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Analysis of Cut-o� Conditions for Coaxial Fibers
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This paper reports the analysis of modal normalized frequency cut-o� of coaxial �bers having four
dielectric layers. The cut-o� curves are obtained for four di�erent structures and several modes
as a function of the several parameters of the �bers (refractive index and layer dimension). The
calculation is done using a transcendental equation obtained in this work. The analysis pays a
special attention to the fundamental mode HE11 showing that for two structures (W1 and M1) the
normalized frequency always is null as is the case of the standard rod �bers. For the other two
structures (W2 and two regions), the normalized frequency may not be null, depending on the set
of values of the �ber parameters. For this last case a loci diagram is obtained showing the regions
where the normalized frequency is equal to zero and di�erent from zero for several sets of �ber
parameters. From the transcendental equation, we have an expression to calculate the curve of
separation between these two regions.

I Introduction

Cozens and Boucouvalas [1] introduced a new structure

of optical �bers having four dielectric layers with which

it has been possible to develop di�erent devices such us

sensors and spectral �lters [2]. Nunes et al [3] have pub-

lished, for the �rst time, a detailed theoretical study of

four di�erent structures of coaxial �bers. The transcen-

dental equations for each structure were obtained for all

the ranges of physically acceptable values of the e�ec-

tive refractive index. This work brings complementary

results to those of Ref. [3], being focused on the anal-

ysis of the cut-o� behavior of the structures W and M

[3]. Their refractive index pro�les are shown in Fig. 1

and, as indicated, both structures W and M have been

sub-classi�ed as 1 and 2.

The structure Wl and been used to manufacture

spectral �lters [2] with promising characteristics for

optical communications and dispersion compensating

�ber [4] with large negative dispersion coeÆcient D

for the fundamental mode. For example, the �lters

are made with �ber tapers and its physical behavior is

mainly described using perturbative theory, local mode

(LM) approximation [5], taking into account the modes

HE11 and HE12. With the LM approach its is seen that

the coupling between HE11 and HE12 is a fundamental

part on the device description. However, coupling will

only occur if both modes exist. If one of them is un-

der the cut-o� condition, no coupling can occur and

the device is unable to operate showing the necessity of

understanding the cut-o� conditions.

The cut-o� condition for one mode is dependent on

the �ber parameters and light wavelength. In the spe-

ci�c case of W coaxial �bers with four dielectric lay-

ers, there are seven parameters to be considered: four

values of refractive index and three dimensions (Fig.

1). These parameters are reduced to four according to

which the cut-o� conditions are analyzed. The values V

of cut-o� normalized frequencie are calculated solving

a transcendental equation that we have obtained and is

given in section III. The results show that in the case of

the structure W2 and M2 the fundamental mode has a

non vanishing V, contrary to the structure W1 and M1

for which V always vanishes as is the case of common

core-clad �bers [6].
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II Mathematical approach

The propagation characteristic of a coaxial �ber can

be described using the well-known LP approximation.

This is the approach that we use in this work and in

this section we present a brief discussion of the results

widely detailed in Ref. [3]. The modal wavefunctions

will be those given by

 (�; �; z) = '(�; �) exp(i�z) (1)

where  may be Ey or Ex, depending on the choice be-

tween the two possible linearly polarized LP solutions

[3], z is the direction of propagation and � is the prop-

agation constant. In eq. (1), '(�; �) is given by:

'(�; �) = R(�)

�
cos(m�)
sin(m�)

�
; m = 0; 1; 2::: (2)

where � is the azimuth angle and m is the parameter

that de�nes the azimuth LP mode order. The solution

in sine or cosine follows from the choice of polarization

[3]. R(�) is the transverse solution given as a combi-

nation of the well known Bessel and Modi�ed Bessel

functions of �rst and second classes. In each region,

an appropriate combination of Bessel functions is re-

quired to match the conditions of convergence that is

dependent on the range of the modal e�ective refractive

index. With this approach, transcendental equations

[3] are obtained for each structure and they describe

the �bers completely. For the structures W1 and M1

the transcendental equation is that corresponding to

Ne (e�etive refractive index) within the range (n2; n4)

[3]. For the structures W2 and M2 the transcendental

equation is that corresponding to Ne within the range

(n1; n4) [3].

Figure 1. Coaxial optical �bers pro�les for the structures
W1, W2, M1 and M2.

