
398 Brazilian Journal of Physics, vol. 30, no. 2, June, 2000

Bounds on the Conical Defect

Parameter from Solar System Tests

Wilson H. C. Freire1;2, V. B. Bezerra2, and J. A. S. Lima3

1Universidade Regional do Cariri, Departamento de Matem�atica

63100-000 Crato, Ce, Brazil
2Universidade Federal da Para��ba,

Departamento de F��sica, Caixa Postal 5008,

58059-970 J. Pessoa, Pb, Brazil
3Universidade Federal do Rio Grande do Norte,

Departamento de F��sica, Caixa Postal 1641,

59072-970 Natal, RN, Brazil

Received 25 October, 1999

We analyse the planetary perihelion precession and the de
ection of light in the Schwarzschild �eld
modi�ed by a conical defect. By using observational results from solar system tests of general
relativity, we obtain limits on the conical defect parameter �. For the physical case of a cosmic
string the quoted limits are one and three orders weaker than the cosmological bounds.

I Introduction

The general theory of relativity (GTR) is believed to
be the best theoretical framework presently available
to describe the gravitational interaction. At the time
of its formulation, the major achievements of the theory
was the de
ection of starlight and the perihelium shift
of Mercury planet in the sun �eld. The remaining clas-
sical test (gravitational redshift), is really predicted by
a wide range of theories since it is a direct consequence
of the equivalence principle.

The bending of light and the perihelium shift agree
with the Einstein values with an accurancy of one per-
cent (an overview is given by Will[?]). Both e�ects
are usually analysed assuming a negligible contribu-
tion from solar oblatness or whatever e�ect which de-
parts the metric from exact spherical symmetry. Ac-
tually, with some few exceptions, all the calculations
are done in the context of the spherically symmetric
Schwarzschild metric. As a preliminary point of princi-
ple, if the Sun deviate slightly from exact spherical sym-
metry, either due to an appreciable solar quadrupole
moment[?] or even some unexpected topological prop-
erty of the gravitational �eld (matter distribution), a
more complete treatment of such e�ects require a gen-
eralization of the standard Schwarzschild line element.
In the case of a nonzero small quadrupole moment, the
main physical consequences have been discussed with
some detail in the literature either in the Newtonian

approximation or in relativistic framework (see [?] and
Refs. therein). However, as far as we know, an ex-
tended treatment is not only matter of academic inter-
est, because such a possibility basically remains as an
open question[?].

In the present work we are more interested on pos-
sible distortions on the Sun �eld provoked by topolog-
ical e�ects. Some authors have suggested that most of
simple exact solutions of Einstein's equations can eas-
ily be generalized to include a conical defect[?]. Such
spacetimes are geometrically constructed by removing
a wedge, that is, by requiring that the azimuthal angle
around the axis runs over the range 0 < � < 2�b. For
very small e�ects, the b parameter itself may be written
as b = 1��, where � is a small dimensionless parameter
quantifying the conical defect. In particular, for � = 0
the Schwarzschild line element is recovered whereas for
a conical defect generated by a cosmic string one has
� = 4G�, where � is the mass per unit length of the
string[?, ?]. We believe that it is worthwhile to con-
sider what limits solar system observations could place
on a such metric modi�ed by the conical defect and to
investigate if these observations can support the exis-
tence of a cosmic string threading the Sun.

The Schwarzschild spacetime endowed with a con-
ical defect was considered previously[?] and some as-
pects were studied. The line element corresponding to
this spacetime takes the following form[?]
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ds2 = (1�
2M

r
)dt2 � (1�

2M

r
)�1dr2 � r2d�2 � b2r2sin2�d�2 ; (1)

d

where M = Gm is the geometric mass of the central
body.

In this paper, studying the orbits of massless and
massive particles in the above geometry, we derive two
limits on the value of the conical defect parameter �
from perihelion shift of the planetary motion and de-

ection of light. Parenthetically, we recall that e�ects of
nontrivial topologies are usually discussed in the cosmo-
logical framework, as for instance, in connection with
the concept of small universes[?]. The physical conse-
quences of cosmic strings regarding to its implications
on the structure formation problem has also been ex-
tensively investigated [?]-[?]. More recently, the �rst 2-
years of COBE/DMR data measuring the quadrupole
anisotropies of the 3K relic radiation have been used
to place limits on the possible topologies of the uni-
verse[?]. In principle, through a convenient general-
ization of the Friedmann-Robertson-Walker metric, a
similar approach would be applied for constraining the
� parameter. However, it is important to derive limits
on this key parameter from di�erent kinds of phenom-
ena, mainly in a domain where the observations envolve
lenght scales diverse from that ones usually considered
in the cosmological context.

