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In recent published papers it has been shown that the theory about the formation of magnetic walls
in the neighborhoods of the Fr�eedericksz threshold is in profound disagreement with experiments.
This �nding leads to the development of a new theory for the onset of these structures in this
region of magnetic �elds. In this paper we present a review of these developments. The previous
theory describing these unstable structures claims that the mode with the fastest initial growth will
determine the observed properties of these patterns. But, just above the Fr�eedericksz threshold,
there is a region where this leading mode vanishes and, therefore, a homogeneous bending of the
director could be detected. This prediction was not con�rmed by the experiment, and walls with
very well de�ned wavelength were found. To explain these experimental facts it has been shown
that the fastest growing mode can not be de�ned around the Fr�eedericksz threshold and, therefore,
a new way to compute the observed periodicity must be formulated. The observed wall results from
a sum of a continuum and non-sharp distribution of modes in which the null mode is at the center.
This work is written in such a way that the main conceptual developments can be easily generalized
to systems presenting similar behavior.

I Introduction

One of the most outstanding phenomena in out of equi-
librium physics is that, even under transient conditions,
the onset of very regular and symmetric structures in

uid systems is frequently observed [?]. These kind of
phenomena, that have the Rayleigh-Bernard convection
as a corn-stone, abound in many di�erent areas and,
only to quote few examples, they are regularly found in
solid state physics, nonlinear optics, chemistry, and bi-
ology. As a rule, it is the internal motion of the matter
composing these systems that induces the production
of these con�gurations and, of course, to without such
dynamical behavior it would be impossible observe one.
Taking this observation as evident by itself one can ask
for the behavior of these patterns when their internal

uid 
ow becomes smaller and smaller, approaching the
limit in which the 
uid velocity can be neglected. What
will be the behavior of the mechanism that produces
these structures when this limit is considered? Will
continue patterns always appearing or are there critical
points in their arising? The study of a physical sys-
tem where these kind of questions can be formulated,
and answered, is the aim of this work. The emergence
of magnetic walls [2-5] in nematic liquid crystals(NLC)
will be our laboratory for the study of these problems.

Consider, for example, the situation in which a high

magnetic �eld ~H is applied perpendicularly to a ho-
mogeneously pre-oriented NLC. A competition occur
between the action of the magnetic �eld and the elas-
tic resistance of the medium; the magnetic �eld tends
to align the director along its direction and the elastic
interaction, due to the cohesion of the NLC with the
edges of the sample, tends to retain a uniform orienta-
tion of the director. For values of the applied �eld below
a critical value, ~hc, no distortion arises. For those val-
ues of the �eld which are larger than ~hc some textures
appear, indicating that the magnetic coupling between
the director ~n, and the �eld ~H, is bigger than the elas-
tic interaction inside the nematic material. When this
happens we have the well known Fr�eedericksz transition
that, from the static point of view, has some character-
istics of a second order phase transition.

But, the director does not rotate in a homogeneous
way. When observed through crossed polarizers, the
sample exhibits very regular structures; a set of one-
dimensional, periodic and parallel lines extending along
the direction of the external magnetic �eld, the mag-
netic walls of the NLC. A fundamental element to un-
derstand the presence of these lines is the �-symmetry
of the director. In the nematic medium the director
orientation is double valued ( n and -n are equivalent).
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Therefore, above the Fr�eedericksz transition the direc-
tor can bend clockwise or anti-clockwise. This dou-
ble choice is typical of systems exhibiting a symmetry
breaking and, as it is usual in these conditions, two dif-
ferently orientated portions of the sample can be cre-
ated. A wall is the continuous bending of the director
�eld connecting these two di�erent con�gurations: a
kink. A typical periodic structure is exhibited in Fig. 1.
Despite its importance for the explanation of this sym-
metry breaking, the �-symmetry cannot explain the as-
tonishing symmetries observed in this �gure. The walls
extended as right lines along the direction of the exter-
nal magnetic �eld and, furthermore, they are periodi-
cally distributed along the ~ex direction. They appear
in the sample as a one-dimensional and periodic struc-
ture. There is not an a priori reason leading to this
experimental �nding. All that the �-symmetry teach
us is that there may be regions with di�erent bending
of the director, but it can not explain the symmetries
observed in this �gure. Therefore, some basic informa-
tion about the process that build walls are missing.

