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ABSTRACT: Sulfuric acid digestion analyses (SAD) provide useful information to environmen-
tal studies, in terms of the geochemical balance of nutrients, parent material uniformity, nutri-
ent reserves for perennial crops, and mineralogical composition of the soil clay fraction. Yet, 
these analyses are costly, time consuming, and generate chemical waste. This work aimed 
at predicting SAD results from portable X-ray fluorescence (pXRF) spectrometry, which is pro-
posed as a “green chemistry” alternative to the current SAD method. Soil samples developed 
from different parent materials were analyzed for soil texture and SAD, and scanned with pXRF. 
The SAD results were predicted from pXRF elemental analyses through simple linear regres-
sions, stepwise multiple linear regressions, and random forest algorithm, with and without 
incorporation of soil texture data. The modeling was developed with 70 % of the data, while 
the remaining 30 % was used for validation through calculation of R2, adjusted R2, root mean 
square error, and mean error. Simple linear regression can accurately predict SAD results of 
Fe2O3 (R

2 0.89), TiO2 (R
2 0.96), and P2O5 (R

2 0.89). Stepwise regressions provided accurate 
predictions for Al2O3 (R

2 0.87) and Ki - molar weathering index (SiO2/Al2O3) (R
2 0.74) by incor-

porating soil texture data, as well as for SiO2 (R
2 0.61). Random forest also provided adequate 

predictions, especially for Fe2O3 (R
2 0.95), and improved results of Kr - molar weathering index 

(SiO2/(Al2O3 + Fe2O3)) (R
2 0.66), by incorporation of soil texture data. Our findings showed that 

the SAD results could be accurately predicted from pXRF data, decreasing costs, time and the 
production of laboratory waste.
Keywords: soil clay fraction, weathering indices, random forest, proximal sensors, green 
chemistry
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Introduction

Applied research using portable X-ray fluorescence 
(pXRF) spectrometry has increased dramatically over the 
last few years in different fields of Soil Science (Duda 
et al., 2017; Chakraborty et al., 2017; Silva et al., 2017; 
Stockmann et al., 2016). Weindorf et al. (2014) suggested 
that, in the future, great efforts will be made to establish 
correlations between pXRF data and results of conven-
tional laboratorial analyses. 

Recent studies have used pXRF data to predict vari-
ous soil chemical and physical properties resulted from con-
ventional laboratory analyses (Aldabaa et al., 2015; Sharma 
et al., 2014; Sharma et al., 2015; Silva et al., 2017; Zhu et al., 
2011). This means that, analyses that are costly, difficult to 
be performed, time-consuming, and that generate chemical 
residues could be replaced or at least reduced, if accurate 
predictions of their results are achieved from pXRF data 
(Rouillon and Taylor, 2016; McGladdery et al., 2018). 

In Brazil, sulfuric acid digestion analyses (SAD) are 
important for studies concerning geochemical balance of 
nutrients, parent material uniformity, nutrient reserves 
for perennial crops, as well as mineralogical composition 
of the soil clay fraction, among others (Curi and Kämpf, 
2012). These analyses provide contents of some elements 
expressed on the oxide basis (Al2O3, SiO2, Fe2O3, TiO2, and 
P2O5). Furthermore, this data allows calculating two indi-

ces used in the Brazilian Soil Classification System and in 
soil surveys to differentiate highly weathered soils, that 
is, Ki (SiO2/Al2O3) and Kr (SiO2/(Al2O3 + Fe2O3)). How-
ever, conventional SAD is expensive, time-consuming, 
and generates considerable amounts of chemical waste. 
In an attempt to overcome this issue, Silva et al. (2018) 
used pXRF to estimate SAD results applying simple lin-
ear regression, obtaining accurate predictions only for 
Fe2O3 and TiO2. Nevertheless, several more robust sta-
tistical models have been used in other studies, generat-
ing suitable results, such as multiple linear regressions 
(Rourke et al., 2016; Forkuor et al., 2017) and random 
forest algorithm (Chagas et al., 2016; Souza et al., 2016; 
Silva et al., 2017).

Considering that SAD determines the chemical 
composition of fine fractions (clay fraction mainly) and 
that pXRF determines the soil bulk chemical composi-
tion, we hypothesize that the results of soil bulk chemi-
cal composition determined by pXRF could be well cor-
related with SAD results in tropical soils, allowing the 
replacement of SAD by prediction models using pXRF 
data as input variables. In this sense, this study aimed at 
predicting the results of SAD from pXRF data, applying 
simple and multiple linear regressions as well as random 
forest algorithm. We expect not only to reduce cost, time 
and laboratory waste, but also to facilitate the use of 
SAD-derived information in studies on tropical soils.
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Materials and Methods

Soil sampling and laboratory analyses
This study was conducted using 52 soil samples 

collected from the southern, southeastern, and north-
eastern regions of Brazil, encompassing four states, 19 
soil classes according to Soil Taxonomy (Soil Survey 
Staff, 2014) and 14 parent materials (Table 1). 

Soils were morphologically described, and sam-
ples from A and B horizons were collected for laboratory 
analyses. The soil texture analyses were performed ac-
cording to Baver et al. (1972) and Gee and Bauder (1986). 
For SAD (Embrapa, 1997), 1 g of soil was mixed with 500 
mL of sulfuric acid and 500 mL of water. Then, the solu-
tion was boiled for 30 min followed by addition of 50 
mL of water. This mixture was filtered and the Fe2O3 and 
Al2O3 contents were determined by titration, whereas 
TiO2 and P2O5 contents were determined by colorimetry, 
and SiO2, by gravimetry. From these results, weathering 
indices [Ki = SiO2/Al2O3 and Kr = SiO2/(Al2O3 + Fe2O3)] 
were calculated.

pXRF analyses
Soil samples from A and B horizons were air-dried, 

ground and sieved through a 2-mm mesh (air-dried fine 
earth, ADFE). Next, about 15 g of ADFE were analyzed 
by pXRF spectrometry, in the Trace (dual soil) mode, 
during 60 s, in triplicate, using the Geochem software, 
as recommended by Weindorf and Chakraborty (2016). 
This equipment has a Rh X-ray tube, 50 keV, 100 µA, 
and a silicon drift detector (SDD) with resolution of <145 
eV, which allows detection of several chemical elements, 
from Mg to U (Weindorf et al., 2014; Ribeiro et al., 2017). 
The pXRF performance was checked through scanning 
reference materials (CRM) certified by National Institute 
of Standards and Technology (NIST) (2710a and 2711a) 
and a sample certified by the equipment manufacturer 
for the elements detected in most samples. The values 
recovered (100 × pXRF results/certified results) for these 
elements in comparison to information from CRM 2710a 
and 2711a and the manufacturer’s sample, were Al2O3 
(84/65/91), Fe (81/66/85), SiO2 (64/47/85), P2O5 (381/547/-), 
Ti (82/69/-), K2O (60/47/89), Cr (-/112/-), Mn (74/59/85), Ni 
(-/96/101), Ca (40/46/-), Cu (-/77/92), Zn (-/85/-), V (51/27/-
), Zr (-/105/-), Rb (104/102/-), and Pb (107/108/104), re-
spectively. Lack of recovery values indicates that either 
a certified concentration of that element was not avail-
able in the reference sample or the pXRF was not able 
to detect that element. It is worth mentioning that the 
results of pXRF may be influenced by particle size, mois-
ture content, scanning time, interelemental interference, 
and atomic weight (Peinado et al., 2010; Weindorf et al., 
2014; Ribeiro et al., 2017), which may explain some low 
recovery values for some elements.