Let us now consider the motion of a test particle
in the Schwarzschild spacetime with a conical defect.
Its trajetory can easily be established through the rel-
ativistic Hamilton-Jacobi equation

g��
�
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@x�

��
@S

@x�

�
= m2 (2)

where m is the particle mass and S is the generating
function.

Following standard lines, we assume an S in the
form

S = �Et+R(r) + �(�) + L(b);z'; (3)

where E is the energy and L(b);z is the azimuthal an-
gular momentum of the particle as measured at spatial
in�nity in the presence of the conical defect.

As one may check, in the spacetime given by (1)
the partial Hamilton-Jacobi equation is separable and
reduces to two ordinary di�erential equations

�
d�

d�

�2

= K �
L2
(b);z

sin2�
; (4)

�
dR

dr

�2

=

�
r2

�

�2 �
E2 �

�(m2r2 +K)

r4

�
; (5)

whereK is Carter's fourth constant of motion [?], which
is given by K = L2

(b), with L(b) being the total angu-
lar momentum of the particle in such background and
� = r2 � 2Mr. The square of L(b) is

L2
(b) = g��r2p2� + g''r2p2' = p2� +

p2'

b2sin2�
;

where p� and p' are the components of the generalized
momentum. In particular, for a motion in equatorial
plane (� = �

2 ; p� = 0) the above equation reads

L2
(b) =

p2'
b2

=
L2

b2
;

and since 0 < b � 1, we see that L2
(b) � L2

(b=1) as it
should be.

The geodesic equations are easily determined by
combining the above equations with the de�nition of
the four-momentum

p� = m
dx�
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= �g��
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; (6)

where s is a parameter along the trajectory. One �nds
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Note that the presence of the conical defect parame-
ter through b(�) is the unique di�erence between the set
(7)-(10) and the corresponding equations in the stan-
dard Schwarzschild �eld, which are readily recovered in
the b! 1 limit.

To analyse the in
uence of the conical defect on the
de
ection of light rays and the perihelion shift we con-
sider the orbit equation
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(11)
which is a consequence of (8) and (10), with �L(b) and

�E de�ned as �L(b) =
L(b)

m and �E = E
m .
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Let us now proceed to limit the conical defect pa-
rameter � from the perihelion shift. It is conveniente to
make a change of variables u = 1

r in terms of which Eq.
(11) can be recast in the following form

�
du

d'

�2

=

�
b �E
�L(b)

�2
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u2 +

1
�L2
(b)

!
:

(12)
The standard procedure in searching for general rel-

ativistic e�ects in the perihelion shift is to assume a
nearly circular orbit and consider the u3 term appear-
ing in (??).

For non-circular orbits and massive particles,
Eq.(??) turns into

d2u

d'2
+ b2u =

M

L2
+ 3Mb2u2: (13)

The �rst term on the right-hand side of Eq.(??)
leads to Newtonian orbits. If we consider only this term

into Eq.(??), the approximate solution is the Newto-
nian solution which is given by

u0 =
1

r
=

M

b2L2
[1 + ecos(b('� '0))]; (14)

where '0 and e are constants of integration, e being the
eccentricity of the orbit.

Now, let us calculate the �rst correction by pertur-
bation expansion. Writting u �= u0 + u1, where u0 is
given by Eq.(??) and considering orbits of small exc-
centricity we obtain the following equation for u1(')

d2u1
d'2

+ b2u1 �=
6M3

b2L4
ecos[b('� '0)]; (15)

whose solution is given by
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b4L4
eb'sin[b('� '0)]: (16)

Including this correction, we have that
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Now, taking

4 '0 = 3

�
M

bL

�2

'; (18)

the solution u(') may be written as

u =
1

r
�=

M

b2L2
f1 + ecos[b('� '0 �4'0)g : (19)

From Eq.(??) we conclude that the required shift
per revolution is

4 '0 =
6�

b3

�
M

L

�2

+ 2�(b�1 � 1): (20)

where 2�(b�1�1) �= 2�� is the contribution of the coni-
cal defect for the perihelion shift in the absence of local
gravitational e�ect.

Now, expanding such expression to �rst order in the
conical defect parameter it follows that

4 '0 �4'S � 2��; (21)

where 4'S is the standard deviation in the
Schwarzschild �eld. For the planet Mercury it is known
that 4'0 agree with 4'S = 5 � 10�7 to better than
half percent. Expanding Eq.(??) to �rst order in � we
conclude that the conical defect parameter is bounded
by

� < 10�9: (22)

If we assume that this conical defect corresponds
to a cosmic string, then its linear mass density will be
bounded by

� < 1019g=cm; (23)

which is three orders weaker than the value predicted
for grand uni�ed strings.