Table 1 - Parameters of eq.(3)

III Cut-o� condition

The cut-o� condition for any mode of the coaxial �ber

that we are analysing occurs when its e�ective refrac-

tive index Ne equals to n4. Following this, the cut-o�

condition for all �bers can be imposing making Ne=n4

in the arguments of the Bessel function of the corre-

sponding transcendental equations. By doing so, some

problems occur because the modi�ed Bessel function

Km(W4) diverges for very small values of W4. These

problems can be overcome using the small argument

approximation for the Bessel functions [7]. With this

approximation in the transcendental equation for the

e�ective refractive index and easy mathematical ma-

nipulations, the cut-o� frequency can be calculated by

solving the following transcendental equation:

�
2`J`(U4)� U4J`+1(U4)

2`J`(U4)� U4Y`+1(U4)

�
(AD �BC)

= (E1D �E2B); ` = 0; 1; 2; ::: (3)

where U4, A, B, C, D, E1 and E2 are parameters given

in the Tables 1, 2 and 3. In Table 2, A and R are de-

�ned as: A = a
c , R = � b�a

c (Fig. 1). The minus sign

found in both sides of eq. (3) is applied for both struc-
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tures W1 and M1 while the plus sign to the structures

W2 and M2. The numeric solutions of the eq. (3) for

Vi (i=1,2,3,4) are shown and discussed in the section

IV.

Table 2 - Bessel function"s arguments where V1 = ck0(n
2
1 � n

2
3)
1=2; V2 = ck0(n

2
3 � n

2
4)
1=2; V3 = V1 and

V4 = ck0(n
2
3 � n

2
2)
1=2:

A special attention is given to the mode HE11 be-

cause it is the most common excited mode of the �ber

in practical applications. As we will show in the next

section, eq. (3) just admits solution for discret values of

Vi (i=1,2,3,4) for a certain value of `. Then, the study

of eq. (3) assuming ` = 0 and close to Vi = 0, allows

to determine when the fundamental mode presents a

cut-o� di�erent from zero.

For this purpose, we will de�ne the function G as

the di�erence between the right and left sides of eq.

(3). Following the analysis of Safaai-Jazi et al [6,8],

we will use the condition ` = 0 and Vi ! 0 in G. In

the limit where Vi is small, all Bessel functions present

expansions [7] for small arguments.

Substituting these expansions in G, making the nec-

essary manipulations and maintaining the terms of lin-

eal order in V we obtains:

G = fiVi; for i = 1; 2; 3; 4 (4)

where fi is a function that depend on the parameters

and kind of the coaxial �ber under analysis, and are

show in Table 4. G in eq. (4) shows a linear depen-

dence when Vi is close to zero. When Vi tends to 0,

G should tend to zero for Vi to be a solution of eq.

(3). For the �bers W1 and M1, fi (i=1,2) in eq. (4)

is always positive and di�erent from zero for any val-

ues of the �bers parameters. For G to be null in this

limit we must always have Vi = 0: In these cases the

fundamental mode has a null cut-o�.

The situation is di�erent for �bers W2 and M2. In

the limit Vi ! 0 (i=3,4), G can be zero using the con-

dition fi = 0 for these �bers. In this case Vi can be

di�erent from zero. This condition allows to determine

the relationship between the parameters of the �ber

starting from where Vi become di�erent from zero.

IV Results

We �rst present the results of an important case cor-

responding to the cut-o� normalized frequency of the

fundamental mode. As is well known in conventional

core-clad �bers, the mode HE11 always has a cut-o�

equal to zero [6]. As it was shown, this fact occurs in

the case of the structures W1 and M1.
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For the structures W2 and M2, fi (i=3,4) may

change its signal depending on the set of values of the

�bers parameters. Then fi = 0 is the limit condition

for G = 0 in eq. (4) with Vi 6= 0 (i=3,4). Therefore,

depending on the values of the dimensional parameters

and of the refractive indexes, the fundamental mode

has Vi = 0 or Vi 6= 0. This behavior is already found

in three layers �bers as reported by Safaai-Jazi [6] and

Mahmaud et al [9].

The limit equations obtained in this work for the

structures W2 and M2 can be checked-up in the case

some limit structures. For example, making a = 0

(A = 0), the coaxial �ber W2 is reduced to the struc-

ture studied by Mahmaud et al [9], as shown in Fig 2.a.

The critical value b/c is obtained in this work making

A = 0 in the equation f3 = 0 for the W2 structure

given in the Table (4):

b

c
=

�
n23 � n

2
4

n23 � n
2
2

�1=2

(5)

This result reproduces that of Ref. [9]. Mahmaud et al

show that for b/c larger than the value supplied by the

eq. (5), the fundamental mode present cut-o� di�erent

from zero.

Figure 2. Limit structures for the �ber W2.

By making b = c (R = 0) in the equation f3 = 0

for the W2 structure, we reproduced the results of the

structure studied by Adams [10], shown in Fig. 2.b.

The critical value a/c obtained is this work is:

a

c
= p2 =

�
n24 � n

2
2

n21 � n
2
2

�1=2

(6)

that is in agreement with Ref. [10]. We will analyze Vi
(i=1,2,3,4) for di�erent modes as function of the other

parameters of the �ber. This analysis will be made

through numerical solution of eq. (3) for the referred

structure. In order to avoid exceeding number of �g-

ures, we have chosen a few convenient modes and Vi is

studied as a function of the parameter R for di�erent

sets of the remaining parameters.

