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We develop a procedure for calculating an optimized Discrete Variable Representation
(DVR) optimized for a given potential. The method leads to an e�cient and compact
way to obtain numerical solutions of quantum mechanical problems. The procedure is ap-
plied to several physical problems. To illustrate the strength of the algorithm in dealing
with multidimensional calculations, we obtain accurate levels up to 19; 000 cm�1 for the
vibrational energies of the water molecule.

The e�ciency of quantummechanical numerical cal-

culations rely in great part on the right choice of basis

functions. The solution of multidimensional problems

requires the manipulation of large matrices and a bad

choice of basis functions could easily turn the problem

unfeasible. We should also be concerned with the ma-

trix structure and the computer time for the computa-

tion of the matrix elements. The calculation of the el-

ements of a matrix makes use of Gaussian quadratures

and an excessive number of points may lead to pro-

hibitive time consuming codes. This paper shows a pro-

cedure for optimizing all these aspects. The strength of

the approach is easily seen when we deal with three-

dimensional problems.

There are several ways of expanding the quantum

mechanical wave function. The more traditional proce-

dure is the expansion in terms of global basis functions

[1-3]. Generally, we choose the functions that diago-

nalize the kinetic energy operator and integrate numer-

ically the potential using Gaussian quadratures. An-

other family of procedures are the �nite element meth-

ods [4-12]. The basis functions are local and we have

to discretize the space in many elements to implement

the calculation [6]. Finally, we may choose a set of ba-

sis functions that have the feature of diagonalizing the

potential. The great advantage in this case is that the

kinetic energy operator may be integrated analytically,

leading to a great e�ciency during the evaluation of

the matrix elements. The last procedure is called the

\Discrete Variable Representation" (DVR) [13-23].

The Discrete Variable Representation has been used

extensively by Light and collaborators [13-16] who per-

formed accurate calculations of the ro-vibrational en-

ergies of several triatomic molecules. Choi and Light

[24] also used this procedure to study Van der Waals

molecules. Le Quer�e and Leforestier [25] used a time

dependent approach and a DVR implementation for

studying the photodissociation of Ozone. More re-

cently, the method for expanding the multidimensional

quantum mechanical wave function [26-32] has ap-

peared in other calculations.

This paper develops a procedure for obtaining a Nu-

merically Generated Discrete Variable Representation

(NG-DVR). All publications mentioned before, except

the work of Echave and Clary [26], do not use a nu-

merically optimized Discrete Variable Representation

for the potential of the system under consideration. In

this way, the number of basis functions is not optimized

for the particular problem to be solved. The proce-

dure proposed by Echave and Clary [26] does not cal-

culate explicitly the weight of the optimized Gaussian

quadrature while the method developed here obtain

both points and weights. This feature gives more 
ex-

ibility for using the NG-DVR. To show its features we

apply the NG-DVR for some standard one-dimensional

problems. However, the strength of this methodology

appears when we treat multidimensional calculations.

A three-dimensional code is developed and applied to

the calculation of the vibrational modes of H2O.

The paper is organized as follows. In Section II we

develop the theory of the Discrete Variable Representa-

tion. In Section III we discuss the numerical procedure

for optimizing the DVR for a given potential, and use

this methodology to solve some one dimensional prob-
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lems. Section IV is concerned with the application of

the methodology for a multidimensional problem and

the calculation of the vibrational energies of the H2O

molecule. Finally, in the Conclusion we present several

remarks.

I The discrete variable repre-

sentation

Most methodologies for dealing with multidimen-

sional problems are based on direct products of one-

dimensional sets of basis functions. In view of this,

we will treat all basic concepts of DVR using a one-

dimensional terminology. Section IV shows an appli-

cation for a multidimensional problem. We stress that

the use of N basis functions in each direction of the

space will lead to a matrix with dimensionNd where d

is the dimension of the space. It is essential to spend as

few as possible basis functions for each direction of the

space in order to keep the matrix problem treatable.

The Hamiltonian operator,

H = �
1

2m

d2

dx2
+ V (x);

is composed of the kinetic energy and potential opera-

tors. Let us expand the wave function 	 in a set of basis

functions fi(x); i = 1; ::; N belonging to a L2-space,

	(x) =
NX

i=1

fi(x)ai; (1)

where ai; i = 1; :::; N are the coe�cients of the expan-

sion. We will require that

fi(xl) = �il; i; l = 1; ::; N; (2)

where xl; l = 1; ::; N are points of a Gaussian quadra-

ture rule. Later, we will develop an algorithm to obtain

an optimized Gaussian quadrature.

We call a set of functions obeying Eq. (2) a Discrete

Variable Representation (DVR). In order to generate a

numerically optimized DVR we start with another set

of L2 functions gj(x); j = 1; ::; N: The wave function

	(x) may also be expanded in terms of this set,

	(x) =
NX

j=1

gj(x)bj: (3)

The �nite set of functions gj(x); j = 1; ::; N obey the

relation
NX

j=1

jgjhigjj = 1: (4)

We will call gj(x); j = 1; :::; N the primitive functions,

and the set fi(x); i = 1; ::; N is called the Numeri-

cally Generated Discrete Variable Representation (NG-

DVR). The gj are given functions and the NG-DVR will

be obtained, for any potential V (x), by the proposed

algorithm.