Figure 1. Lyotropic nematic phase in 0.2 mm thick mi-
croslides between crossed polarizers. Magnetic �eld (2 kG)
along the y-axis at 0o of the light polarizing direction. The
measured length of the periodicity of this wall was � = 700
�m and only become perceptible after 36 hours of constant
exposition to the magnetic �eld.

It was conjectured by Guyon et al. [6] and Lon-
berg et al. [7] that the elastic properties of the nematic
medium are not enough to explain the observed geome-
try walls. The nematic material is an anisotropic liquid
and, at the moment of the walls creation, its internal
rearrangement must be taken in to account. The di-
rector rotation stimulates the motion of the nematic
material and it is this internal motion that gives rise
to the one-dimensional and periodic outstanding char-
acter of the walls. As a consequence of these investi-
gations, it becomes well established that for high mag-
netic �elds the internal motion of the nematic material,
which starts at the moment at which the external mag-
netic �eld is turned on, has a decisive role for their con-
struction, being the responsible for their outstanding

one-dimensional and periodic character. In fact, with
the use of the anisotropic properties of NLC, Guyon et

al. [6] and Lonberg et al. [7] have shown that the con-
struction of the walls is possible because the coherent
motion of the nematic material driving them, has an
e�ective viscosity which is lower than the one result-
ing from the matter movement forming any other kind
of pattern. That is, the observed periodicity results
from a selection mechanism that ampli�es to macro-
scopic scale some well de�ned 
uctuations. If fact, all
modes are ampli�ed. But, the central concept of this
theory aÆrms that the �nal observed pro�le of these
patterns is determined, at the beginning of the process,
by the modes having the fastest initial ampli�cation.
From now on this mechanism will be referred to as the
leading mode principle.

Furthermore, according to the calculations result-
ing from these ideas, when the Fr�eedericksz thresh-
old is approached, from the upper side, the coher-
ent internal motion of the nematic material becomes
smaller and smaller and there is a point ~hw; greater
than the Fr�eedericksz critical point ~hc; below which it
disappears. Between this point and the Fr�eedericksz
threshold the walls would be absent and the direc-
tor would have a homogeneous alignment. The region���~hc��� < H <

���~hw��� is known as the forbidden region. So,

according to the usual interpretation, in the forbidden
region the torque of the external �eld on the nematic
molecules would produce a uniform alignment, and the
periodic walls would not be detected.

Nevertheless, there are some theoretical and experi-
mental evidences indicating that, whenever a good im-
age of the physical process behind the origin of these
structures is provided, this principle can not give a full
explanation to the pattern observed on the magnetic
walls [?, ?]. In some recent works it has been found
that at the neighborhoods of the Fr�eedericksz critical
point the comparison between the predictions of the
leading mode principle and experimental facts are in a
irreconciliable disagreement [?, ?]. In an experimental
investigation, using the twist-bend geometry [?, ?, ?],
we found that, when the Fr�eedericksz threshold is ap-
proached, the emergence of these structures continues
[?] and, no matter how close the Fr�eedericksz criti-
cal point is approached, a homogeneous alignment of
the director has never been found. Moreover, it was
observed that the time spent in the construction of
these periodic walls diverges as the critical point is
approached. Therefore, the predictions of the theory
based on the leading mode principle were not con�rmed
and a forbidden region was not detected by the experi-
ment.

In the sequence, we have proposed a theoretical ex-
planation for this unexpected behavior [?]. A care-
ful analytical study of the non-linearities involved on
the pattern formation at the neighborhoods of the
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Fr�eedericksz threshold has been undertaken. It has
been shown that, at this region, a unique leading mode
can not be clearly de�ned. In fact, there is a set
of neighboring modes, continuously distributed, that
grows practically at the same rate. The result of this
collective growth is not a homogeneous bending of the
director, as predicted by the leading mode principle,
but a set of very well de�ned periodic walls, whose for-
mation tends to spend an in�nite time interval when
the Fr�eedericksz threshold is approached.

