
The respective values of TP, FN, FP and TN for this study are described in 
Table 9.
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For data classification, the decision tree method 
was used, available in the Weka 3.6 software. J48 was 
the induction algorithm used, widely known as C4.5, 
developed by Quinlan (1993). C4.5 builds decision trees 
from a set of training data using the concept of entropy. 
At each node of the tree, C4.5 chooses the attribute of 
the data that most effectively splits its set of samples into 
subsets enriched in one class or the other. The splitting 
criterion is the normalized information gain (difference 
in entropy). The attribute with the highest normalized in-
formation gain is chosen to make the decision. Seeking 
to minimize a possible overfitting effect, the decision-tree 
pruning technique was performed to reduce the number 
of internal nodes, generating smaller trees, less complex, 
and thus easier to be understood.

Results

Figure 2 shows the temporal behavior of soil res-
piration evaluated for 97 days after soil tillage and sug-
arcane planting. These records were used to compose 
the dataset for decision tree induction to provide differ-
ent soil respiration levels, where average values of soil 
respiration for low, medium and high classes were 0.09, 
0.166 and 0.64 g m–2 h–1, respectively. The greatest varia-
tions in soil respiration occurred due to changes in the 
soil water content, due to the occurrence of precipitation 
in the experimental area. Two major peaks occurred in 
soil respiration during this period, which coincide with 
precipitation events one day before.

Table 4 shows the results of different methods for 
variable selection. This Table also shows rates of accuracy, 
Kappa coefficient and the number of rules generated in 
each tree for each variable selection method performed.

Of the 18 variables available in the dataset, the Wrap-
per method selected only five of them: soil temperature, 
precipitation, macroporosity, soil moisture and acidity po-
tential (H+Al) (Table 4). This method works as a “black 
box” to find the best subsets of variables in order to find 
the set of variables that best suits the ranking algorithm.

In addition, this method showed good quality indica-
tor metrics of the model, with accuracy of 81 %, a Kappa 
value of 0.72, indicating that the use of only these five 
variables is sufficient to achieve a very good classification, 
yielding a total of 90 rules.

The method without variable selection (used 18 vari-
ables available in the dataset) achieved accuracy of 81 %, 
Kappa index of 0.71 (Table 4), representing a very good 
correlation to the model; however, with a total of 100 rules. 

The correlation-based feature selection method 
(CFS) selects variables considering those highly correlated 
with the response variable (soil respiration) and not cor-
related to each other. This method selected only two vari-
ables (temperature and precipitation) and had one of the 
worst results in the classification reaching an accuracy of 
65 %, Kappa statistics of 0.47, which represents a good 
agreement for the model, with a total of 35 rules generated 
by the model.

On the other hand, the Chi-square method eliminat-
ed only one of the 18 variables, that is, soil organic carbon. 
This method had 81 % of accuracy with a Kappa index 
of 0.71, representing very good agreement for the model, 
with a total of 102 rules.

Table 5 shows the variables selected by the Wrapper 
method with their respective contributions in the infor-
mation gain. The soil temperature variable showed infor-
mation gain higher than the other selected variables. The 
order of variable influence in determining soil respiration 
according to information gain was as follows: soil tempera-
ture > precipitation > macroporosity > soil moisture > 
acidity potential. 

Table 6 shows the per-class precision results ob-
tained using the Wrapper method and demonstrates that 
the precision for low, medium and high classes ranged 
from 0.80 to 0.83, indicating an efficient model to classify 
the classes in this study, making it applicable to new cases.

In order to minimize the overfitting effects, a prun-
ing procedure was applied in the selected decision tree 

Figure 2 – Temporal variability of soil respiration evaluated after 
soil tillage at the time of sugarcane crop renewal and the standard 
errors. CTCR = conventional tillage crop rotation; CTWR = 
conventional tillage without crop rotation; MTCR = minimum tillage 
with crop rotation; MTWR = minimum tillage without crop rotation.

Table 4 – Rates of accuracy, Kappa statistics and the number of rules for different variable selection methods aimed at decision tree induction 
to provide different soil respiration levels.

Selection method Number of variables select Rate of accuracy Kappa Number of rules
With no variable selection 19 81 0.71 100
Correlation based feature selection 2 65 0.47 35
Chi-square 18 81 0.71 102
Wrapper 5 81 0.72 90
Accuracy rate of the model (%).
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to make the learning model more comprehensive by de-
creasing the number of rules of the generated tree. Table 7 
shows the accuracy rates, Kappa coefficient and the num-
ber of rules generated for different pre-pruning levels.