We use Eq.(4) to obtain

fi(x) =
NX

j=1

hxjgjihgj jfii: (5)

The integral hgjjfii may be evaluated applying a Gaus-

sian quadrature rule of points and weights xl; wl; l =

1; ::; N: This quadrature will also be numerically opti-

mized for the potential of the system in question. At

this stage, we assume that the optimized quadrature

rule has been done and we obtain

fi(x) =
NX

j=1

NX

l=1

g�j (x)wlgj(xl)fi(xl) : (6)

Finally, using Eq. 2, we have

fi(x) = wi

NX

j=1

g�j (x)gj(xi): (7)

We can see that Eq. 2 is automatically veri�ed for

the functions fi(x); i = 1; ::; N generated by Eq. 7. It is

straightforward to obtain an optimized quadrature rule

using Eq. 2 and Eq. 7. For a given quadrature point

xl, we have

wl =
NX

j=1

1

g�j (xl)gj(xl)
: (8)

From the theory of Gaussian quadrature rules, we know

that the points xl are the eigenvalues of the matrix with

elements

Xjj0 = hgj jxjgj0i; (9)

where x is the position operator. As it will be shown

in the applications in the next two sections, an e�cient

NG-DVR is obtained when we use as primitive func-

tions, gj(x); j = 1; ::; N; the eigenfunctions of the one-

dimensional Hamiltonian H = � 1

2m
d2

dx2
+ V (x). For

many real systems, there is no analytical solution for

the Schr�odinger equation H	 = E	, so our procedure

is all done numerically.

II Simple examples

Simple examples will be treated in this Section to em-

phasize the main features of the algorithm. As we men-

tioned earlier, the strength of the method will become

clear for multidimensional problems, and the next Sec-

tion will deal with a fully three-dimensional calculation.
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The simplest problem one could treat is the particle in

a box. We may solve Eqs. 7- 9 analytically and obtain

the quadrature points and weights as well as the DVR's.

Muckerman [23] and Colbert and Miller [22] have done

that and generated the Discrete Variable Representa-

tion associated with the particle in a box. We show in

Fig. 1-A one of these functions and in Fig. 1-B �ve of

them. The quadrature points associated with this DVR

are equally spaced. From now on we will use this set of

DVR to expand the primitive gj(x); j = 1; ::; N de�ned

in Eq. 3.

Figure 1A. Particle in a box DVR. The system is de�ned
for a box ranging from - 10 to 10 bohr.

Figure 1B. A set of 5 particle in a box DVR's. The quadra-
ture points are equaly spaced in this case.

In order to have a clear idea of the accuracy of the

method we treat now the harmonic oscillator. As the

Gaussian quadrature points can be analytically calcu-

lated for this problem, we can see how well we are

able to reproduce them. The numerical procedure

is as follows. First, we use 100 particles in a box

DVR's to generate 5 eigenfunctions of the Hamiltonian

H = �1

2

d2

dx2
+ 1

2
x2. These eigenfunctions constitute

the set gj(x); j = 1; ::; 5: Eq. 9 is applied to obtain the

quadrature points. Table 1 compares the exact 5 Gauss-

Hermite quadrature points with the numerically calcu-

lated ones. We also provide a 9 point Gauss-Hermite

quadrature rule in Table 1. As we notice, the method-

ology is able to o�er highly accurate numbers, and they

are accurate up to the tenth �gure. Finally, Eq. 7 gives

us the NG-DVR optimized for the harmonic oscillator.

Fig. 2A shows one NG-DVR associated with the har-

monic oscillator and Fig. 2B pictures the full set of �ve.

One may generate as many quadrature points and NG-

DVR as necessary to deal with the problem in hand.

We also point out that the property expressed in Eq. 2

is accurately satis�ed.

Figure 2A. A Numerically Generated DVR (NG-DVR) for
the harmonic oscillator.

Figure 2B. A set of 5 NG-DVR for the harmonic oscillator.

Finally, we treat the H2 molecule and also use

100 particle in a box DVR's to calculate 5 eigenfunc-

tions of H2. These eigenfunctions are our primitive set

gj(x); j = 1; ::; 5: Applying the same procedure used

for the harmonic oscillator, we obtain the quadrature

points optimized for this potential and the NG-DVR.

Fig. 3 shows the 5 NG-DVR's as well as the potential

for H2 and the quadrature points.
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Figure 3. Five NG-DVR for the H2 molecule. The Figure also shows the H2 potential energy surface and the �ve quadrature
points used to generate the DVR's.