The aim of this paper is twofold. We will review
the theory of the formation of the magnetic walls in
the neighborhoods of the Fr�eedericksz transition and,
at the same time, we will examine the question pro-
posed above, by studying an example of patterns' for-
mation in the limiting situation where the 
uid 
ow,
that determine the appearing of these out of equilib-
rium structures, can be made arbitrarily small.

The work is divided in three sections. In the �rst
section, the general theory of the walls formation is pre-
sented. In the next one, the leading mode principle is
discussed and our experimental results, showing that
at the neighborhoods of the Fr�eedericksz threshold this
theory fail, are presented. Finally, at the �nal section
our theory showing how these structures are created at
this region, is presented.

II Fundamentals

In order to study the dynamical process leading to the
appearance of the magnetic walls, a NLC sample inside
a microslide glass with dimensions (a; b; d) that satisfy
the relation a� b� d will be considered. The director
is initially uniformly aligned along the ~ex direction and
an external controlled magnetic �eld ~H is applied along
the ~ey direction. Under these conditions we can sup-
pose that the director components will always remain
in the plane de�ned by the direction of the magnetic
�eld and the initial orientation of the director [?], that
is

nx = cos �(x; y; z); ny = sin �(x; y; z); nz = 0 : (1)

In order to study the NLC dynamics, the so-called
Eriksen-Leslie-Parodi (ELP) approach [14-16] is used.
The time evolution of the director direction and the
motion of the nematic material is given by a set of dif-
ferential equations composed by the anisotropic version
of the Navier-Stokes equation [?], the balance of torques

equation, and the equation of continuity [?, ?]. The full
form and the way by which these equations are handled
in the formulation of this problem can be found else-
where [?, ?, ?]. As our aim is the obtainment of a
non-linear formulation of this problem, some attention
will be given to the approximations done on the equa-
tions of the ELP approach. The usual approximations
make the following assumptions: a) the 
uid velocity
does not has components along the ~ez direction, b) the
viscosity dominates the motion of the nematic material
and the inertial component can be neglected, c) the con-
ditions prevailing at the borders of the sample have not
any decisive in
uence in the shape of these structures,
d) the component of the velocity along the direction of
the magnetic �eld, Vy, is the dominant one and only it
needs to be considered [?], e) save for the edges of the
sample [?] the bending of the director will be constant
along the direction of the external magnetic �eld.

Normally, only the linear parts of the equations re-
sulting of these approximations are analytically studied
(there are numerical studies of these non-linear equa-
tions [?, ?]). Consequently, the walls' amplitude will
grow without limit and this approximation leads to a
description that is valid at the initial moments of the
walls arising. In order to describe the long time behav-
ior of these structures, their saturated pro�le is needed.
So, the choice of the non-linear components that will be
retained in our equations will be guided by the following
criterion: only those that are decisive for a saturated
pro�le of the walls' amplitude will be maintained.

The Navier-Stokes equation is given by

�

�
@V�
@t

+ V�
@V�
@x�

�
=

@

@x�
(�pÆ�� + ���) ; (2)

being � the density of the system, V� the � component
of the velocity, p the pressure and ��� the associated
anisotropic stress tensor, which depends on the velocity
~V of the 
uid, on the bending of the director �, and on
its time variation rate _� [?, ?, ?].

The approximation assumed above allows us to con-
sider the problem as two-dimensional. So, the compo-
nents of the Navier-Stokes describing the motion of the
nematic 
uid along the ~ex and ~ey directions are suÆ-
cient to describe the walls' phenomenology. Hence, the
pressure p can be eliminated from these equations by
subtracting one of the components of these equations
from another [?]. Furthermore, we will consider that
the velocity of the matter in the sample is such that we
can neglect the non-linear term V� @�V�. Thus,

c

�
d

dt
(@xVy � @yVx) = @2x�xy � @2y�yx + @x@y(�yy � �xx) + @z(@x�zy � @y�zx): (3)

