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An interpretation of the causality implementation of the Lienard-Wiechert solution raises
doubts against the validity of the Lorentz-Dirac equation and the limits of validity of the
Minkowski structure of spacetime.

I Introduction

Early in this century, the search for the correct equa-

tion of motion for a pointlike charged classical particle

was a major problem in theoretical physics. The ad-

vent of quantum mechanics brought some hope that

it could be properly understood in the framework of

a quantum theory. The proposed third-order Lorentz-

Dirac equation could not be accepted because of its

numerous problems (which have not been solved, but

just forgotten). In our opinion, this was a bad point

for theoretical physics: one has failed to see that the

Minkowski space is not the appropriate underlying geo-

metric structure for the description of close interacting

�elds. The solution of these problems is still of great

relevance since it may signal steering corrections one

has to make in �eld theory for avoiding old problems

of QED and the stalling situations in some areas as

quantum gravity and QCD.

In modern �eld theories, Poincar�e invariance is im-

posed, and the Minkowski space-time is taken as the ap-

propriate scenario for describing non-gravitational phe-

nomena. For electromagnetic �elds in vacuum, far from

charges, this has received con�rmation from a solid ex-

perimental basis , but not for �elds in a close vicinity

of their sources. Even from a theoretical viewpoint, the

question is not so clear: the problems faced by quan-

tum �eld theories for dealing with �elds de�ned in close

neighboring points are well known. These di�culties

are generally taken as indications of some failure in the

quantum basis of the theories (or at least as an indica-

tion of the existence of some limits of validity). In this

paper, we wish to emphasize that the same problem

occurs in classical physics disguised on this old con-

troversy about the correct equation of motion for the

classical electron. Having inherited the same spacetime

structure of their classical predecessors, it is not sur-

prising that the quantum theories also face a similar

problem for de�ning �elds in a close vicinity. Therefore,

the roots of this problem must be searched at deeper

grounds, in the very foundation of the assumed struc-

tures of the space-time continuum.

Assuming the validity of energy momentum con-

servation [1,2,3], a classical spinless point charge in

an isotropic and homogenous Poincar�e invariant space-

time leads to the Lorentz-Dirac equation,

ma = eFext:V +
2e2

3
(
:
a �a2V ): (1)

This equation is written in a context where the elec-

tron world-line, parameterized by its proper time � , is

a known function, z(� ): Then, the electron velocity is

V = dz=d� ; a = dV=d� , and _a � da=d� . eFext is the

exterior force driving the electron, which, if taken as

of electromagnetic origin, is written as F�
ext = F��

extV� ,

where m and e are the electron mass and charge, respec-

tively, and the speed of light is c = 1. The presence of

the Schott term, 2e
2

3

:
a, is the cause of some pathological
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features of (1), like microscopic non-causality, runaway

solutions, preacceleration, and other bizarre e�ects [4].

The adoption of an integral equation with a convenient

choice of limits can avoid either one of these two last

problems, but not both. On the other hand, this term

is necessary for energy-momentum conservation; with-

out it would be required a null radiance (a2 = 0) for

an accelerated charge. The argument, although cor-

rect, that such causality violations are not observable

because they are outside the scope of classical physics

[5] and are blurred [6] by quantum-mechanics e�ects

is not enough compelling, because the same problems

remain in a quantum formalism, just disguised in other

apparently distinct problems.

It must be added that the inclusion of spin and

some extension or structure for the electron would be

just a complication without a changing in the essence

of the problem. Taking a spinless particle is a valid

simplifying hypothesis since the point at stake is not

that one must consider every property of the physical

electron, but why one gets physically non-acceptable

results if one starts from apparently good premises and

uses only mathematically sound procedures. It can only

mean that something in the premises or in the proce-

dures is not as good as one thinks. The problems that

appear in both classical and quantum theories when

one has to consider the limit situation of two objects

(the electron and its electromagnetic �eld, for example)

de�ned on a same point are the crux of the question.