III The H2O molecule. A three-

dimensional example

Now the concepts developed in the previous Sections

will be applied to a multidimensional problem. The

generalization of the algorithm is straightforward and

easy to perform. The ability of the algorithm to gener-

ate high accurate quadratures points and NG-DVR will

allow us to use the minimumnumber of basis functions

and integration points for solving the multidimensional

problem.

The potential energy surface of a triatomic system

depends on the three internuclear distances and ro-

vibrational calculations have to deal with the expansion

of the wave function in these directions. The choice

of coordinates and basis functions are crucial for the

success of any algorithm. The most commonly used

are the hyperspherical coordinates, Jacobi coordinates

and mass weighted Jacobi coordinates. We are using

a particular set of hyperspherical coordinates that de-

scribe the full space by means of a hyper-radius and �ve

hyper-angles. The hyper-radius range goes from zero to

in�nity while the hyper-angles have �nite ranges. Other

details about the coordinates we are using are given in

previous publications and we refer the reader to them

[5,31-35].

Accurate calculations of ro-vibrational levels of tri-

atomic molecules are now feasible due to the speed and

memory of the modern computers. E�orts have been

done by several groups to obtain the accurate spectrum

of tetra-atomic molecules. For this purpose, we should

run a full six-dimensional calculation and pay atten-

tion in each step of the calculation in order to keep

the dimension of the matrix and the number of oper-

ations within the limits of the computers. Even for

three-atomic systems, the optimization of basis func-

tions is essential in order to calculate high vibrational

modes with high accuracy. The wave functions associ-

ated with excited states may sample a large region of

the three-dimensional con�guration space and the ba-

sis functions being used should be able to accurately

represent such states. Moreover, the number of basis

functions must be small in order to keep the matrix

dimension manageable.

The optimization procedure we use is as follows.

First, we optimize the functions for the hyper-radial

direction and, following, hyper-angular basis functions

are obtained. We obtain the basis functions for the

hyper-radial direction choosing hyper-angles such that

the hyper-radial line passes through the potential bot-

tom. The Hamiltonian constrained to the hyper-radial

direction de�nes an one-dimensional problem. The pro-
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cedure described in Sections II and III are them applied

to generate a NG-DVR for the hyper-radial direction.

We point out that this set of basis functions brings in-

formation about the potential and they are e�cient for

expanding the total wave function.

The numerically optimized basis functions for

the hyper-angular space is obtained applying a two-

dimensional �nite element method approach. The

two-dimensional hyper-angular space is discretized by

means of triangles and the Hamiltonian matrix is diag-

onalized. The eigenvectors are utilized as two- dimen-

sional basis functions for the hyper-angular space. This

contraction method has been used before and we refer

the reader to the Ref. 5. We keep a number of 110

hyper-angular eigenvectors in the present calculation.

We used the same potential of Miller and Tennyson,

Wei and Carrington and Choi and Light. This is an

empirical potential energy surface obtained by Jensen

[36] who collected a large amount of experimental data

to �t it. Table 2 shows states of the water molecule

up to 19; 000cm�1. We also compare the calculated

numbers with experimental values and calculations by

Fernley, Miller and Tennyson (FMT) [27], Wei and Car-

rington (WC) [30], Choi and Light (CL) [29] and J. J.

Soares Neto and F. V. Prudente (NP) [5] in Table 2 and

conclude that our calculated numbers agree well with

other calculations. We also notice that this calculation

improves considerably our previous attempt [5], in spe-

cial, for highly excited states, where the present basis

set describes the wave function more accurately. There

are three key parameters that are responsible for the

convergence of the calculation and we use the following

values for them: 22 hyper-radial basis functions, 3095

triangular �nite elements describing the hyper-angular

space and the maximum number of 150 hyper-angular

contraction basis functions. The dimension of the ma-

trices associated with these parameters is the maximum

we can manage with our present computer resources.

The �nal contracted matrix for this calculations is of

dimension 1500 � 1500 and the complete run takes 5

hours of a CPU of a Alpha 3000 (Digital) workstation.

IV Concluding remarks

We developed a numerical procedure to optimize a DVR

for a given system. The methodology has been applied

to the calculation of the ro-vibrational states of the wa-

ter molecule. We obtained high vibrational levels of this

molecule with good accuracy compared to other three-

dimensional calculations. The results of this publica-

tion are considerably better than those that we have

published [5] using another approach for making the

expansions along the hyper{radial direction. The ap-

plication to other three-atomic systems is straightfor-

ward and does not require any change in the program

since the optimization procedure is automatic. The al-

gorithm deals with both the generation of basis func-

tions and the calculation of quadratures points for the

problem.
�Ohrn and Linderberg [37] developed a set of

hyperspherical coordinates for tetra-atomic systems.

Presently, we are making e�orts to develop an algorithm

to calculate bound states of tetra-atomic molecules us-

ing these coordinates and the Numerically Generated

DVR described in this paper. We are also developing

a contraction scheme similar to the one used for the

water molecule.
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