The results in Table 7 show that the decision tree 
model generated with the variables selected by the Wrap-
per method had accuracy of 76 % for a pre-pruning level 
equal to 20, with a Kappa coefficient, considered very 
good, yielding a total of 27 rules. It is possible to verify that 
for a pre-pruning level above 20 there is a reduction of the 
Kappa coefficient to a category regarded as good, without 
any significant reduction in the number of rules generated. 

From the classification model generated by using the 
variables selected by the Wrapper method with the J48 al-
gorithm for decision tree induction and pre-pruning level 
above 20 number of objects per leaf, a matrix of agree-
ments was created, expressing the total accuracy and sam-
ples misclassified by the model (Table 8). 

The main matrix diagonal contains the number of 
correct classifications, that is, the observed values coincide 
with the predicted ones for the analyzed dataset, while the 
off-diagonal elements represent the error obtained by the 
classifier. Analyzing the results, the proposed classification 
scheme was satisfactory, with a high accuracy rate for the 

target classes of classification, confirming the value of the 
Kappa index equal to 0.64 (Table 7), a very good rating 
(Landis and Koch, 1977).

At this cutoff point, 27 rules were generated; 6 relat-
ed to high soil respiration class, 11 to the medium soil res-
piration class, and 10 to low soil respiration class (Table 9).

By analyzing the rules generated based on this mod-
el (Table 9), the variables soil temperature, macroporosity, 
precipitation and soil moisture are essential to determine 
the high soil respiration class. In addition, the acidity po-
tential (H+Al) only influenced the medium and low soil 
respiration classes, since the presence of this variable in 
the characterization of high soil respiration was not ob-
served (Table 9).

Of all the rules generated by the classification mod-
el, 88 % covered acidity potential (H+Al) to determine a 
low soil respiration class and involved values of H + Al 
less than 5.8 cmolc dm–3.

Another interesting result was that 80 % of the rules 
to diagnose soil respiration belonging to the low class are 
subject to soil temperature below 17.92 °C (Table 9). On 
the other hand, 67 % of rules to classify soil respiration as 
high are conditioned to soil temperatures above 18.58 °C.

Discussion

The results of this study showed that data min-
ing techniques allowed the development of an efficient 
model for soil respiration classification, by using the 
Wrapper method of selecting variables and the J48 algo-
rithm for decision tree induction. The Wrapper method 
selected a subset efficient for soil respiration prediction 
with just five variables, namely soil temperature, precip-
itation, macroporosity, soil moisture, and acidity poten-
tial. The selected variables showed a great consistency 
with the literature, both for the selected variables and 
the decision tree rules.

In general, the first variables positioned in a deci-
sion tree (from the root) are the most important, since 
the lower entropy, the higher information gain. Thus, 
the most important variable represents the root of the 
decision tree. In this study, the most important variable 
corresponded to soil temperature (the root of the deci-
sion tree). 

Many studies have reported that seasonal varia-
tions with increases in soil temperatures offer favor-
able conditions to maximize activity of microorganisms 
by increasing the organic matter degradation rate and 

Table 5 – Information gain in descending order of variables selected 
by the Wrapper method aiming at decision tree induction to predict 
different soil respiration levels.

Variable contribution Information Gain
Soil temperature 0.48
Precipitation 0.29
Macroporosity 0.08
Soil moisture 0.07
Acidity potential 0.04

Table 6 – Precision values for the low, medium and high classes 
of the generated model with the Wrapper method for variable 
selection.

Class Precision
Low 0.83
Medium 0.80
High 0.82

Table 7 – Accuracy rates, Kappa coefficient, and the number of 
rules for different pre-pruning levels for the Wrapper method.

Number of objects per leaf Rate of Accuracy Kappa Number of Rules
%

2 81 0.72 90
5 80 0.70 63
10 79 0.68 40
15 77 0.66 33
20 76 0.64 27
25 72 0.58 24
30 72 0.58 23

Table 8 – Matrix of agreements of classification generated using the 
Wrapper method for variable selection and the J48 algorithm for 
decision tree induction.