For the classical electron the picture is quite clear: the

energy-momentum conservation produces sound phys-

ical results in any region around the charge except at

the position of the charge. It will be argued in the fol-

lowing that this is a strong indication of the breaking

down of the validity of some accepted premises about

the structure of the space-time: electron and photon

require di�erent local space-time structure. The failure

of recognizing this result yields the equation (1). It

amounts to requiring that the propagation of a massive

object (the electron) attends the same constraint of the

photon (a massless object).

The geometrization of a physical principle is a very

useful tool because it assures its automatic implemen-

tation and allows that we concentrate our attention

on other aspects of the problem we are studying. The

Minkowski spacetime represents a geometrization of

the relativistic requirement that the velocity of light

be a universal constant. Despite its undisputed success

through the theory of special relativity, in the interface

between a �eld and its source it produces a violation of

causality. By revisiting the Lienard-Wiechert solution,

we review its implicit and geometric causality imple-

mentation and show that it implies a more complex

spacetime than the Minkowskian one with its light-

cone structure. This suggested new model of spacetime

requires a revision of our concepts of �eld theories of

interacting massive and massless �elds and shows the

weak points in the demonstrations of the Lorentz-Dirac

equation.

II The Lorentz-Dirac Equation

The derivation of the Lorentz-Dirac equation, with the

use of techniques of distribution theory, can be roughly

schematized [1] in the following way. The electromag-

netic �eld F�� = A�;� � A�;�with @:A � @�A
� = 0,

satis�es the Maxwell's equations, 2F = 4�J ,where J,

given by,

J(x) = e

Z
d�V �4[x� z(� )]; (2)

is the current for a point particle with electric charge

e and four-velocity V. The Lienard - Wiechert solution

[3,5,7],

A =
eV

�
; � > 0; (3)

in terms of retarded coordinates, by which any space-

time point x is constrained with a particle world-line

point z(� ) by

R2 = 0 (4)

and R0 > 0, with R � x � z(� ); � � �V:�:R,

where � is the Minkowski metric tensor, (with signa-

ture +2). � is the spatial distance between the point

x where the electromagnetic �eld is observed and the

point z(� ), position of the charge, in the charge rest

frame at its retarded time. The total particle and �eld

energy-momentum tensor, T = Tm + �, consists of

Tm = m

Z
d�V V �4[x� z(� )]
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��� =
1

4�
(F��F �

� �
���

4
F��F��);

where F = Fret + Fext is the retarded �eld added to

any external electromagnetic �eld acting on the charge.

It induces � = �ret + �mix + �ext. We are omitting

any mention to some messy calculations [1] related to

the highly non integrable parts of �ret; which requires

some renormalizations of � on the charge worldline.

The required momentum conservation,

T�� ;� = 0; (5)

is satis�ed without any problem at any point but � =

0; (x = z), where T is not de�ned. In order to handle

the singularity at � = 0; T must be treated not as just

a function de�ned only at � > 0 but as a distribution

de�ned everywhere. Then, (5) is replaced by

c

Z
dx4T��;� �(x) = �

Z
dx4T���;� = � lim

"!0

Z
dx4T���;� �(� � ") = 0; (6)

d

where �(x) is an arbitrary di�erentiable function with

a compact support and �(x) is the Heaviside function,

�(x > 0) = 1, �(x < 0) = 0. Another integration by

parts gives

lim
"!0

Z
dx4�;� T

���(x)�(� � ") = 0; (7)

which, after integration, produces, in the limit, the

Lorentz-Dirac equation (1). We want to pin point a

crucial passage (common to most derivation of this

kind) in this procedure for posterior careful analysis:

the limit " ! 0, which represents a change from a

point x where there is only electromagnetic �eld and

no electric charge, � > 0, to a point z(� ), instantaneous

location of the electron, � = 0.