To further simplify this equation we must remember that the characteristic time involved in the phenomenon
in study is so long [?] that the viscosity becomes the dominant dynamical parameter of the nematic 
uid 
ow and,
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therefore, any inertial term can be neglected. Furthermore, using the expressions for the stress tensor given, for
example, at the references [?, ?] the above equation becomes

c1(�) @
2
x(@xVy) + c2(�) @xVy + c3(�) @�� + c4(�) @

2
x(@��) = 0 (4)

where

c1(�) = �3 + (�2 � �3) sin
2 � + (�1 � �3 + 2�3 sin

2 �) cos2 �;

c2(�) = �1

2

��
d

�2
(�2 + �3 + (�3 � �2) cos 2�) ;

c3(�) = 
1 @
2
x� sin 2�;

c4(�) = �1

2

1(1 + cos 2�); (5)

and �1; �2 and �3 are the Miesowicz's coeÆcients, 
1 is the viscosity's coeÆcients related to rotation of the director
(it was assumed that 
2 = �
1) and, along the direction ~ez, it was assumed that @2z� = �(�=d)2�:

Moreover, we also consider that the walls' periodicity along the ~ex direction allows us to Fourier decompose
@xVy and �. That is,

@xVy =
X
k

ak cos(kx); � =
X
k

bk cos(kx); @t� =
X
k

_bk cos(kx)

@2x(@xVy) = �
X
k

akk
2 cos(kx); and @2x(@t�) = �

X
k

_bkk
2 cos(kx): (6)

where _bk = @tbk: So, Eq. (??) becomes

X
k

n�
c2(�) � k2c1(�)

�
ak +

�
c3(�) � k2c4(�)

�
_bk

o
cos(kx) = 0:

Consequently,

ak = �c3(�)� k2c4(�)

c2(�)� k2c1(�)
_bk: (7)

From this equation, we see how each Fourier component of @t� induces a shear motion of the nematic material,
inducing a non null value to the Fourier components of @xVy. It is important to observe that, through the functions
c1, c2, c3 and c4, given by Eq. (??), Eq. (??) is strongly dependent on �. At this point the usual approach [?]
restricted the analysis of the walls formation to the � independent term of this equation. This procedure is valid
only when the bending of the director is very small and, consequently, in the �rst moments, when the leading mode
principle is supposed to act. But, when the next order terms are considered, we have

ak = R0(1� �2

'2o
+O(�3)) _bk; (8)

where

R0 =

1 ~k2

�3 + ~k2 �1
and '2o =

�3 + ~k2 �1

(�2 + 2�3) + ~k2(2�1 + �2 + 2�3)
; (9)

and ~k2 = (kd=�)2 is the reduced wave-vector. This equation shows that, for each k, there is an angle, 'o, above which
the Fourier component of the bending of the director, _bk, no more induces a non-null value to the corresponding
Fourier component, ak, of the shearing, @xVy:

Using the same approximations used above, and making the changes

� =
�aH

2
c


1
t; h2 =

H2

H2
F

; ~K =
K33

K22

;�aH
2
F = K22(

�

d
)2+K33(

�

b
)2 'K22(

�

d
)2; (10)

nx = cos(�) ' 1� �2

2
; nxny = cos(�) sin(�) ' �(1� 2

3
�2); (11)

the balance of torques equation,


1@t� = 
1n
2
x(@xVy) +K33

�
@2x� + @2y�

�
+K22@

2
z� + �aH

2nxny; (12)
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becomes

_bk � 
1
�aH2

F

n2x ak +

�
~K ~k2 + 1� h2

�
1� 2

3
�2
��

bk = 0 (13)

Using the result of Eq. (??) we arrive at

_bk =
1

�o

�
1� �2

�2max
+O(�3)