Now, let us compute the total change �' = '+1�
'�1, in the angular coordinate ' of a light ray incom-
ing from in�nity with impact parameter l and escaping
to in�nity. From (11) we conclude that �' is given by

�' = 2
L(b)

b

Z
1

rmin

dr

(E2r4 � �L2
(b))

1=2
: (24)

In terms of the variable u previously de�ned,
Eq.(??) becomes

�' =
2

b

Z r�1
min

0

du

(l�2 � u2 + 2Mu3)1=2
; (25)

where l =
L(b)

E . Naturally, the turning point in the orbit
of the light ray is also de�ned by

R3
0 � l

2(R0 � 2M) = 0 (26)

Thus, if M = 0 (only the conical defect is present)
one has l = R0 and

�'jM=0 =
2

b
arcsin(1) =

�

b
; (27)
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which is a well known result[?, ?]. Therefore, there is a
de
ection due to the defect even when M = 0.

When M 6= 0, �' will not be equal to �
b , as ex-

pected. As usual, to �rst order in M , the contribution

to light de
ection due exclusively to the mass M is
readily obtained by inserting (??) into (??) and di�er-
entiating the resulting equation with respect to M [?].
One �nds

c

@(�')

@M
jM=0 =

2

b

Z 1=R0

0

(R�30 � u3)du

(R�20 � 2MR�30 � u2 + 2Mu3)3=2
jM=0: (28)

d

In the limit M ! 0 and l! R0, Eq. (??) becomes
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2

b

Z 1=l

0
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(l�2 � u2)3=2
du; (29)

and results in

@(�')

@M
jM=0 =

4

lb
: (30)

Thus, to �rst order in M , the net de
ection of light
( including the contributions due to the mass and to
the conical defect) is given by

c

Æ' = �'� � �M
@(�')

@M
jM=0 + �(b�1 � 1) =

4M

lb
+ �(b�1 � 1): (31)

d

Naturally, as remarked before, we are looking for
small deviations from Schwarzschild spacetime. Ex-
panding (??) to �rst order in � we obtain

Æ'� Æ'S � ��; (32)

where Æ'S = 1:7500 is the defection of light with no
conical defect (� = 0). Therefore, the defect causes a
de
ection of size 2��, in addition to the gravitational
de
ection.

Observations from photograph plates in total solar
eclipses points systematically to light-de
ection in the
neighbourhood of the Sun. However, the experimen-
tal results are largely scattered and present noticeable
discrepancies[?]. Measurements of de
ection using very
long baseline interferometry(VLBI) for radio waves em-
mited by quasars(QSO) give accuracies of about 10�3.
Therefore, using this fact and using the expansion of
(??), we obtain that the conical defect parameter is
bounded, in this case, by

� < 10�7: (33)

If we assume that this conical defect corresponds to
a cosmic string, this limit is of the order of magnitude
of the corresponding bounds predicted by grand uni�ed
strings. This limit implies that the linear mass density
of the string is such that

� < 1021g=cm; (34)

which is approximately of the same order of the con-
strain imposed by observations and by the string sce-
nario for galaxy formation in the context of grand uni-
�ed theories.

The limit that comes from the perihelion shift anal-
ysis is less precise than that one established from the
de
ection of light and three orders of magnitude larger
than the cosmological bounds. Naturally, if some por-
tion of the perihelion shift is due to others e�ects, like
the quadrupole momentum of the Sun, this upper limit
would be higher by the corresponding amount.

Di�erently from the limits on the conical parame-
ter � predicted using the observational results from the
solar system tests of general relativity concerning the
perihelion shift of Mercury, in the case of de
ection
of light the limits placed on this parameter is in good
agreement with the predicted bounds for grand uni�ed
strings. Certainly, this last result does not mean that
the solar system observations can support the existence
of really weird matter like a cosmic string which threads
the Sun. In fact, we are not addressing our questions
to this point, but to the use of the observational results
from the solar system in order to get bounds on the con-
ical defect parameter which modi�es the Schwarzschild
metric. This approach provides, at least, an indepen-
dent alternative way to get limits on the parameter that
deforms the Schwarzschild solution using direct exper-
imental test instead of cosmological considerations.

Note that from Eqs.(??) and (??), we may conclude
that the conical defect induce global e�ects in addition
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to the standard deviations. Since the curvature of the
Schwarzschild �eld with a conical defect( which can be
associated with a cosmic string) does not depend on � (
or �), such e�ects are uniquely due to topological fea-
tures or equivalently, due to the lack of spherical sym-
metry produced by the conical defect or by the cosmic
string.

Finally, we stress that our results are completely
general in the sense that any deviation of the b param-
eter from unity can be associated with other e�ects and
not necessarily to the presence of a cosmic string.
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