Statistical analyses
Simple linear regressions were generated between 

the pXRF elemental results and elemental results from 

SAD, such as pXRF Al2O3 to predict SAD Al2O3. Simi-
larly, weathering indices were calculated from both SAD 
and pXRF results and simple linear regressions were ad-
justed between them. 

Contrary to the procedure to adjust simple linear 
regression models, when only pXRF data equivalent to 
the elements provided by SAD (Al2O3, SiO2, Fe2O3, TiO2, 
and P2O5) were used, stepwise multiple linear regres-
sions were created to predict SAD results based on all 
the elements detected by pXRF for all samples, that is, 
Al2O3, Fe, SiO2, P2O5, Ti, K2O, Cr, Mn, Ni, Cu, Zn, allow-
ing the generation of more robust models. Furthermore, 
two regression models per element resulted from SAD 
were created varying the datasets, as follows: a) using 
only pXRF data; and, b) using pXRF data in addition to 
soil texture data of each sample (sand, silt, and clay con-
tents). In this case, we adopted the backward stepwise 
method in which the least important variables for the 
model were removed. The addition of soil texture data 
may improve predictions, due to relationships found be-
tween the mineral composition of the soil and the par-
ticle size fraction in which each mineral is commonly 
found. Quartz (SiO2) is the main mineral found in the 
sand fraction of tropical soils, while most clay particles 
correspond to kaolinite and Fe- and Al-oxides (Kämpf et 
al., 2012). 

The random forest algorithm was applied to 
predict the SAD results as well as weathering indices 
through the same elements used in stepwise multiple 
linear regression. Random forest was performed in R 
software, through the random Forest package (Liaw and 
Wiener, 2015). The number of trees grown by the model 
was 1000, the number of variables used per node was 5, 
and the number of variables inserted per tree was four, 
which is 1/3 of the total number of predictors, as sug-
gested by Liaw and Wiener (2002). The model provides 
the mean square of residuals OOB (out-of-bag), the per-
centage of variance explained by the model, and the im-
portance of each variable for the model (Breiman, 2001; 
Liaw and Wiener, 2002). Similar to stepwise multiple 
linear regressions, random forest models were created 
with different datasets: a) only pXRF data; and, b) pXRF 
data in association with sand, silt, and clay contents of 
each sample.

For the generation of models through linear re-
gressions, stepwise multiple linear regressions, and ran-
dom forest algorithm, the total database was separated 
into two datasets: 37 samples (70 %) for the creation of 
models, and 15 samples (30 %) for validation of the gen-
erated models to ensure that they provide accurate pre-
dictions of SAD results and weathering indices through 
pXRF data.

Validation
The predicted values resulted from the linear re-

gressions, stepwise multiple linear regressions, and ran-
dom forest models were compared with the observed 
values through calculations of R2, adjusted R2 (R2

adj), root 
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Table 1 – Soils, parent material, location, number of samples (n), soil horizon, texture and results of sulfuric acid digestion analysis.

Soil Parent material Location (State)
Coordinates

Horizon Clay Silt Sand
Sulfuric acid digestion analysis

Latitude Longitude Atitude SiO2 Al2O3 Fe2O3 TiO2 P2O5 Ki1 Kr2

 ----------------------------------------------------- % ----------------------------------------------------- 
1-Rhodic Kandiudult amphibolite Miraí (MG) 21°02'18" S 42°42'28" W 388 m B 43 32 25 24.8 17.5 15.4 3.1 0.12 2.4 1.5
2-Rhodic Kandiudult basalt Água Doce (SC) 26°38'20" S 51°32'22" W 1223 m B 67 25 8 26.3 22 22.8 2.9 0.15 2 0
3-Anionic Acrudox gabbro Lavras (MG) 21°13'47" S 44°58'42" W 896 m B 68 17 15 12.3 28.2 23.2 2 0.06 0.7 1.2
4-Anionic Acrudox gabbro Lavras (MG) 21°13'49" S 44°58'11" W 923 m A 70 11 19 13.5 26.5 20.2 2 0.07 0.9 1
5-Anionic Acrudox gabbro Lavras (MG) 21°13'49" S 44°58'11" W 923 m B 69 16 15 10.8 28.9 23 2.5 0.03 0.6 3.7
6-Anionic Acrudox itabirite Itabirito (MG) 20°07'00" S 43°58'07" W 1313 m B 54 15 31 1.9 15.1 64.8 3.1 0.09 0.2 0.8
7-Humic Xanthic 
Hapludox granite-gneiss Miraí (MG) 21°07'56" S 42°39'52" W 727 m B 65 6 29 16.5 25.2 13.6 1.6 0.1 1.1 2.5