�
bk; (14)

where

�o(~k) =
(1�R0)�

h2 � 1� ~K ~k2
� =

(1� 
1~k
2

�3+ ~k2 �1
)�

h2 � 1� ~K ~k2
� ; (15)

and

�2max(
~k) =

�
h2 � 1� ~K ~k2

�
�
(h2 � 1� ~K ~k2) R0

1�R0
(1 + 1

'2
o

) + 2

3
h2
� : (16)

d

Now, the term �2 of Eq. (??) is written in
terms of its Fourier components, given by Eq. (??),
and the resulting expression integrated in the interval
(0; L);giving

_bk =
1

�o
bk

�
1� b2k

�2max
+ Int(bk1bk2bk2)

�
; (17)

where Int(bk1bk2bk2) represents the terms of order
higher than three on bk. The argument of Int has
been written as bk1bk2bk2 to explicitly indicate that it
is only at this term that the interaction between the
di�erent Fourier components is found. Consequently,
in the dynamical equation giving the time evolution of
bk, Eq. (??), the interaction between di�erent modes
is of fourth order, or higher. So, up to third order the
equation giving the time evolution of bk is given by

_bk =
1

�o
bk

�
1� b2k

�2max

�
: (18)

This equation is integrable, having as solution

bk(�) = ��max(k)
vuut Aoe

2�
�o(k)

�2max(k) +Aoe
2�

�o(k)

; (19)

which gives the time independent evolution of each
mode k. Ao is a constant of integration that may be
�xed at � = 0.

III The leading mode and its

breakdown

In order to understand the leading mode principle, let
us consider the lowest order of Eq. (??), that gives the
time evolution of the Fourier component bk:

_bk =
1

�o
bk (20)

In this approximation, we see that bk would have
an exponential growing, and the rate of this growing
is determined by the value of �o. That is, the fastest
growing rate of bk will happen for the smallest �o. Fur-
thermore, observe that according to Eq. (??), �o is
k dependent. Consequently, each Fourier component
bk will have a di�erent growing rate. The leading mode
principle states that the pattern observed in the sample
correspond to the Fourier mode with the fastest grow-
ing rate; the one with the lowest �o, which is solution
of the equation

@�o
@k

= 0: (21)

This results in a selection mechanism for the param-
eter k2 that, through the minimization of � , is given by
k = 0; or by one of the roots of the equation

K(�1k
2 + �3)

2 � 
1(K�1k
4 + (h2 � 1)�3) = 0 (22)

This selection mechanism has given good results for
the regions far above the Fredericks threshold, but as
can be easily veri�ed [?, ?] this equation predicts the
existence of a region h2c � h2 � h2w; where

h2w = 1 +
K�3

1

; (23)

in which the selected mode would be characterized by
k2 = 0; that is, the fastest mode would be the homo-
geneous bending of the director. Furthermore, it can
also be shown that for this mode the coherent velocity
of the nematic material would be zero.

In order to verify the validity of this approach in
this region we have conducted experiments looking for
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the outputs of the parameters k2 and �o in the neigh-
borhoods of the Fr�eedericksz transition. A nematic ly-
otropic mixture of potassium laurate (KL), potassium
chloride (KCl) and water, in the calamitic nematic
phase, with the respective concentrations in weight per-
centage: 34.5, 3.0, 62.5 was used. Nematic samples
were encapsulated in 
at glass microslide (length a =
20mm, width b = 2:5 mm, and thickness d = 0:2mm)
from Vitrodynamics. Fig. 1 shows a periodic distor-
tion of ~n with walls formed in the direction of ~H in a
polarizing microscope. During the experiment the tem-
perature was controlled at 25� 10C. According to the
theory presented above we would expect, from Eq. (??),
that in the neighborhoods of h2 ' h2w; it is obtained

k2 =

1

2K�1
(h2 � h2w); (24)

where h2w was given in Eq. (??). At the same time, as
k2 ! 0, the time � would converge to the �xed value

�w =

1
K�3

: (25)

Summarizing, the above results lead us to believe
that as k2 ! 0 it would be expected that a graph of k2

vs. h2 would be a straight line converging to the point
h2w. Below this point a homogeneous director bending
would be found. In Fig. 2 the results of our measure-
ments are shown. Surprisingly, the walls always exist
and a region with homogeneous alignment was never
found. In this �gure the dotted line gives a picture of
this supposed result [?].