III Geometry of Causality

There is a beautiful and physically meaningful under-

lying geometry describing the structure of causality in

relativistic classical electrodynamics, of which we will

give here just a brief description. The Lienard-Wiechert

solution (3) is an explicit function of x and of the re-

tarded proper time of its source, �ret, which is a solu-

tion of the constraint (4). When taking derivatives of

functions of retarded coordinates, like (3), the di�eren-

tiation of the constraint (4) must be considered and it

implies [7,9] on R:dR = 0, then R > (dx � V d� ) = 0

and R:dx+ �d� = 0; or

d� +K:dx = 0 (8)

where K � R=� = �@�=@x. The e�ects of this con-

straint on derivatives of functions of retarded time, like

A, can be automatically accounted for if each derivative

is replaced by a directional derivative,

@� �! r� � @� �K�@=@�; (9)

so that

@�A(x)
��
�ret

= r�A(x): (10)

On the RHS of (10) x and � are treated as 5 inde-

pendent parameters; the restriction (8) among � and x

(present on the LHS) is transferred to r. The geomet-

ric meaning of r is then quite clear; it is the possible

derivative allowed by the restriction (8), that is, dis-

placements on the hyperplane d� + K:dx = 0 only.

The constraints (4) and (8) have clear geometrical and

physical meanings: the electron and its electromagnetic

�eld must belong to and remain in a same lightcone;

they represent, respectively, a global and a local imple-

mentation of the relativistic causality.

In the standard formalism, which we are reviewing,

there is a clear distinction between the treatment given

to the electron and the one given to its electromagnetic

�eld. It is now convenient to adopt a notation where

these distinctions are reduced to the essentially neces-

sary. So, we change the notation, replacing R by �x
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and extending its meaning to be a change in the location

of a physical object (particles, �elds, etc). Therefore,

the constraint R2 = 0; valid for the electromagnetic

�eld, is replaced by

�x2 = 0; (11)

showing, in an explicit way, that this massless �eld

propagates keeping constant its propertime, �� = 0. K

as a null vector, K2 = 0, represents a lightcone genera-

tor, the direction of propagation of the electromagnetic

�eld. Equation (4) or (11) can be seen as a restriction

on the set of solutions of (8), and both (11) and (8), are

constraints to be imposed on the propagation of mass-

less objects. They make sense for the electromagnetic

�eld and as such they have accordingly been used in

section 2 for � > 0, but they cannot be extended to the

propagation of a massive object, like an electron.

The appropriate constraint, equivalent to (11) for an

electron, has to be

� (�� )2 = �x2; (12)

where �� is the variation of the electron propertime

during its propagation along a distance �x (which, for

the electron, now means �z); likewise, the constraint

(8) must be replaced by

d� + V:dx = 0; (13)

and, similarly, a directional derivative corresponding to

(9) is de�ned, replacing K by V:

@� �! r� � @� � V�@=@� (14)

The di�erences between (9) and (14) just re
ect the

distinct constraints on the propagation of massive and

of massless physical objects.

We are now in condition to de�ne the unifying geomet-

ric background that underlies equations (9-14). Con-

sider all the physical objects (electrons, electromag-

netic �elds, etc) immersed in a 
at 5-dimensional space,

R5 � R4 
 R1, whose line elements are de�ned by

c

(�S5)
2 = �xM�MN�xN = (�S4)

2 � (�x5)2 = �x:�:�x� (�x5)2; (15)

d

where M;N = 1 to 5. Immersed in this larger space,

every physical object is restricted to a 4-dimensional

submanifold, its spacetime, by

� (�x5)2 = �x2: (16)

(�S5)
2 = �2(�� )2 for a physical object, always. In

other words, the change �x5 of a physical object is

restricted to be the change of its very propertime,

�x5 = �� . This is a causality condition, standing for

both (11) and (12). So, the constraints on the propa-

gation of physical objects become restrictions on their

allowed domain in R5, that is in the de�nition of their

allowed spacetime. (16) may be written, in an obvious

notation, as

(�t)2 = (�� )2 + (�~x)2; (17)

which de�nes a 4-dimensional hypercone in the local

tangent space of R5. See Fig.1. It is a CAUSALITY-

CONE, a generalization of the Minkowski lightcone. A

lightcone, the domain of a massless physical object, is

an intersection of a causality-cone and a 4-dimensional

hyperplane de�ned by: x5 = const. The interior of a

lightcone is the projection of a causality-cone on such

a (x5 =constant)-hyperplane. Each observer perceives

an strictly (1+ 3)-dimensional world and his �x5 coin-

cides with the elapsed time measured on his own clock,

as required by special relativity; it represents his aging,

according to his own clock.