8-Inceptic Hapludult gneiss Lavras (MG) 21°14'04" S 44°58'30" W 873 m A 43 7 50 13.2 16.6 5.7 1.5 0.07 1.3 0.5
9-Inceptic Hapludult gneiss Lavras (MG) 21°14'04" S 44°58'30" W 873 m B 60 7 33 20.3 24.4 6.4 1.3 0.05 1.4 2.4
10-Lithic Calciustoll limestone Italva (RJ) 21°23'56" S 41°39'50" W 47 m A 34 18 48 16.8 9 4.4 0.8 0.08 3.2 0.4
11-Lithic Udorthent gabbro Lavras (MG) 21°11'51" S 44°59'36" W 960 m A 48 20 32 21.7 22.7 14.3 2 0.07 1.6 3.3
12-Rhodic Eutrustox tuffite Patos de Minas (MG) 18°38'05" S 46°21'31" W 1042 m B 45 40 15 18.6 13.1 36 11.1 0.73 2.4 2.1
13-Rhodic Hapludox gneiss Lavras (MG) 21°14'05" S 44°58'13" W 989 m A 59 15 26 19.3 24.2 10.8 1.5 0.1 1.4 1.9
14-Rhodic Hapludox gneiss Lavras (MG) 21°14'05" S 44°58'13" W 989 m B 61 16 23 19.6 25.9 12.1 1.8 0.06 1.3 2.9
15-Rhodic Hapludox phyllite-micaschist Nazareno (MG) 21°15'45" S 44°30'47" W 1031 m B 66 22 12 11.8 32.6 16.4 2.8 0.07 0.6 1
16-Rhodic Haplustox pellitic rocks Unaí (MG) 16°26'30" S 46°54'15" W 618 m B 64 24 12 23 21 9.9 0.6 0.03 1.9 1.9
17-Rhodic Kandiudult gabbro Lavras (MG) 21°13'12" S 44°58'01" W 893 m A 53 10 37 12.8 20.9 10.9 1.4 0.1 1 1.1
18-Rhodic Kandiudult gabbro Lavras (MG) 21°13'12" S 44°58'01" W 893 m B 43 11 46 14.7 17.4 8.7 1.8 0.06 1.4 2.1
19-Rhodic Kandiudult gabbro Lavras (MG) 21°13'13" S 44°58'00" W 896 m B 46 18 36 13.6 15.5 9.8 1.5 0.12 1.5 0.8
20-Rhodic Kandiudult gabbro Lavras (MG) 21°13'54" S 44°58'19" W 912 m A 45 16 39 11.7 17.2 17.7 1.5 0.29 1.2 2.6
21-Rhodic Kandiudult gabbro Lavras (MG) 21°13'54" S 44°58'19" W 912 m B 58 29 13 17.5 25.6 30.3 1.9 0.11 1.2 2.4
22-Typic Argiustoll amphibolite Italva (RJ) 21°24'10" S 41°40'12" W 48 m B 48 23 29 24.5 18.6 11.5 2.6 0.09 2.2 0.9
23-Typic Argiustoll tuffite Patos de Minas (MG) 18°38'03" S 46°21'33" W 1040 m B 46 28 26 15.2 10.7 32.811.1 1.37 2.4 0.1
24-Typic Dystrustept  pellitic rocks Unaí (MG) 16°26'50" S 46°54'15" W 611 m B 44 53 3 21.4 14.8 6.3 0.6 0.04 2.5 1.2
25-Typic Dystrustept  pellitic rocks Unaí (MG) 16°26'49" S 46°53'55" W 609 m B 40 57 3 18.5 12.6 6.8 0.4 0.03 2.5 1.3
26-Typic Dystrustept  pellitic rocks Unaí (MG) 16°26'43" S 46°54'02" W 610 m B 35 51 14 16.8 12.9 5.8 0.5 0.02 2.2 2.1
27-Typic Dystrustept  pellitic rocks Unaí (MG) 16°26'36" S 46°54'15" W 616 m B 53 37 10 20.2 15.8 8.2 0.5 0.04 2.2 0.7
28-Typic Dystrustept gneiss Lavras (MG) 21°13'58" S 44°58'41" W 874 m B 34 29 37 20.1 25.7 4.9 0.7 0.05 1.3 1.7
29-Typic Dystrustept gneiss Lavras (MG) 21°13'50" S 44°59'10" W 867 m A 33 16 51 14.9 20.4 4 0.6 0.05 1.2 0.2
30-Typic Dystrustept gneiss Lavras (MG) 21°13'50" S 44°59'10" W 867 m B 17 39 44 21.5 24.4 3.5 0.6 0.04 1.5 0.8
31-Typic Dystrustept tuffite Patos de Minas (MG) 18°38'00" S 46°21'34" W 1043 m B 48 30 22 23.2 11.1 31.413.1 1.68 3.5 0.2
32-Typic Endoaquent alluvial sediments Lavras (MG) 21°14'13" S 44°58'22" W 885 m A 46 20 34 22.7 21.1 3 1.2 0.04 1.8 0.3
33-Typic Endoaquent alluvial sediments Lavras (MG) 21°14'13" S 44°58'22" W 885 m B 34 12 54 16.2 15.5 14.2 0.8 0.02 1.8 1.4
34-Typic Hapludox basalt Vargem Bonita (SC) 26°52'30" S 51°47'46" W 1053 m B 81 15 4 23.7 22.9 21.1 4.5 0.15 1.8 0.5
35-Typic Hapludox phyllite-micaschist Nazareno (MG) 21°15'47" S 44°30'45" W 1030 m B 63 26 11 12.8 31 17 2 0.05 0.7 0.2
36-Typic Hapludox gneiss Lavras (MG) 21°13'39" S 44°57'42" W 874 m B 52 22 26 16.3 22.4 17 3.5 0.12 1.2 0.5
37-Typic Hapludox gneiss Lavras (MG) 21°14'12" S 44°58'23" W 887 m A 47 9 44 16.8 20.8 3.9 0.8 0.04 1.4 0.5
38-Typic Hapludox gneiss Lavras (MG) 21°14'12" S 44°58'23" W 887 m B 61 6 33 19.4 24.1 5.5 0.7 0.04 1.4 2
39-Typic Hapludox gneiss Lavras (MG) 21°14'14" S 44°58'25" W 896 m A 45 11 44 15.9 19.8 4.2 0.8 0.05 1.4 0.3
40-Typic Hapludox gneiss Lavras (MG) 21°14'14" S 44°58'25" W 896 m B 58 12 30 17.5 28.8 5.8 0.9 0.03 1 2.5
41-Typic Hapludult gneiss Lavras (MG) 21°13'56" S 44°58'17" W 895 m A 35 15 50 14.6 16 4.3 0.9 0.28 1.6 0.5
42-Typic Hapludult gneiss Lavras (MG) 21°13'56" S 44°58'17" W 895 m B 61 12 27 21.2 27 7.1 0.8 0.29 1.3 3
43-Typic Hapludult gneiss Lavras (MG) 21°13'51" S 44°58'45" W 884 m B 60 8 32 21.4 23.2 5.2 1.1 0.04 1.6 0.4
44-Typic Kandiustalf charnockite Itaperuna (RJ) 21°13'08" S 41°49'18" W 129 m B 50 27 23 28.9 21.8 10.2 1.2 0.06 2.3 0.2
45-Typic Kandiustalf micaschist-gneiss Cabroró (PE) 08°30'09" S 39°19'39" W 332 m B 35 19 46 19.7 13.1 8.4 2.3 0.02 2.6 0
46-Typic Plinthaquox sediments Campos Altos (MG) 19°37'44" S 46°04'26" W 1136 m B 72 19 9 27.2 34.8 12.8 2.5 0.08 1.3 0
47-Typic Rhodudult gneiss Lavras (MG) 21°13'35" S 44°57'39" W 976 m B 54 14 32 22 23.3 9 1.3 0.08 1.6 0.1
48-Typic Rhodudult gneiss Lavras (MG) 21°13'50" S 44°58'46" W 888 m A 44 14 42 20.2 18.7 7.3 0.8 0.04 1.8 0.1
49-Typic Rhodudult gneiss Lavras (MG) 21°13'50" S 44°58'46" W 888 m B 38 30 32 24.9 25 4.8 0.6 0.02 1.7 1.9
50-Typic Udorthent basalt Água doce (SC) 26°38'27" S 51°31'39" W 1218 m B 33 43 24 30.8 18.8 20.9 3.5 0.17 2.8 1.8
51-Typic Udorthent gabbro Lavras (MG) 21°11'51" S 44°59'36" W 959 m A 40 26 34 13.1 19.5 15.5 2.3 0.09 1.1 0.4
52-Xanthic Haplustox cover sediments São Gotardo (MG) 19°22'41" S 46°08'36" W 1200 m B 74 21 5 6.1 40.5 14.9 4.9 0.12 0.3 5.4
1Ki = SiO2/Al2O3; 

2Kr = SiO2/(Al2O3 + Fe2O3). 
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mean square error (RMSE) (Equation 1), and mean error 
(ME) (Equation 2). The greater the R2 and R2

adj, and the 
lower the RMSE and ME, the more accurate the predic-
tion models, considering the defined parameter. Then, 
the best method was determined to calculate the content 
of each element, as well as to predict weathering indices 
resulted from SAD. 

RMSE
n

ei mii
n= ∑ −=

1
1

2( ) 	  (1)

ME
n

ei mii
n= ∑ −=

1
1( ) 	  (2)

where n: number of observations; ei: values estimated 
by the model; and mi: values obtained through SAD.