Furthermore, a graph of � vs. h2 would converge,
as k2 ! 0, to the point �w calculated above, which is
clearly a �nite time interval. But, according to our
experimental results the time spent with the forma-
tion of these structures diverges as the point for which
k2 ! 0 is approached. We have obtained data so close
to this critical point that the corresponding walls only
appeared after two or three days of continuum expo-
sition to the magnetic �eld. Observe that the �rst point
only appears in the curve of k2 vs. h2. At this point
we did not �nd the formation of any kind of structure
in the sample, even after a week of continuous expo-
sure to the magnetic �eld. Consequently, we are not
approaching the point h2 = h2w: Furthermore, no sig-
nal of any kind of homogeneous alignment was found
at this point, or below it.

Figure 2. Measured points of � and (2d=�)2 versus h2. The
squares give the measured points for � that are read in left
side. The triangles give (1=�)2 and are read at the right.
The continuous line accompanying the squares and the tri-
angles is only for eyes guiding. The dotted line gives the
curve along which are supposed be the experimental points
of (2d=�)2 versus h2. This curve would arrive at zero at
h2 � 2:5 and remains zero until the point h2 = 1. No
such behavior was found in the experiment. The measured
points goes directly to the point h2 = 1, and no region with
(1=�)2 = 0 was found. Observe that the �rst point only
appears in the curve of k2 vs. h2: For this point we do not
found the formation of any kind of structure in the sample
even after a week of continuous exposure to the magnetic
�eld. As was demonstrated along our paper when the point
h2w is approached the bending of the director should be-
comes homogeneous - the walls would disappear - and the
time spent with the construction of this homogeneous bend-
ing must be �nite. We never saw a homogeneous bending
of the director and, furthermore, the time lasted for the
walls construction becomes in�nite as the critical point was
approximated.

Therefore, it is experimentally evident that the
Fr�eedericksz threshold must be above this point, and
we are forced to conclude that the two curves are not
approaching the point h2 = h2w; but the Fr�eedericksz
critical point h2 = 1. That is, the formation of walls
in the upper neighborhoods of the Fr�eedericksz tran-
sition has been detected in a region where, according
to the existing theory, these structures would not ex-
ist. We have never seen a homogeneous bending of
the director and, furthermore, the time taken with the
walls' construction became in�nite as the critical point
was approximated. Furthermore, the �nal wave num-
ber presented by the observed patterns is not the one
obtained by the fastest mode of Eq. (??). Indeed, the
fastest mode is not even an approximation of the ob-
served result, simply because it predicts the absence
of patterns. Our measurement of the wavelength and
the time spent with the formation of these objects indi-
cate that these walls are built by the system as soon as
the Fr�eedericksz threshold is exceeded. Moreover, the
Lonberg model cannot explain the long time demanded
by their construction. Indeed, it is impossible to con-
ceive that there is a coherent motion of matter lasting
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three days in a viscous medium where the only exter-
nal force is due to a constant magnetic �eld. In the
neighborhoods of the Fr�eedericksz threshold the time
spent with the constructions of the walls becomes so
large that the viscosity of the system would damp any
coherent motion of matter. For this reason, we assume
that the big random 
uctuations existing in the neigh-
borhoods of the critical point [?] are driving the birth,
and selection, of the observed structures.

IV The collective growth

As the experimental results reported above are in clear
contradiction with the predictions of the leading mode
principle, it becomes necessary to understand the for-
mation of these walls from another point of view. In
order to do it, our �rst attitude will be to consider the
next order approximation of Eq. (??). So, the for-
mation of magnetic walls at the neighborhoods of the
Fr�eedericksz threshold will be examined closely and it
will be shown that in this region the statement that says
that there is a unique isolated mode determining the
physical properties of the observed patterns is rather
ambiguous and can not be considered - even as an ap-

proximation - for the real physical situation. That is, a
large set of states contributes equally to the formation
of the magnetic walls in this region.

In this order, the mode that has the leading mode
principle can be rewritten as

@k

�
_bk

�
= 0; at � = 0; (26)

that becomes Eq. (??) when the third order term is
abandoned.

