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Quark Matter in a QCD Coulomb Gauge Quark Model
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Instituto de F́ısica Téorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, SP, Brazil

and P. K. Panda
Departamento de F́ısica, Universidade Federal de Santa Catarina,

Caixa Postal 476, 88040-900 Florianópolis, SC, Brazil
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In this communication we present results of a study of chiral symmetry in quark matter using an effective
Coulomb gauge QCD Hamiltonian. QCD in Coulomb gauge is convenient for a variational approach based on
a quasiparticle picture for the transverse gluons, in which a confining Coulomb potential arises naturally. We
show that such an effective Hamiltonian predicts chiral restoration at too low quark densities. Possible reasons
for such deficiency are discussed.

I. INTRODUCTION

The study of the temperature and baryon chemical poten-
tial dependence of chiral parameters such as the quark con-
densate and the pion decay constant is of importance for the
understanding of several aspects of the nonperturbative phase
of quantum chromodynamics (QCD), in particular to the phe-
nomenon of chiral restoration. Questions related to the na-
ture of the quark-gluon deconfinement transition and possible
changes of hadron properties at high temperatures and baryon
densities might be connected to chiral restoration. Experi-
ments of high-energy heavy ions collisions are designed to
produce highly excited hadronic matter with the hope that it
will shed light on these questions. Theoretically, these ques-
tions have been discussed since long time in the context of
the Nambu–Jona-Lasinio (NJL) model [1]. The reason for
the great popularity of the NJL model is essentially its mathe-
matical tractability, giving a simple picture for the phenome-
non of dynamical chiral symmetry breaking (DχSB). Howe-
ver, the use of models closer to QCD, which can be derived
by means of some truncation scheme from the fundamental
theory is clearly preferable to purely phenomenological mo-
dels. In the present communication we present the results of
a study of DχSB in quark matter using a model derived di-
rectly from QCD, based on a truncation scheme of QCD in
Coulomb gauge [2, 3]. We investigate DχSB by means of the
self-consistent solution of the Schwinger-Dyson equation for
the quark propagator in the Hartree-Fock approximation.

II. EFFECTIVE HAMILTONIAN DERIVED FROM
COULOMB GAUGE QCD

One of the main motivations for employing the Coulomb
gauge in QCD is that aninstantaneouslong-range confi-
ning potential appears in the lattice Coulomb-gauge Hamil-
tonian [4]. In the continuum, the formulation of QCD in this
gauge has shown to be very convenient for a variational ap-
proach based on a quasiparticle picture for the transverse glu-
ons [2, 3], in which a confining CoulombVcoul potential arises
naturally. In addition, since in the Coulomb gauge Hamilto-

nian all degrees of freedom are physical, it provides immedi-
ate contact with quantum mechanical formulations of quark
models, in which hadron bound states can be constructed as
Fock space states built on the top of a vacuum state.

The variational ansatz for the gluonic vacuum functional
is written in terms of the Fourier transform of the transverse
gluon vector fieldsAa(x), a = 1,2, · · · ,8, which satisfy the
transverse gauge condition,∇ ·Aa(x) = 0, in the form

〈A|ω〉= Φ[A,ω] = exp

[
−1

2

Z
d3k

(2π)3 ω(k)Aa(k) ·Aa(k)

]
,(1)

in which the variational quasi-particle energyω(k) is determi-
ned through the minimization condition

δ
δω
〈Φ|H|Φ〉= 0. (2)

For our purposes here, only the quark sector of the effective
Hamiltonian is relevant. This part is given by

Hq
e f f =

Z
dxΨ†(x)(−iα ·∇+mq β)Ψ(x)

+ g
Z

dxΨ†(x)α ·Aa(x)Ta Ψ(x)

− 1
2

Z
dxdyρa(x)VC(|x−y|)ρa(y), (3)

whereρa(x) are the color densities, given in terms of the quark
field operators (the gluonic part is not written) as

ρa(x) = Ψ†(x)TaΨ(x). (4)

In these,mq is the current quark mass,αa and β are Dirac
matrices,Ta = λa/2 where theλa are the generators of color
SU(3),g is the quark-gluon coupling constant, andVC is the
Coulomb potential.

The numerical solution of Schwinger-Dyson equations in
the mean field approximation of the Coulomb kernel leads
to an expression that can be well fitted by the analytical for-
mula [2]
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k2V(k) =
{

12.25(mg/k)1.93 for k≤mg

8.07 log−0.62(
k2/m2

g +0.82
)

log−0.8(
k2/m2

g +1.41
)

for k≥mg ,
(5)

wheremg is a renormalization scale. The interaction between
the quarks and the transverse gluons although calculable
within the same approach, has not yet been computed. The ef-
fect of this interaction on DχSB is investigated here by means
of a parametrized form, motivated by a lattice QCD calcula-
tion in Coulomb gauge. Its explicit form in Euclidean space
is [4]

VT(k4,k) =
1

k2
4 +k2 +M4/k2

, (6)

with M ≈ 768 MeV. This form in Euclidean space is parti-
cularly suitable for finite-temperature calculations, where the
time component of four vectors are imaginary.

The effective Hamiltonian is very similar to the pheno-
menological model employed previously to study mesons,
baryons and chiral loops [5].