Results and Discussion

Soil chemical attributes
	
The range of SAD values result from different fac-

tors of soil formation (Tables 1, 2, and 3), similar to values 
found for other soils from other regions of Brazil (Curi 
and Franzmeier, 1987; Vasconcelos et al., 2013; Santos 
et al., 2014; Carvalho Filho et al., 2015). Soils developed 
from itabirite, basalt, gabbro, and tuffite presented the 
highest Fe2O3 and TiO2 contents and the lowest SiO2 
contents. Fe2O3 and TiO2 decrease and SiO2 increases as 
the parent material becomes felsic, with greater quartz 
amounts, such as soils derived from gneiss. The lowest 
Fe2O3 contents were found in the Typic Endoaquent, due 
to the reduction of Fe3+ to Fe2+

 followed by solubilization 
of Fe-bearing minerals (Schaetzl and Anderson, 2005) 
and Fe2+ leaching. 

Fe2O3, Al2O3, and P2O5 pXRF contents were lower 
or greater than those found for SAD according to soil 
mineralogy and, hence, soil texture, which presented a 
wide variation for the studied soils due to the diversity 
of parent materials and weathering degree of soils (Table 
4). For Al2O3 and P2O5, 75 and 77 % of the samples, re-
spectively, presented SAD contents greater than those 
obtained by pXRF. The opposite trend was observed for 
SiO2, Fe2O3, and TiO2, which presented 73, 63, and 67 
% of the samples with pXRF contents greater than SAD 
contents. The SAD analyses are more likely to provide 
the digestion of clay-sized particles (Curi and Kämpf, 
2012). Since Brazilian soils have large contents of SiO2 in 
the sand fraction, mainly as quartz (Brinatti et al., 2010; 
Kämpf et al., 2012), the SiO2 content is only accessed by 
pXRF, justifying its larger content than that found with 
SAD, similar to the results for Fe2O3 and TiO2, which 
are components of minerals also occurring in the sand 
fraction, such as magnetite, rutile, and ilmenite (Kämpf 
et al., 2012). Since higher contents of Al and P are com-
monly found in the clay fraction (Brinatti et al., 2010), 
these contents obtained through SAD were higher than 
those obtained with pXRF. 

Simple linear regression modeling and predictions
Table 5 presents the values of R2, Radj and the equa-

tions obtained by simple linear regressions between SAD 
and pXRF data. For the predictions of Fe2O3, TiO2, and 
P2O5, R

2 and Radj values were higher than 0.80, showing 
an adequate fit of these regressions for the prediction of 
these SAD results directly from pXRF data. 

The prediction of Fe2O3 had the highest R2 and 
R2

adj, followed by P2O5. It is noteworthy that SAD quan-
tifies mostly the elemental contents in the clay fraction 
(Resende et al., 1987; Curi and Kämpf, 2012). Conse-
quently, since Fe2O3 of tropical soils is concentrated in 
this fraction due to the high weathering degree of these 
soils, the contents obtained by pXRF should be well 
correlated to those from SAD. However, Fe2O3 is also 
present in the form of magnetite in the sand fraction 
(Schaefer et al., 2008). Thus, the presence of this min-
eral in this fraction may have prevented an even better 
adjustment. 

For Al2O3 and SiO2, adequate adjustments were 
not possible. Conversely, the Ki and Kr indices had R2 
of 0.59 and 0.53, respectively. Possible reasons for SAD 
Al2O3 and SiO2 predictions not to be viable include the 
frequent occurrence of quartz (SiO2) and some presence 
of phyllosilicates (containing both Al and Si, among other 
elements) in the sand fraction of Brazilian soils. Again, as 
SAD quantifies mainly the elemental content of the clay 
fraction (Resende et al., 1987), portions of Si and Al de-
tected by pXRF were not quantified by SAD, hindering an 
adequate fit of linear regressions between these values. 
Another factor that may have influenced the adjustment 
of these prediction models is the low recovery values ob-
tained for Si and Al, probably due to factors that influence 
the pXRF analysis, such as particle size, moisture, sample 
weight, sample preparation, data collection, and instru-
ment alignment (Weindorf et al., 2014; Silva et al., 2018; 
Santana et al., 2018; Ribeiro et al., 2018; Peinado et al., 
2010), although the samples of this study were analyzed 
in similar conditions regarding these influencing factors. 
In fact, this may be a constraint to the pXRF analysis if 
such factors are not taken into account. 

In contrast, the equations generated to predict 
SAD Fe2O3, TiO2, and P2O5 from the contents obtained 
by pXRF were validated (Figure 1). TiO2 obtained R2 and 
Radj of 0.96 with very low values of RMSE and ME. P2O5 
and Fe2O3 presented an R2 of 0.89. For P2O5, the ME and 
RMSE values were low, whereas for Fe2O3 the RMSE 
values were the highest among all elements (Figure 1) 
due to the greater range of Fe2O3 contents. 

These results confirm the possibility of using pXRF 
to predict Fe2O3, TiO2, and P2O5 contents of SAD. In a 
preliminary study, only Fe2O3 and TiO2 yielded adequate 
fit values for linear regressions (Silva et al., 2018). San-
tana et al. (2018) found adequate results for predicting 
SAD Fe2O3 and TIO2 for Brazilian soils. In this study, this 
trend was confirmed in addition to an adequate adjust-
ment for P2O5 contents, which has not been previously 
reported. 
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Table 2 – Portable X-ray fluorescence (pXRF) spectrometry data for A- and B-horizon samples of the soils studied.
Soil Hor. SiO2 Al2O3 Fe2O3 TiO2 P2O5 K2O Cl CaO Cr Cu Mn Ni Pb Rb V Zn Zr

-------------------------------------- % -------------------------------------- ------------------------------------------------------------------------- mg kg–1 --------------------------------------------------------------------------
1-Rhodic Kandiudult B 23.6 11.6 15 3 0.04 0.18 487 292 419 35 296 100 8 8 155 29 197

2-Rhodic Kandiudult B 24.4 11.8 21.1 3.8 0.05 0.20 191 0 0 196 1254 0 50 23 473 79 262

3-Anionic Acrudox B 11.7 17.4 27.8 2.2 0 0.09 269 0 4832 79 42 388 60 13 454 48 175

4-Anionic Acrudox A 14.7 17.2 22.1 1.9 0.03 0.09 198 662 3631 61 341 328 37 4 354 45 158

5-Anionic Acrudox B 12.6 17.6 23.6 1.7 0 0.08 482 0 3631 63 100 323 46 3 296 39 155

6-Anionic Acrudox B 3.6 7.1 51.1 5.3 0 0.07 281 0 0 15 737 0 325 93 293 0 432

7-Humic Xanthic Hapludox B 23.6 19.6 15.4 1.9 0.02 0.13 185 178 186 28 138 19 8 6 72 40 312

8-Inceptic Hapludult A 34.3 19.1 7.7 1.6 0.07 0.19 668 883 111 32 807 18 0 0 113 34 225

9-Inceptic Hapludult B 27.3 28.2 8.8 1.4 0.05 0.16 427 590 192 38 173 20 7 2 213 32 197

10-Lithic Calciustoll A 29.5 9.1 5.6 0.9 0.1 0.30 313 55229 73 25 1114 36 18 20 21 40 166

11-Lithic Udorthent A 27.6 15.7 15 1.8 0.06 0.35 354 3341 201 80 1532 52 10 17 221 68 158

12-Rhodic Eutrustox B 16.8 8.3 30.7 16.9 0.14 0.53 0 603 0 206 1850 349 86 50 307 77 1764