This is in contradistinction to a Kaluza-Klein type of

theory for uni�cation of �elds, which uses a space-

like �fth dimension and then needs a compacti�cation

mechanism to justify the non observability of x5. The

use of a timelike �fth coordinate is, of course, not new

in physics. See for example the references [8,9,10] and

the references therein.
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A subtle detail must be observed. It is not correct that

we are interpreting x5 as a proper time; it is �x5, the

variation of x5 of a physical object, that is interpreted

as the variation of its proper time, its aging. The prop-

agation of physical objects, in this geometric setting, is

restricted by the di�erential of (16), ��d�+�x:dx = 0,

or

d� + f:dx = 0; (18)

f:dx = f�dx
�, where f = �x

��
; and f is a timelike

four-vector if d� 6= 0, or (extending (18) to include)

a light-like four-vector if d� = 0. (18) de�nes a fam-

ily of four-dimensional hyperplanes parameterized by

f, tangent to and enveloping the causality-cone (17).

(17) and (18) de�ne a causality-cone generator whose

tangent, projected on a (x5=constant)�hyperplane, is

f. A lightlike f corresponds to K of (8) while a timelike

f stands for V of (13).

Figure 1. The Causality-cone.

The simultaneous imposition of (17) and (18) rep-

resents a causality implementation stricter than the

Einstein causality (implemented through (11) only)).

In the Einstein causality a physical object must remain

inside (if �� 6= 0) or on (if �� = 0) its light-cone.

In this extended causality a free point physical ob-

ject must remain on its causality-cone generator (its

causality-line).

Figure 2. The twin paradox.

Let us consider the Figure 2 in order to have a

clear understanding of the meaning of �x5 of a phys-

ical object as its aging. This �gure may represent a

vain physicist looking himself at a mirror, or the limit-

ing case (v � c) of the twin paradox in Special Rel-

ativity. PR0 and PQ are two generators of a same

causality-cone. PQ belongs to the light-cone (taking

v � c). PR0 = (0; 0; 0;��;�x5) with �t = �� , while

PQ = (�~r; �t
2
; 0) and QR = (��~r; �t

2
; 0): PR0 is the

physicist world-line on his rest frame. R is the physicist

image re
ected (back to him) at Q, or his twin brother

returning from a trip to Q. They meet again at the

time t = tR > 0, at the same space point (~r = 0), from

where they had departed from each other, but now with

distinct �fth coordinates, x5R = 0 and x5R0 > 0, that

represent their distinct agings.

Let us mention now a rich and interesting point of

this geometry. Observe the di�erence between � and

t in (17): they are invariant under di�erent subgroups

of isometry |SO(3; 1) and O4, respectively| of the

causality-cone. Both sides of

(�� )2 = (�t)2 � (�~x)2

are invariant under transformation of the S0(1; 3)

group, that is, rotation in a Minkowski spacetime (~x; t);

but in

(�t)2 = (�� )2 + (�~x)2;
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both sides are invariant under 04, the rotation group in

Euclidean 4-dimensional spacetime (~x; � ):

The use of t in the place of � as the invariant cor-

responds to a Wick rotation without the need of an-

alytic continuation [10,11], t ! it, and lends to it a

clear physical and geometrical interpretation. Physi-

cally it means that, for an Euclidean four-dimensional

spacetime, events should be labelled not by the time

measured in the observer's clock, but with their local

proper time, read on their local clocks. 04 is the invari-

ance group of the causality-cone for rotations around

its t-axis. Care must be taken with the interpretation

of the 04 sub-groups involving � , as they correspond to

Lorentz and conformal transformations.

For those unaccustomed to the idea of extra-

dimensions, we remind again that the Minkowski space-

time represents the geometrization of an experimentally

founded physical principle: the constancy of the speed

of light. It requires that the time (up to then, just

a parameter) be treated as the fourth coordinate of

a four-dimensional manifold, the spacetime. We are

doing here something very similar: the geometrization

of causality, embodied in the relations (16) or (17). It

requires a �fth coordinate with the role of a propertime.