IV.1 W1 structure

Fig. 3(a,b) show V1 as a function of R for di�erent

modes HE11 (n=2,3) and HE21 for the structure W1.

As it is well known, the mode HE21 is the higher order

mode next to HE11 permitted to propagate in standard

�bers [8]. The parameter R in this �gure has values in

the range [0,1-A]. In the extreme values of the R the

W1 structure is reduced to a three region double clad

structure.

The W1 structure always has a vanishing cut-o�

frequency for the fundamental mode according to argu-

ments presented after the deduction of eq. (4). For

other modes, V1 has non-vanishing values which in-

crease for increasing R and order modes, presenting

quasi-oscillatory behavior. These oscillations were also

reported by Boucouvalas et al [11] for a coaxial �ber

with n1 = n3 and n2 = n4. Because the coaxial �ber

has many parameters it is not easy to separate their spe-

ci�c in
uence on the V , behavior shown in Fig. 3(a,b).

In order to explain the oscillations we suggest that this

behavior is caused by the competition between the two

coupled substructures that compose the coaxial �ber.

As discussed in Ref. [11], the coaxial �ber is a struc-

ture formed by two coupled structures, namely rod and

tube. For small R values, the rod characteristic tends

to be dominant due to its stronger con�nement charac-

ter compared to the tube structure. On the other hand,

in the range where the tube characteristic is dominant

(large R values), V , increaser faster. For R between

these extreme values it is not clear who dominates the

competition. In this interval of R, V1 present an inter-

mediary behavior between the two limiting situations.

Fig. 4 shows the behavior of the con�nement factors

(between the energy contained in certain layer of re-

fractive index and the total energy), very close to the

cut-o� conditions for the modes HE12 and HE13. In

these graphs, g1 is the con�nement factor of the core,

g2 is the con�nement factor of the region of the refrac-

tive index n2, g3 is the con�nement factor of the region

of the refractive index n3, F = 1 � (g1 + g2 + g3) and

cut-o� is the normalized cut-o� curve. These graphs

show that, if the cut-o� curve is approximately con-

stant, all fractions of energy contained in each layer

are approximately constant. We point out that the V1,

curves corresponding to modes HE21 and HE12 have a

crossing point, as observed in Fig. 3b. This is also ob-

served in the structure analyzed by Boucouvalas et al

[10] and indicates that for some sets of �ber parameters,

the mode HE2, is no longer the lowest mode subsequent

to the mode HE11, but the mode HE12.
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Fig. 3a shows that small values of p1 take the largest

values of V1 for R > 0:1. It is easy to see that lower val-

ues of p1, with constant q1, correspond to lower values

of n2 resulting in a large step (n1�n2) in the gap region

and as a consequence, weaker con�nement that leads to

higher values of V1: For R < 0:1, the cut-o� frequency

does not change for di�erent values of p1 because prac-

tically does not exist a region in the �ber corresponding

to the refractive index n2. Thus, there is no signi�cant

change on V1 when p1 is modi�ed. The same behavior

occurs in Fig. 4b, but in this case, V1 is smaller in the

whole range of R because the extension of the nucleus

is larger, increasing the con�nement of the modes.

Figure 3. Coaxial �ber cut-o� frequencies for the modes
12, 13 and 21 for di�erent values of q1 and p1 in the W1
structure.

Figure 4. Con�nement factor for the W1 structure next to
the cut-o� with A=0.01. The cut-o� curve is the normalized
cut-o� curve. (a) HE12 mode. (b) HE13 mode.

The analyses carried out to understand the variation
of p1 and q1 can be summarized with the following rule:
the modal con�nement increases in the proximity of the
cut-o� condition (V1 decreases) if the refractive indices
satisfy the following condition n1 �= n2 �= n3. Apply-
ing this rule to analyze the graphs of the structure W1
allows us to understand the tends of the curves.

IV.2. M1 Structure

The M1 structure has a behavior similar to that of
the W1 structure and the same kind of analyses can
be done for this structure. It is a remarkable fact that
the rule valid to describe the behavior of V1 for the Wl
structure is also valid to describe the behavior of V2 for
the M1 structure. A comment is that, for a small rod
dimensio, V2 is basically independent of the parame-
ter q3. This occurs when A is very small and because
n1 < n3. Then, the in
uence of the rod region on the
�ber characteristic is almost known.