13-Rhodic Hapludox A 23.5 19 12.8 2 0.02 0.19 482 1237 272 38 336 31 8 5 90 25 217

14-Rhodic Hapludox B 19.5 16.1 13.8 2.1 0 0.22 725 126 271 36 347 39 17 2 0 24 214

15-Rhodic Hapludox B 12.8 20.8 19.8 3.1 0 0.09 520 0 382 25 222 0 19 3 223 13 279

16-Rhodic Haplustox B 32.8 13.8 9.4 1.8 0.07 1.33 571 658 48 35 118 27 27 152 40 22 298

17-Rhodic Kandiudult A 25.5 16.2 13.5 1.8 0.05 0.33 638 1174 1542 38 713 195 19 15 71 41 242

18-Rhodic Kandiudult B 31.2 17.6 10.6 1.7 0.1 0.41 220 1133 956 34 1497 201 19 15 89 44 228

19-Rhodic Kandiudult B 18.6 10.7 9 1.1 0.03 0.25 489 6906 814 28 546 144 9 15 99 32 200

20-Rhodic Kandiudult A 21.7 12.7 19 1.4 0.08 0.42 354 2546 1597 67 656 117 35 22 72 47 130

21-Rhodic Kandiudult B 14.7 14.4 28.5 1.8 0 0.08 254 599 3131 147 790 346 66 15 404 70 137

22-Typic Argiustoll B 28.5 13.4 11.7 1.9 0.02 0.13 98 6117 107 36 585 124 20 9 171 38 208

23-Typic Argiustoll B 14.6 5.2 24.5 17.2 0.45 0.67 0 4979 0 245 1972 371 47 104 0 124 1937

24-Typic Dystrustept B 50.9 10.3 5.5 1.1 0.12 2.74 529 2048 57 27 198 21 9 140 71 47 179

25-Typic Dystrustept B 48.2 9.5 6.6 1.1 0.11 2.55 538 3123 77 29 523 20 7 133 60 51 189

26-Typic Dystrustept B 51.7 11.3 4.3 1 0.08 2.74 900 904 55 27 139 22 0 131 68 41 207

27-Typic Dystrustept B 38.5 11.7 8 1.3 0.08 1.66 413 1772 63 31 123 28 8 146 22 26 276

28-Typic Dystrustept B 26.7 21.6 6.8 0.9 0.02 0.48 806 805 236 16 49 96 23 8 0 53 190

29-Typic Dystrustept A 38.7 22.1 5.2 0.8 0.03 0.47 314 0 215 16 221 50 6 10 18 35 172

30-Typic Dystrustept B 35.9 30.4 4.8 0.6 0 0.83 560 457 102 15 43 89 6 7 40 56 155

31-Typic Dystrustept B 17 5.1 25.3 13.4 0.58 0.84 82 3496 0 247 1685 488 47 82 245 111 1425

32-Typic Endoaquent A 38.4 24.1 3.6 1.2 0.03 0.33 361 575 390 23 114 63 9 7 122 33 256

33-Typic Endoaquent B 41.1 24.4 1.7 1.1 0 0.42 340 238 164 16 99 26 7 9 83 26 342

34-Typic Hapludox B 21.5 12.2 19.7 4 0.08 0.19 85 0 0 145 620 21 48 19 572 77 335

35-Typic Hapludox B 15.5 18.3 17.6 2.7 0 0.07 363 0 30 27 266 7 19 0 233 10 198

36-Typic Hapludox B 6.2 4.6 7.2 1.5 0 0.07 481 0 0 0 222 11 18 0 161 41 308

37-Typic Hapludox A 31.4 22.7 5.2 0.9 0.05 0.25 428 758 137 15 133 17 0 4 22 26 205

38-Typic Hapludox B 26.7 25.2 6.7 0.9 0.06 0.21 438 195 184 12 27 18 0 4 0 21 189

39-Typic Hapludox A 26.8 24.7 6.9 0.9 0.03 0.24 330 728 197 17 28 12 0 0 20 18 212

40-Typic Hapludox B 23.1 22.9 7.1 1 0 0.23 607 237 159 14 76 16 0 2 0 19 220

41-Typic Hapludult A 33.2 17.4 5.1 1.1 0.05 0.42 547 3902 54 18 690 37 30 12 0 31 292

42-Typic Hapludult B 23.5 20 8.4 0.9 0.04 0.31 946 864 214 16 183 67 26 10 0 29 195

43-Typic Hapludult B 28.2 22.1 7 1.4 0.02 0.17 400 702 348 29 174 73 0 8 68 28 179

44-Typic Kandiustalf B 24 14.2 8.3 1 0 0.61 526 497 0 39 182 8 0 38 0 51 98

45-Typic Kandiustalf B 33.3 15.8 10.5 1.6 0.04 2.24 498 5847 92 43 659 50 8 99 203 64 189

46-Typic Plinthaquox B 19.8 22.1 11.4 4.8 0 0.08 328 151 0 31 300 27 29 0 249 33 540

47-Typic Rhodudult B 23.3 18 9.5 1.2 0.04 0.19 452 145 605 31 228 93 0 6 0 26 183

48-Typic Rhodudult A 29.3 17 7.8 0.6 0 0.39 699 205 654 21 160 83 7 11 23 33 172

49-Typic Rhodudult B 27.8 21.5 5.8 0.6 0 0.46 586 0 364 19 0 71 6 8 0 28 140

50-Typic Udorthent B 28.9 11.5 19.9 3.1 0.11 0.36 76 323 0 211 1590 14 27 41 434 135 213

51-Typic Udorthent A 24.2 14.4 15.5 1.7 0.03 0.47 328 10293 229 99 1816 53 23 19 241 64 185
52-Xanthic Haplustox B 5.1 23.7 16.1 6.5 0 0.07 271 0 0 15 283 0 8 0 488 10 683
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Stepwise modeling and predictions
The stepwise multiple linear regression method 

allowed the evaluation of these models to predict SAD 
chemical composition from pXRF values using additional 
predictors in relation to those used in the simple linear 
regression, that is, other pXRF elemental data and soil 
texture data. The generated models that used either pXRF 
data only or pXRF + texture data as predictor variables 
and their R2 and Radj values are shown in Table 6.

In the stepwise regressions, the R2 values were 
all above 0.79 for models without incorporation of soil 
texture data and above 0.83, after incorporating texture 
data as predictor variables, including Al2O3 and SiO2, 

which did not yield adequate models through simple 
linear regression. A better adjustment of the equations 
when including texture data was observed for predic-
tions of SAD Al2O3 and SiO2. For Fe2O3, TiO2, P2O5, Ki, 
and Kr, models with or without soil texture data present-
ed basically the same R2 and R2

adj values. This behavior 
indicates that not only texture, but also other elements 
provided by the pXRF analysis, in addition to Fe, Al, Si, 
P, and Ti, contributed to modeling SAD results. 