III. DYNAMICAL CHIRAL SYMMETRY BREAKING AT
FINITE BARYON DENSITY

One way to investigate DχSB is by means of the self-
consistent solution of the Schwinger-Dyson equation for the
quark propagator in the Hartree-Fock (HF) approximation.

In the following we present the equations for the general
case of finite temperature and finite baryon chemical poten-
tial [6], although we shall report results for zero temperatu-
res only. Writing the inverse of the quark propagatorS(k) in
momentum space in terms of the quark self-energyΣ(k) as
S−1(k) = γµkµ−Σ(k), one has that in the HF approximation at
finite temperatureT and quark baryon chemical potentialµB,
the self-energyΣ(k) is given by

Σ(k) = mq +
4
3 ∑

n

Z
d3q

(2π)3 Dµν(k−q)γµS(q)γν, (7)

where the time component of the four vectorq is given in
terms of the Matsubara frequenciesωn = (2n+1)πT asq0 =
iωn + µB. The gluon “propagator” is given in terms of the
Coulomb potentialVC(k) and the quark-transverse gluon inte-
ractionVT(k) as

D00(k) = VC(k), Di j (k) = (δi j − k̂i k̂ j)VT(k). (8)

Substituting these into Eq. (7), one obtains that the general
form of the quark self-energyΣ(k) is given asΣ(k) = ak +
bkγ · k + γ0ck, whereak,bk,ck are functions ofk = |k| given
by

ak = mq +
Z

d3q
(2π)3 Fq

aq

ωq

[
VC(k−q)−2VT(k−q)

]
, (9)

bk = −3
8

Z
d3q

(2π)3 Fq
1+bq

ωq

q
k

[
VC(k−q) k̂ · q̂+2VT(k−q)

(k ·q−k2)(k ·q−q2)
kq(k−q)2

]
, (10)

ck = −3
8

Z
d3q

(2π)3

[
VC(k−q)+2VT(k−q)

]
(nq− n̄q), (11)

whereωq = [a2
q +(1+bq)2]1/2, Fq = 1−nq− n̄q, with nq andn̄q being the Fermi-Dirac distributions

nq =
{

exp[β(ωq−νq)]+1
}−1

, n̄q =
{

exp[β(ωq +νq)]+1
}−1

, νq = µB−cq. (12)

IV. NUMERICAL RESULTS AND CONCLUSIONS

In this section we present results forT = 0 only. In this
case,nk = θ(kF −|k|), wherekF is the Fermi momentum, gi-
ven in terms of the baryon densityρB = Nf /π2k3

F , whereNf
is the number of flavors. Sometimes it is more convenient to
solve the equations for the chiral angleφ(k) or the gap func-

tion ψ(k), related to the functionsak, bk andck by

ak

ωk
= sinφ(k) =

2ψ(k)
1+ψ2(k)

,

(1+bk)
k

ωk
= cosφ(k) =

1−ψ2(k)
1+ψ2(k)

. (13)
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Quark condensate vs Fermi momentum

FIG. 1: Left panel: The gap functionψ(k) as a function of momentum for different values of Fermi momenta . Right panel: The ratio of the
in-medium to vacuum quark condensates as a function of the Fermi momentum. All dimensionful quantities are scaled bymg.

In terms of the gap functionψ(k), the quark condensate of a
given flavor f is given by

〈Ψ̄ f Ψ f 〉=−12
Z ∞

kF

d3k
(2π)3

ψ(k)
1+ψ2(k)

. (14)

Initially, in order to see the effects of the Coulomb sector
on DχSB we considerVT = 0. In Fig. 1, on the left panel we
present the the gap functionψ(k) as a function of momentum
for different values of Fermi momenta. ForkF = 0, corres-
ponding to the vacuum, one obtains〈Ψ̄ f Ψ f 〉1/3 =−0.183mg.
Using the valuemg = 600MeV, the value that fits the lattice
heavy quark potential within the model [2], one sees that the
condensate comes out too small.

On the right panel, we present the ratio of the in-medium
to vacuum quark condensates as a function of the Fermi mo-
mentum

Rcond(kF) =
〈Ψ̄ f Ψ f 〉kF

〈Ψ̄ f Ψ f 〉kF=0
. (15)

The chiral restoration is seen at the Figure to occur atkF ≈

0.13mg, precisely the value obtained in Ref. [6]. This num-
ber is clearly unacceptable, since it would indicate chiral res-
toration for densities much below the normal nuclear matter
density, whose Fermi momentum iskF = 1.36 fm−1.

Next, adding the transverse pieceVT as given by Eq. (6)
with mg = M, the condensate increases substantially to

〈Ψ̄ f Ψ f 〉1/3 =−200MeV. We do not show the corresponding
changes onψ(k) - the changes are in the direction of increa-
sing the area under the curves of the left panel of Fig. 1. In the
same way, the transverse potential improves substantially the
value ofkF for the restoration of chiral symmetry, but the new
value is still too low. This might indicate that the mean field
treatment of the quark vacuum is not a good approximation
for this model.

One should also keep in mind that at low densities, quark
matter in the form of a Fermi sea of constituent quarks does
not exist. At such low densities, one should take into account
the fact that quarks appear confined into nucleons and me-
sons [7]. Therefore, the study of chiral symmetry at densities
around normal nuclear matter density should take into account
this fact. Work in this direction is in progress.
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