IV.3. W2 structure

The cut-o� values of V3 for the structure W2 is pre-
sented in Fig. 5 (a,b). This structure presents very
di�erent behavior in comparison with those of the struc-
tures W1 and M1. The structure is free of oscillations,
presenting a strong dependence on R when this param-
eter approach the limiting values R = 1 � A. This
behavior indicates that a reduced competition between
the two substructures occurs and the tube substructure
is dominant in almost all range of R. Also, no cross-
ing point is observed between the V3 curves of di�erent
modes as is the case of the W1 and M1 �bers. The sharp
dependence of the cut-o� normalized frequency for the
structure W2 on R indicate a weak modal con�nement
that is associated with the high refractive index of the
clad region (n4 > n2). Another great di�erence be-
tween the structure W2 and the others already studied
refers to the behavior of the fundamental mode. For
this mode, a critical value of R exists above which V3 is
di�erent from zero. This critical value depends on the
set of the �ber parameters being found, imposing that
f3 in the Table 4 is null. Then,

=

�
1 +

A2 � p22
q22

�1=2

� A (7)

Figure 5. Coaxial-�ber cut-o� frequencies for the modes 11,
12, 13 and 21 for di�erent values of q2 and p2 in the W2
structure.

Using the equation f3 = 0 for the structure W2, it
is possible to obtain in the plane R � A the locus di-
agram of the regions where the fundamental mode has
V3 = 0 and V3 6= 0 for the structure W2. The results
are shown in Fig. 6. The shaded regions in this �gure
indicate where V3 6= 0:

Fig. 5a shows that increasing values of p2 with con-
stant value of q2, increase the values of V3. By observing
the de�nition of p2 and q2 in Table 3 it can be under-
stood that increasing the value of p2 keeping q2 con-
stant, means higher values of (n4 � n2). This situation
implies a smaller con�nement of modes. On the other
hand, q2 varies and p2 is made constant in Fig. 5b. The
higher the value of q2, the lower the values of V3, an ef-
fect opposite of increasing p2 as shown in Fig. 5a. In
this case, increasing values of q2 with p2 constant means
higher values of n3 and higher modal con�nement what
reduces the cut-o� normalized frequency.
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Table 4 - Functions f1 for each coaxial structure.

Figure 6. Delimitation curves between V3 = 0 and V3 6= 0
(shaded) for the fundamental mode of the W2 structure.

Table 3 - De�nition of p and q for the several

structures.

When the radius of the nucleus increases, the be-
havior of V3 for the modes change substantially, as
shows in Fig. 7. This result was obtained for A=0.20,
n1=1.4658, n2=1.444, n3=1.46 and n4=1.4587. The
modes HE11 and HE12 are very close for certain values

of R with V3 constant when R > 0:5 for the mode HE11.
For the mode HE12, two intervals of constant variable
R exist. This behavior is justi�ed when the study of
the dispersion curves is made [12]. This study allows
to conclude that for certain values of R the results ob-
tained of the W2 limit structure making n1 = n2, dom-
inates the behavior of the whole structure. In this way,
the dispersion curve of the structure W2 always begins
in the same value indicating that the cut-o� condition
doesn't change.

Figure 7. Coaxial-�ber cut-o� frequencies of modes 11 and
12 with A = 0:20 and the refractive index cited in the text
for the W2 structure.

IV.4 M2 structure

The M2 structure presents a behavior similar to

that of W2. The same kind of analysis is applicable to

this structure and also the fundamental mode has non-

vanishing cut-o� normalized frequency above a critical

value of R. The expression for the value of R above

which the cut-o� conditions of the fundamental mode

becomes di�erent from zero can be established impos-

ing the condition f4 = 0 in Table 4. Then,

R = (1 +A2q24 + p24)
1=2 �A (8)
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A fact that deserves to be mentioned here is the in-

dependence of V4 on q4, for small values of A. Changes

in the value of q4 while keeping p4 constant does not

produce any e�ect on the values of V4 because the value

of A is small. Changes in q4 with p4 constant means a

variation of n1 according to the de�nition of these pa-

rameters given in Table 3. Therefore, for very narrow

rod region, the in
uence of the refractive index is almost

non existent. This also happens for the M1 structure.

V Conclusions

This work presents results about the cut-o� behavior

of four coaxial �bers with four concentric layers. In

order to calculate the cut-o� normalized frequency nu-

merically, we obtained a transcendental equation for

the normalized frequency Vi (i=1,2,3,4) for the four

structures. The results show that each pair of struc-

tures W1/M1 and W2/M2 have a di�erent behavior.

For the structures W1 and M1, Vi (i=1,2) shows an

oscillatory characteristic behavior as a function of R

and the fundamental mode always has Vi = 0. In the

case of the structures W2 and M2, Vi (i=3,4) presents

a non-vanishing cut-o� normalized frequency for the

mode HE11, and there is no oscillatory behavior of the

modes. We found expressions for the critical value of R

as function of the parameters of the �ber, starting from

which the fundamental mode presents a cut-o� di�erent

from zero.
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