Regarding the pXRF elemental data, the number 
(in parenthesis) of models in which each element was 
present is: Zr (12), Fe (12), Mn (9), Al (8), Ti (8), Rb (8), 
Ni (8), Cr (8), Si (7), V (6), Cu (6), P (6), Ca (6), Pb (5), 
K (4), Cl (3), Zn (3). This fact demonstrates that some 
elements that  now are easily accessed with pXRF may 
be well correlated with soil properties, facilitating the 
development of prediction models. Rubidium (Rb), for 
instance, was found to be correlated with clay content 
in soils from the United States by Zhu et al. (2011). Re-
garding the texture variables in 7 models, sand, silt, and 
clay were present, respectively, in 3, 2, and 3 models. All 
the models incorporating texture data as predictor vari-
ables presented at least one size fraction in the equation, 
except for the Kr model, highlighting the expectations 
confirmed of sand presence in SAD SiO2 model, while 
clay was one of the variables of the SAD Fe2O3 and Al2O3 
models, which reflects Brazilian soils mineralogy, as pre-
viously discussed.

Although the Al2O3 and SiO2 content did not pres-
ent a good fit with simple linear regressions (Table 5), 
in stepwise multiple linear regressions these two ele-
ments achieved high R2 and Radj, that is, 0.79 and 0.76 
for Al2O3, and 0.79 and 0.71 for SiO2, with and without 
incorporating texture. When incorporating texture data 
as predictors, the model for SAD Al2O3 included clay 
and silt variables, which can be explained by the weath-
ering process and formation of kaolinite and gibbsite in 
greater proportion in these size fractions.

In contrast, the SAD SiO2 model used sand as a 
variable. Quartz predominates in the sand fraction of 
tropical soils, which reinforces the importance of this 
particle size fraction for the prediction of SAD SiO2. 
The non-adjustment of the simple linear regression for 
SiO2 may be because SAD does not digest quartz, as this 
method is intended for minerals in the clay fraction (Re-
sende et al., 1987). The SiO2 content could be under-
estimated in SAD, while in the pXRF analysis, all SiO2 
is detected from soil bulk composition. In the stepwise 
regression, the use of the sand fraction in the model as a 
predictor variable corrected this effect leading to better 
model adjustments.

For the prediction of SAD Fe2O3, the clay fraction 
was one of the independent variables inserted into the 
model, reinforcing the concentration of the Fe-bearing 

Table 3 – Maximum, minimum, and mean values of data from 
sulfuric acid digestion analyses (SAD) and elemental analyses 
by portable X-ray fluorescence (pXRF) spectrometry of A- and 
B-horizon samples of the soils studied.

Element/
Weathering 

indices

Modeling1 Validation1

Min Max Mean STD Min Max Mean STD
------------------------------------------------ SAD ------------------------------------------------ 

Method

SiO2 1.91 27.24 18.38 5.36 12.27 30.84 17.88 6.03
Al2O3 8.99 40.52 21.50 6.56 10.74 31.04 20.61 6.09
Fe2O3 2.97 64.79 13.66 11.92 4.25 32.84 13.18 8.35
TiO2 0.47 13.12 2.29 2.63 0.36 11.06 2.11 2.61
P2O5 0.02 1.68 0.14 0.29 0.02 1.37 0.17 0.34
Ki 0.22 3.59 1.60 0.73 0.71 2.82 1.57 0.7
Kr 0.06 2.45 1.15 0.48 0.49 1.85 1.10 0.47

------------------------------------------------ pXRF ------------------------------------------------

pXRF

SiO2 3.55 51.7 25.61 10.86 11.66 48.16 25.62 10.07
Al2O3 4.60 30.39 17.09 6.44 5.24 21.59 15.29 4.76
Fe2O3 1.69 51.1 13.08 9.66 5.06 27.81 13.33 7.54
TiO2 0.56 16.91 2.64 3.35 0.58 17.24 2.63 4.1
P2O5 0.00 0.58 0.05 0.1 0.00 0.45 0.07 0.11
Ki 0.21 4.93 1.68 0.99 0.67 5.05 1.9 1.14
Kr 0.06 3.30 0.98 0.68 0.32 3.41 1.19 0.78

1Values calculated for A and B horizons.

Table 4 – Minimum, maximum, mean, and standard deviation values 
of soil texture for A- and B-horizon samples of the studied soils.

  Sand Silt Clay Sand Silt Clay
----------------------------------------------------------------- % --------------------------------------------------------------------

Modeling Validation
Min 3 6 17 3 6 33
Max 54 53 81 50 57 70
Mean 28 20 52 27 25 48
STD 14 11 13 14 14 13

Table 5 – Equations, R2, and Radj for prediction of sulfuric acid 
digestion results from elemental characterization by portable X-ray 
fluorescence (pXRF) spectrometry (in ppm).

R2 Radj Equations
Al2O3 0.29 0.27 Al2O3SAD = 12.162 + 0.547*Al2O3pXRF

SiO2 0.15 0.12 SiO2SAD = 13.541 + 0.189*SiO2pXRF

P2O5 0.83 0.82 P2O5SAD = -0.00456 + 2.697*P2O5pXRF

Fe2O3 0.91 0.91 Fe2O3SAD = -1.728 + 1.177*Fe2O3pXRF

TiO2 0.90 0.89 TiO2SAD = 0.328 + 0.745*TiO2pXRF

Ki 0.59 0.58 KiSAD = 0.648 + 0.563* KipXRF

Kr 0.53 0.52 KiSAD = 0.641 + 0.513*KrpXRF
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Table 6 – Equations, R2, and Radj for stepwise multiple linear regressions to predict sulfuric acid digestion (SAD) results from data of portable X-ray 
fluorescence (pXRF) spectrometry, with and without incorporating soil texture data (in %) into the models.

Elements/
Weathering indices R2 Radj Equations

Without soil texture

Al2O3 0.79 0.76 Al2O3SAD = 16.854 + 215.02*V - 0.403*SiO2 - 0.235*Fe2O3 + 113.898*Cl + 0.587*Al2O3

SiO2 0.79 0.71 SiO2SAD = 29.042 - 438.925*Zr + 3.635*TiO2 + 861.21*Rb + 550.93*Ni - 39.404*Mn - 4.844*K2O - 0.658*Fe2O3 + 
807.238*Cu - 69.24*Cr - 31.562P2O5

P2O5 0.97 0.96 P2O5SAD = -0.231 + 3.074*Zr + 15.679*Zn - 15.344*Rb - 0.708*Mn + 0.00616*Fe2O3 + 2.027*Cl + 2.296*P2O5

Fe2O3 0.98 0.97 Fe2O3SAD= 5.322 + 292.806*Zr + 94.698*V - 2.867*TiO2 - 214.855*Rb + 760.132*Pb + 0.755*Fe2O3 - 1.005*CaO 
- 0.343*Al2O3

TiO2 0.99 0.99 TiO2SAD = 0.236 + 41.251*Zr + 185.155*Zn + 32.409*V - 104.257*Rb -161.695*Pb + 54.744*Ni - 7.963*Mn + 
0.147*Fe2O3 - 112.044*Cu - 8.487*Cr + 6.424*P2O5 - 0.0677*Al2O3

Ki 0.90 0.86  KiSAD = 1.854 -24.874*Zr + 0.244*TiO2 + 0.0252*SiO2 + 40.464*Ni -3.821*Mn - 0.0297*Fe2O3 + 44.141*Cu - 
4.994*Cr + 0.283*CaO - 0.0358*Al2O3

Kr 0.84 0.80 KrSAD = 0.904 - 21.289*Zr + 0.195*TiO2 + 0.0223*SiO2 + 18.214*Ni -0.0205*Fe2O3 - 2.58*Cr + 0.209*CaO