PREDICT
Low Medium High

Observed
Low 398 77 43
Medium 96 358 63
High 33 61 423
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consequently soil respiration (Silva-Olaya et al., 2013; Fla-
nagan et al., 2013; Nie et al., 2013). In Brazil, Tavares et 
al. (2016a) analyzed the spatial variability in green harvest 
system with a history of 10 years of implementation and 
observed that this system showed soil respiration linearly 
correlated to temperature (R2 = 0.80). However, Bradford 
(2013) pointed that, seasonal patterns in responses from 
soil respiration to temperature are strongly dependent on 
substrate availability, for instance, the temperature must 
have minimal effects on respiration rates at times of the 
year when the substrate is depleted, and strong effects 
when substrate supply is abundant.

The results of this study showed that higher temper-
atures (> 18.58 °C) contribute to such high soil respiration 
classification. According to Flanagan et al. (2013), one of 
the main environmental factors driving soil respiration is 
soil temperature because of it controls and regulates physi-
ological and various biogeochemical processes (i.e., decom-
position of soil organic matter and root metabolism). Wal-
lenstein et al. (2011) reported that soil warming typically 
accelerates soil microbial respiration rates due to increased 
soil enzymatic activities, which lead to decomposition.

The second most important variable in making the 
decision tree was rainfalls (precipitations) indicating, as 
well as the soil temperature, great effects on soil respira-
tion and can lead to significant carbon loss in the form of 
CO2. Figueiredo et al. (2014) evaluated the short-term soil 
respiration at the time of renewal of sugarcane (Saccharum 

spp.) in southern Brazil and observed increases in soil 
respiration caused by rainfall events. The authors high-
lighted that this fact is probably related to changes in 
soil water content, as precipitation causes increased mi-
crobial activity. In addition, there is the additional effect 
of the removal/displacement of air (CO2) from soil poros-
ity caused by water infiltration into the soil (Figueiredo 
et al., 2014). Tavares et al. (2016a) observed higher soil 
respiration in rainy periods in comparison to the dry pe-
riod, related to greater microbial activity promoted by 
soil moisture and root activity during plant growth and 
development.

 In their work with hot spots, hot moments, and 
spatio-temporal controls on soil respiration in a water-
limited ecosystem, Leon et al. (2014) noted that monthly 
precipitation was the primary drive of the seasonal trend 
of soil respiration. Moreover, the authors reported that 
changes in water volumetric content in the soil caused 
by rainfall influenced the relationship between soil res-
piration and soil temperature. Therefore, the evaluation 
of soil temperature must be carefully analyzed, since 
temperature is influenced by soil moisture, which in 
turn is influenced by rainfall (Tavares et al., 2016a). In 
agreement, Sierra et al. (2015) point out that in soils, 
temperature and moisture covary at different spatial and 
temporal scales describing a trajectory in the x y plane. 

It was observed that the rules generated from the 
decision tree model, which led to a high soil respiration 