When this equation is applied to Eq. (??) it leads
to

�@k�o
�o

�
1� �2o

�2max

�
+ 2

�2o
�3max

@k�max = 0; (27)

where �o stands for the initial distribution of the mode
bk that, as usual [?, ?], can be found using the equipar-
tition theorem. The behavior of the solution obtained
with the Eq. (??), when the magnetic �eld approaches
the Fr�eedericksz threshold (h2 ' 1) is now going to
be discussed. An analytical computation shows that
around k2 � 0 the real solutions of Eq. (??) are given
by

c

k2 � 0; or

k2 � �2�3
3�3

�

1(1� h2) + ~K33�3

�
+ �2o
1

�
3�2(h

2 � 1) + �3
�
11h2 � 9

��
P (�1; �2; �3; 
1; h2)

; (28)

where P (�1; �2; �3; 
1; h
2) is an awkward and non null function that has no in
uence on the results presented below.

From this equation it is easy to see that in the whole interval

1 � h2 � h2lm; (29)

where

h2lm = (
Hlm

H2
F

)2 = 1 +
�3

�
3 ~K33�3 + 2�2o
1

�

1 (3�3 � �2o(3�2 + 11�3))

; (30)

the unique real solution of Eq. (??) is given by k2 � 0: So, it seems that also in this order we have the presence of a

forbidden region. Nevertheless, let us consider the second derivative, @2k

�
_bk

�
, at � = 0. For it we have found that

@2k

�
_bk

�
� 2�23

�
3
1(h

2 � 1)(�3 � �2o�2)� 3 ~K33�
2
3 + 
1�3�

2
o(9� 11h2)

�
� 6�43 ~K33

(h2 � h2lm)

(1� h2lm)
: (31)

From this result, it is easy to see that, at the point h = hlm; the second derivative is null and, furthermore, it
changes sign when this point is crossed. Moreover, in the whole interval 1 � h2 � h2lm; the second derivative is small
(it is proportional to �43) and negative. Hence, as the range of the modes contributing to the walls formation is given

by the inverse of @2k

�
_bk

�
, the usual interpretation that follows from Eq. (??), which says that in the forbidden

region the unique mode contributing to the wall's formation is given by ~k2 = 0, can not be true.
Likewise, a straightforward calculation shows that

@3k

�
_bk

�
= 0 at � = 0; for 1 � h2 � h2lm: (32)
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Finally, we also have found that

@4k

�
_bk

�
= �24 ~K�1

�3
+ O(�2o) < 0 at � = 0; for h = hlm; (33)

d

where O(�2o) represents the terms of the order of �2o, or
higher, that are insigni�cant. So, exactly at h = hlm,
only the fourth derivative of the growing speed of the di-
rector with relation to k, is non-null and it is this value
that controls the width of the distribution of modes at
this point.

The results exposed in the Eq. (??) to Eq. (??) are
graphically exhibited in Fig. 3, where a numerical com-
putation, using the known parameters of the MBBA,
for the behavior of _b~k; as a function of ~k; as the point
hlm is approached, is shown. From these �gures, we
clearly see that, around hlm; the concept of an isolated
mode contributing to the observed periodicity of the
walls is meaningless, and a new way to compute the
contribution to the �nal periodicity of the walls must
be found.

In order to propose a new way to calculate the walls'
periodicity, in the forbidden region, we observe that the
periodicity of the walls cannot be understood as a re-
sult of the contribution of a unique and isolated mode.
It must be supposed that the �nal walls' periodicity is
determined by the long time collective growth of the
modes neighboring the mode ~k = 0. In this case, the
natural candidate to �x the participation of each of
these modes in the �nal pro�le is just the maximum
amplitude that each of them can attain. So, it can be
assumed that, around ~k ' 0, the �nal pro�le �(x) =
�(x; t!1) of the walls could be approximated by

�(x) = lim
t!1

X
~k

b~k(t) cos(
~kx)