With soil texture

Al2O3 0.94 0.92 Al2O3SAD = -0.441 - 0.427*TiO2 - 0.366*SiO2 - 222.791*Pb + 23.88*Mn - 255.975*Cu + 0.726*Al2O3 + 0.289*Clay + 
0.291*Silt

SiO2 0.83 0.75 SiO2SAD = 28.549 - 428.159*Zr + 2307.631*Zn - 142.37*V + 4.149*TiO2 + 1051.561*Rb + 361.983*Ni - 
43.614*Mn - 7.926*K2O - 0.566*Fe2O3 - 51.997*Cr - 29.803*P2O5 - 0.118*Sand

P2O5 0.97 0.97 P2O5SAD = - 0.123 + 2.466*Zr - 0.00633*SiO2 - 6.898*Rb - 0.77*Mn + 11.87*Cu + 1.755*Cl + 2.15*P2O5 + 
0.00291*Silt + 0.00346*Sand

Fe2O3 0.98 0.97 Fe2O3SAD = 9.247 + 283.057*Zr + 125.875*V - 2.832*TiO2 + 661.863*Pb - 1.617*K2O + 0.772*Fe2O3 - 1.245*CaO 
- 0.333*Al2O3 - 0.0774*Clay

TiO2 0.99 0.99 TiO2SAD = 1.184 + 35.331*Zr + 39.467*V - 0.0338*SiO2 - 110.469*Rb -131.694*Pb + 69.278*Ni - 8.447*Mn + 
0.51*K2O + 0.1*Fe2O3 - 9.786*Cr + 5.27*P2O5 - 0.0694*Al2O3 + 0.0181*Sand

Ki 0.90 0.86 Ki3SAD = 3.036 - 31.479*Zr + 0.308*TiO2 + 33.954*Rb + 32.739*Ni - 3.586*Mn - 0.0501*Fe2O3 + 62.353*Cu - 
4.229*Cr + 0.26*CaO -0.0241*Al2O3 - 0.0114*Clay

Kr 0.84 0.80 KrSAD = 0.901 - 20.877*Zr + 0.188*TiO2 + 0.0223*SiO2 + 18.648*Ni -0.0202*Fe2O3 - 2.633*Cr + 0.21*CaO

Figure 1 – Validation of simple linear regressions to predict results of sulfuric acid digestion analyses from data obtained with portable X-ray 
fluorescence (pXRF) spectrometry. RMSE = root mean square error; ME = mean error.
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minerals in the smallest particle fractions in soils as the 
weathering processes advance, mainly as hematite and 
goethite (Kämpf et al., 2012). The sand fraction was in-
cluded as predictor variable into the SAD TiO2 model, 
whereas both sand and silt fractions were present in the 
model for the SAD P2O5 prediction. This result indicates 
the presence of minerals containing P and Ti in the sand 
and silt fractions in the soils studied. The sand and silt 
fractions of soils developed from basalt, gabbro, tuffite, 
and amphibolite may present considerable amounts of 
minerals such as anatase, rutile, and titanomagnetite, 
which present Ti in their composition (Fabris et al., 
1997; Fabris et al., 1998). 

The Ki and Kr indices were also submitted to step-
wise multiple linear regressions, yielding R2 values of 
0.90 and 0.84, respectively. Models with and without 

Figure 2 – Validation of stepwise multiple linear regressions to predict results of sulfuric acid digestion analyses from portable X-ray fluorescence 
(pXRF) spectrometry data without (a) and with (b) soil texture data. RMSE = root mean square error; ME = mean error.

soil texture data had similar R2 values. Most predictor 
variables were the same in models with and without in-
corporation of soil texture data, except for the prediction 
of Ki values. In this last case, by incorporating soil tex-
ture data into the model, the clay content was added to 
the model while Si was replaced by Rb. 

The validation indices for prediction of SAD val-
ues and weathering indices from the formerly presented 
equations are shown in Figure 2. Except for Kr, Fe2O3, 
and SiO2, validation indices were always better when in-
corporating soil texture into the models. P2O5, TiO2, Ki, 
and Kr presented RMSE and ME values close to zero for 
validation of models with and without incorporating soil 
texture data, which is in agreement with the low range 
of their values. R2 and R2

adj for Fe2O3 validation with-
out incorporating texture data were the same as those 
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Table 8 – Importance of the variables (Imp) for random forest models using only pXRF data or pXRF together with texture data to predict results 
from sulfuric acid digestion analyses.

Imp
Predicted variable Predicted variable

SiO2 Al2O3 Fe2O3 TiO2 P2O5 Ki Kr SiO2 Al2O3 Fe2O3 TiO2 P2O5 Ki Kr

------------------------------------------------------------ Only pXRF data ------------------------------------------------------------ ---------------------------------------------------- pXRF + texture data ----------------------------------------------------
1 SiO2 Rb Fe2O3 V SiO2 Ki _pXRF Kr_pXRF SiO2 Clay Fe2O3 V Zr Ki _pXRF Kr_pXRF
2 Cr Al2O3 Pb TiO2 TiO2 SiO2 SiO2 Zn Rb Pb TiO2 TiO2 SiO2 SiO2

3 Zn K2O TiO2 Zr Mn Al2O3 K2O Cr Al2O3 TiO2 Fe2O3 Pb Silt K2O
4 Ni SiO2 Cu Fe2O3 Cu P2O5 Cr Silt K2O V Zr SiO2 P2O5 Zn
5 Cu P2O5 V Cr Zr Zn Fe2O3 Cu P2O5 Cu Cu Mn Zn Pb
6 K2O V SiO2 Mn Cl K2O Zn K2O SiO2 SiO2 Mn P2O5 K2O CaO
7 Pb CaO Ni Cu P2O5 CaO CaO Fe2O3 Sand Zr Cl Cu Al2O3 Cr
8 Fe2O3 Pb Zr Ni Ni Cu Pb Sand Cr Mn Cr Cl CaO Silt
9 Cl Mn Al2O3 Cl Fe2O3 Pb Al2O3 Ni V Zn P2O5 Ni Clay Fe2O3

10 CaO Cr Mn P2O5 Pb Fe2O3 Cu Cl CaO Al2O3 Ni Sand Pb Al2O3

11 Mn Fe2O3 Zn SiO2 CaO Ni Rb CaO Fe2O3 Ni CaO Zn Cr Clay
12 V Zr CaO K2O Al2O3 Cr Ni Al2O3 Silt Sand SiO2 Fe2O3 Ni Rb
13 Zr Cl Cr Zn Zn Rb P2O5 TiO2 Pb Cl Zn CaO Sand Cu
14 Al2O3 Zn Rb Al2O3 K2O Mn TiO2 Pb Mn CaO Al2O3 Rb Cu TiO2

15 TiO2 Ni Cl CaO Rb Cl V Mn Cu K2O K2O Clay Cl Ni
16 P2O5 TiO2 K2O Pb Cr TiO2 Cl P2O5 Cl Silt Pb Al2O3 Mn P2O5

17 Rb Cu P2O5 Rb V V Zr Rb Ni Rb Clay Cr TiO2 V
18 -- -- -- -- -- Zr Mn V TiO2 Cr Silt K2O Fe2O3 Cl
19 -- -- -- -- -- -- -- Zr Zr Clay Sand V Zr Sand
20 -- -- -- -- -- -- -- Clay Zn P2O5 Rb Silt Rb Zr
21 -- -- -- -- -- -- -- -- -- -- -- -- V Mn

found with simple linear regressions, but RMSE and ME 
values were lower with the stepwise regression. These 
values were slightly better than those that incorporated 
texture data as predictors. P2O5 and TiO2 had a similar 
trend, with validation of models incorporating texture 
presenting better results. Predictions of these elements 
were also improved in comparison to simple regressions. 