We can now return to our initial problem, which in

this geometry is pictured by an electron and its electro-

magnetic �eld (photon) in a same causality-cone, each

along its own cone-generator. This picture, although

simple, discards some old problems like self-interactions

and their associated in�nities, but this will be discussed

elsewhere (see the reference [13]). Let us consider in-

stead the metric structure of the spacetime associated

to each physical object. The metric induced by (18) on

(15) of a physical object, (dS5)
2 = dx:�:dx� (f:dx)2 =

dx:(��ff):dx, is given by g�� = ��� for a massless �eld

(since then d� = �f:dx = 0), and by g�� = ��� � f�f� ,

with f� = ���f
� and g�� = ��� + f�f�

2
for massive

physical objects. The distinct causality requirements of

massive and of massless �elds and particles are, there-

fore, represented by immersions with distinct metric

structures. They can both be written in a single expres-

sion (using either f2 = 0 or f2 = �1 for, respectively

massless and massive objects):

g�� = ��� + f2f�f� ; (19)

g�� = ��� � f2
f�f�

1 + (f2)2
: (20)

At this point we can understand that a plus sign in

front of (�� )2 of the line element (15) would imply

on �S5 � 0 for all physical object and would induce

g�� = ��� + f�f� , as a metric on a causality-cone of a

massive object, which would not be consistent because

then, g��f� � 0.

The existence of two distinct metric structures for a

massive and a massless �eld invalidates (1) as the re-

sult of (6). While T�� ;� = 0 for � > 0 remains valid

in this new picture, its limit when � ! 0 is not as

simple as described before because it involves now a lo-

cal change of manifolds with di�erent metric structure

(�! ��ff). Physically it only makes sense! For � >0

one is dealing with electromagnetic �elds (photons) for

which (8,11) represent the causality requirement that

A(x,t) and z(�ret) remain on a same light-cone, but for

� = 0 one has an electron, a massive particle, which

must attend a completely di�erent causality relation

(12,13). As a matter of fact, the limit of K when �

tends to zero is an indeterminacy that can be resolved

with a derivative d=d� and the L'Hospital rule:

lim
�!0

K� = lim
�!0

f� = V ���� �V� : (21)

This is coherent with (9) and (14). This change of K to

V was not considered in the limit passage of (7), as also,

of course, the change of metric required by (19). This

procedure extends, in fact, the photon causality con-

straint (11) to the electron; it corresponds to treating

the electron as if it were a massless object. This new

vision of spacetime requires a revision not only of the

Lorentz-Dirac equation but of any theory of interact-

ing �elds. This will be discussed in subsequent papers.

Our immediate goal has been attained with the stress-

ing of the connections among causality violation in the

Lorentz-Dirac equation and the spacetime structure.

IV Summary and Conclusions

The Lienard-Wiechert solutions are closely related to

the Lorentz-Dirac equation, but while the �rst one has

a well drawn picture of causality preservation, based

on the light-cone structure of the Minkowski spacetime,

the second one is, nonetheless, well known for its prob-

lematic causality violating solutions. For this reason,
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this equation has always been accompanied by many

doubts about its validity. It has been obtained from the

most diverse approaches and its uniqueness has been

scrutinized and proved under very generic and accept-

able conditions [1, 2]. However, we do not endorse the

apparently most accepted view that this is, after all,

the correct equation and that its problems appear only

when we stretch its application to situations when a

quantum theory should be used instead.

With the strategy of geometrizing the Principle of

Causality, that is, of transferring its implementation

to the background spacetime structure, we �nd that a

model of spacetime, more complex than the model of

Minkowski, is required. It makes clear that the weak

point common to all demonstrations of the Lorentz-

Dirac equation is the extrapolation for the electron of

restrictions that are valid only for its electromagnetic

�eld. The Minkowski spacetime represents just a ge-

ometrization of the Einstein postulates of Special Rel-

ativity, and so it does not contemplate the di�erence in

the metric structure required for a more strict geomet-

ric implementationof causality. Therefore, the Lorentz-

Dirac equation is the result of imposing to the electron

a causality behavior that is valid only for its electro-

magnetic �eld. [13].
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