�
Z L=2

0

�max(~k) cos(~kx) (34)

where �max(~k) is given by Eq. (??). However, with the
form for �max(k) given by Eq. (??), this integration is
probably impossible. As the maximum of �max(k) oc-
curs at k = 0, it can be expanded around this point
and

�max(k) '
p
a� bk2; (35)

is obtained, where

a =
3

2h2
(h2 � 1) and b =

3

2

~K

h2
: (36)

It has been assumed that (h2 � 1)2 is small, so

�(x) =
p
b

Z p a

b

�

p
a

b

r
a

b
� k2 cos(kx)dk =

=
�
p
a

x
J1(

r
a

b
x); (37)

where J1(
p
a=bx) is a �rst kind Bessel function of or-

der 1. As, due to our non-linear approximations, our
results can not be extended to the walls nodes and con-
sequently they are only valid for small x, we can use
the approximation J1(x) ' (x=2) cos(x=2) to obtain

�(x) ' �

2

ap
b
cos

1

2

r
a

b
x

=
�

2

r
3

2 ~Kh2
(h2 � 1) cos

1

2

s
(h2 � 1)

~K
x:(38)

With this equation for the pro�le of the wall along
the ~ex direction we can get its wave vector, that is given
by

~k2 =
1

4 ~K
(h2 � 1): (39)

which is just the experimentally found result; a linear
relationship between h2 and ~k2 [?]. Furthermore, this
expression for ~k2 can be substituted in the Eq. (??)
to obtain the time spent in the walls' formation, in the
forbidden region, as a function of the magnetic �eld h.
The result is given by

�o(h
2) =

4

3 (h2 � 1)

(�
h2 � 1

�
(�1 � 
1) + 4 ~K�3

(h2 � 1) �1 + 4 ~K�3

)
;

(40)
that, as it was experimentally found, diverges when
h2 ! 1.

V Conclusion

In this work we have studied the behavior of an out
of equilibrium dynamical system that presents pattern
formation due to the internal motion of its matter, even
when the velocity of its 
uid 
ow approaches zero. Con-
trarily to the usual theory that assumes the existence
of a leading mode, has been shown that the results of
the leading mode principle, which is the theory that up
to now is used to describe their formation [?, ?], can
not explain its arising in this region. It is known that
in the interval 1 � h2 � h2lm; where h2lm is given in
Eq. (??), the leading mode principle predicts that the
fastest mode would correspond to k = 0. This result
corresponds to a homogeneous bending of the director
and, therefore, to the absence of any texture. As this
result was not observed in the experiment, we have here
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Figure 3. Set of pictures showing the function @��; at � = 0;
when ~k is changed. Each �gure was computed for a di�erent
value of h. These �gures, obtained using the known param-
eters of the MBBA, shown the evolution of the leading mode
as the point hlm, de�ned at Eq. (??), is approached. The

(a) was computed at h = 2hlm, the point ~k for which the
function @�� has the maximum growing is clearly observed,
this is the fastest mode that will determine the �nal peri-
odicity of the wall. The (b) was computed at h = 1:35hlm,
the leading mode exist but is less pronounced. The (c) was
computed at h = 1:1hlm , the leading is not clearly recog-
nizable, but we can see that it exist. The (d) was computed

at h = hlm, the leading mode collapsed to the point ~k = 0.
From these �gures we have a clear evidence that as hlm is
approached the width of the modes around the leading mode
has become so large that an isolated leading mode can not
be recognized.

a strong evidence that, at least around the Fr�eedericksz
threshold, the leading mode principle deserves some re-
formulation. The main result presented by this work
states that, in this region, the mode k = 0 is the cen-
ter of a large distribution of modes where each of them
gives almost the same contribution to the �nal pro�le
of the observed walls. In order to obtain a model for
the magnetic walls formation, we have supposed that,
due to the long time involved in this process, around
the Fr�eedericksz threshold, each mode attains its max-
imum amplitude. These isolated contributions have
been added and the �nal pro�le of the periodic walls has
been obtained. We have also computed the time spent
with the formation of these structures and we have ex-
perimentally found that, as the Fr�eedericksz threshold
is approached, this time approaches the in�nite.
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