A considerable improvement in the modeling and 
validations was achieved for Al2O3 and SiO2 values, 
whose models reached R2 and R2

adj that were much high-
er than those obtained with simple regressions. Al2O3 
validation indicated that texture improved validation 
indices and the opposite trend was found for SiO2. Ki 
and Kr also improved in modeling and prediction qual-
ity compared to simple regression, although their vali-
dation indices were lower than those obtained for the 
predictions of SAD elemental contents.

In general, when using multiple regressions, tex-
ture data and pXRF elemental data other than Fe, Ti, 
Al, Si, and P were fundamental to improve prediction of 
SAD results, although predictions of SAD Fe2O3, TiO2, 
and P2O5 also provided adequate results using simple 
linear regressions. This shows that besides soil texture, 
the mineralogical composition of different particle size 
fractions also influences the results and can be accessed 
by pXRF. Attention should be drawn to the fact that 
some of the elements used in the equations presented 
low recovery values, which is important since they tend 
to be present in small concentrations in the soils. 

Random forest modeling and predictions
Random forest models for most SAD elemental con-

tents as well as for Ki and Kr presented high percentage of 
variance explained and small errors (Table 7), indicating 
good adjustments of the models. Little variation occurred 
by adding information on soil texture into the models, ex-
cept for Al2O3, which showed an improvement of 13 % of 
variance explained in the presence of such data. 

The most important variables for predicting SAD 
SiO2, Fe2O3, Ki and Kr were these elemental contents/
weathering indices obtained from pXRF even in the 
presence of sand, silt, and clay data (Table 8). For the 
SAD Al2O3 model, the clay content was the most impor-
tant variable, followed by pXRF Rb and Al2O3 contents. 

Table 7 – Modeling results to predict sulfuric acid digestion results 
from portable X-ray fluorescence (pXRF) spectrometry by random 
forest algorithm, with and without incorporating soil texture data 
into the models.

Paramenter1 SiO2 Al2O3 Fe2O3 TiO2 P2O5 Ki Kr
Without soil texture

VarEx 25.72 38.63 47.59 67.88 40.69 65.08 64.81
MSE 24.63 30.46 86.33 2.73 0.06 0.20 0.08

With soil texture
VarEx 24.33 51.20 49.04 66.47 40.72 60.2 63.14
MSE 25.10 24.22 83.93 2.85 0.06 0.23 0.08
1VarEx = percentage of variance explained by the model; MSE = mean square 
of residuals out-of-bag method.
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In the model without soil texture variables, Rb was the 
most important, followed by Al2O3. This fact demon-
strates the importance of variables provided by pXRF 
for these predictions. Zhu et al. (2011) used pXRF data 
for predicting sand and clay contents in soils from Lou-
siana and New Mexico (USA) and found a correlation of 
0.91 between Rb and clay contents. These findings may 
indicate a similar trend also for Brazilian soils, although 
these authors are aware of differences between those 
soils and the ones in our study. 

For SAD SiO2 prediction, silt and sand were defined 
as the 4th and 8th most important variables, and clay was 
the least important. In both models for SAD TiO2, pXRF 
V was the most important variable, followed by pXRF 
TiO2. As expected, the indices Ki and Kr calculated us-
ing pXRF SiO2, Al2O3, and Fe2O3 results were the most 
important variables to predict SAD Ki and Kr, followed by 
pXRF SiO2, since the latter element is taken into account 
in the formulae used to calculate those indices.

The validation of the random forest models is pre-
sented in Figure 3. The validation results, in general, 
were very similar with and without incorporation of soil 

Figure 3 – Validation of random forest models to predict results of sulfuric acid digestion analyses from portable X-ray fluorescence data without 
(a) and with (b) soil texture data. RMSE = root mean square error; ME = mean error.

texture data into the models. Thus, for random forest 
algorithms, soil texture data did not improve the predic-
tions of SAD results and Ki and Kr values. However, ran-
dom forest provided better results for SAD Al2O3 with 
texture data, and SAD Fe2O3 and Kr with and without 
this attribute data in comparison to stepwise regression. 
It demonstrates that, without information on soil tex-
ture, random forest algorithms can be used to deliver 
better predictions of SAD Fe2O3, and Kr than stepwise 
multiple linear regressions. 

Influence of soil texture on the prediction of 
weathering indexes

The prediction of elemental contents (expressed 
on the oxide basis) and weathering indices from the 
pXRF analysis was substantially improved when texture 
was used, especially in the multiple regression analysis 
for Al2O3 and SiO2. The reasons for this occurrence are, 
first, due to the nature of the SAD and pXRF analyses: 
while the SAD is efficient in the dissolution of minerals 
of the clay fraction, the pXRF analysis provides results 
of the total chemical composition of the sample. Thus, 
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such pXRF results may differ from those obtained from 
other analyses, including SAD, which explains the rea-
son why the incorporation of soil texture into the mod-
els in addition to the contents of elements in the miner-
als was decisive for the improvement of the prediction 
models. Second, mineralogy of Brazilian soils is mostly 
dominated by kaolinite, Fe and Al oxides (hematite, goe-
thite, and gibbsite) in the clay fraction and quartz in as-
sociation with smaller contents of muscovite in the sand 
fraction (Melo et al., 2001; Inda et al., 2010; Kämpf et 
al., 2012; Silva et al., 2012; Carvalho Filho et al., 2015). 
The dominance of either sand or clay fraction in most 
Brazilian soils reflects the soil parent material. The silt 
content is much lower due to the high weathering de-
gree of these soils (Tables 3 and 4) and represents the 
maximum instability fraction. Thus, the sand and clay 
contents as well as the mineralogical composition of 
these particle size fractions influenced primarily the pre-
dictions of SAD Al2O3 and SiO2 contents. Thus, consid-
ering the high validation indices for all the SAD results 
and weathering indices, pXRF could be adopted as an al-
ternative method to provide such soil data. The creation 
of better models to predict SAD results is encouraged, 
mainly through incorporation of more soil data. 

Conclusions

Accurate predictions of SAD Al2O3, Fe2O3, SiO2, 
P2O5, and TiO2 results as well as Ki and Kr weather-
ing indices can be obtained using pXRF data with and 
without incorporation of soil texture data into the mod-
els, through simple linear regressions, stepwise multiple 
linear regressions, and random forest algorithm. The 
clay and sand contents were crucial to improve the mod-
els to predict SAD Al2O3 and SiO2, respectively. These 
findings demonstrate that it is possible to use pXRF to 
reduce costs, time, and the amount of chemical waste 
produced by the SAD analyses. In addition, these re-
sults contribute to speeding up not only soil chemical 
characterization, but also the assessment of information 
on soil weathering degree, geochemical balance of nu-
trients, parent material homogeneity, reserve of nutri-
ents for perennial crops, mineralogy of the clay fraction, 
among others. Finally, the association of new tools and 
robust algorithms enhance soil characterization for vary-
ing purposes, while providing a fast, cost-effective, and 
“green chemistry” alternative for the SAD analyses.
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