Table 9 – Rules generated by the pruned decision tree in which the minimum number of objects per leaf = 20 for the Wrapper method.
1 IF 18.58 < Temperature <= 20.84 AND Precipitation > 0 AND 11.9 < Moisture <= 16.96 THEN Low
2 IF Temperature <= 17.92 AND Macro <= 5.49 AND Moisture <= 20.55 THEN Low
3 IF 16.99 <= Temperature <= 18.34 AND Macro <= 5.49 AND Moisture > 20.55 THEN Low
4 IF Temperature <= 17.92 AND Macro > 5.49 AND H+AL > 5.8 AND Precipitation > 0.5 THEN Low
5 IF Temperature <= 17.92 AND Macro > 5.49 AND 5 < H+AL <= 5.8 AND Moisture <= 23.41 THEN Low
6 IF Temperature <= 16.86 AND Macro > 5.49 AND 5 < H+AL <= 5.8 AND Moisture > 23.41 THEN Low
7 IF Temperature <= 17.45 AND 5.49 < Macro <= 5.53 AND H+AL <= 5 THEN Low
8 IF Temperature <= 17.67 AND 5.49 < Macro <= 8.75 AND H+AL <= 5 THEN Low
9 IF Temperature <= 17.67 AND 8.75 < Macro AND H+AL <= 5 AND Moisture <= 20.11THEN Low
10 IF Temperature <= 17.67 AND 9.73 < Macro <= 10.19 AND H+AL <= 5 AND Moisture > 20.11THEN Low
11 IF 17.92 < Temperature <= 18.34 THEN Medium
12 IF 18.34 < Temperature <= 18.58 AND Macro > 5.49 THEN Medium
13 IF 8.58 < Temperature <= 20.84 AND Precipitation > 0 AND Moisture <= 16.96 THEN Medium
14 IF Temperature <= 17.92 AND Macro > 5.49 AND H+AL > 5.8 AND Precipitation <= 0.5 THEN Medium
15 IF 16.86 < Temperature <= 17.92 AND Macro > 5.49 AND 5 < H+AL <= 5.8 AND Moisture > 23.41 THEN Medium
16 IF Temperature <= 17.92 AND Macro > 10.59 AND H+AL <= 5 THEN Medium
17 IF 17.67 < Temperature <= 17.92 AND 5.49 < Macro <= 10.59 AND H+AL <= 5 THEN Medium
18 IF 17.45 < Temperature <= 17.67 AND 5.49 < Macro <= 10.59 AND H+AL <= 5 THEN Medium
19 IF Temperature <= 17.45 AND 5.53 < Macro <= 6.95 AND H+AL <= 5 THEN Medium
20 IF Temperature <= 17.67 AND 8.75 < Macro <= 9.73 AND H+AL <= 5 AND Moisture > 20.11THEN Medium
21 IF Temperature <= 17.67 AND 10.19 < Macro AND H+AL <= 5 AND Moisture > 20.11THEN Medium
22 IF 18.34 < Temperature <= 18.58 AND Macro <= 5.49 THEN High
23 IF Temperature > 18.58 AND Precipitation > 1 THEN High
24 IF Temperature > 18.58 AND 0 <= Precipitation <= 1 AND Moisture > 16.96 THEN High
25 IF Temperature > 18.58 AND Precipitation > 0 AND Moisture > 16.96 THEN High
26 IF 18.58 < Temperature <= 20.84 AND Precipitation > 0 AND 11.9 <= Moisture <= 16.96 THEN High
27 IF 16.99 < Temperature <= 17.92 AND Macro <= 5.49 AND Moisture > 20.55 THEN High
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class, involved the variables of soil temperature, macro-
porosity, precipitation and soil moisture, which have a 
high information degree. Several authors point out that 
soil respiration of agricultural soils is directly related to 
temperature and soil moisture conditions (Carbonell-
Bojollo et al., 2012; Silva-Olaya et al., 2013). 

Regarding the influence of precipitation to de-
termine high-class soil respiration, Moitinho et al. 
(2015) characterized the spatial and temporal behavior 
of soil respiration and their relation to soil edaphocli-
matic properties in sugarcane crops in Dourados, Mato 
Grosso do Sul, Brazil. They showed that the highest 
temporal variations of soil respiration were explained 
by changes in the soil water content, especially after 
rain. Silva-Olaya et al. (2013) observed the same trend 
in which higher soil respiration during the days with 
precipitation occurs probably due to increased soil 
moisture.

As for macroporosity, Tavares et al. (2015; 2016b) 
indicated that macroporosity and microporosity exhibit 
antagonistic behaviors, because macroporosity offers a 
less tortuous route to the CO2 molecules, enabling the 
soil respiration in soil, as microporosity promotes lower 
linearity in the porous space and is associated with the 
most tortuous paths that hinder CO2 transport from the 
soil to the atmosphere. Probably the joint action of good 
conditions and the decomposition of soil respiration 
caused by great temperature conditions, water content 
in the soil and microporosity favored high soil respira-
tion.

The acidity potential (H+Al) only influenced the 
medium and low soil respiration classes. Probably this 
result may have impaired the growth and development 
of sugarcane plants, resulting in lower root respiration 
and, consequently, less soil respiration. Soil respiration 
is strongly linked to plant metabolism. Zhi-Min et al. 
(2013) observed that the average contribution of root 
respiration to total soil respiration was about 32 %. 
Li et al. (2011) pointed out mean contribution of root 
respiration to total soil respiration over 60 %. Another 
hypothesis may be related to the tendency to dissociate 
CO2 to cause acidity in the soil and control the acidity 
potential, because the carbonic acid produced by dis-
solving CO2 in water is an important acidifying agent 
in natural systems (Reuss and Johnson, 1986; Tossell, 
2009).

Conclusion

Our results showed that data mining techniques 
allow the development of a model of soil respiration 
classification, with accuracy of 81 % using 27 rules to 
predict soil respiration. In addition, the Wrapper meth-
od of selecting variables selects a subset of only five vari-
ables out of 18 available in the original data set, and they 
have the following order of influence in determining soil 
respiration: soil temperature > precipitation > macro-
porosity > soil moisture > potential acidity.
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