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Uncovering the Secrets of Unusual Phase Diagrams:
Applications of Two-Dimensional Wang-Landau Sampling
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We use a two-dimensional Wang-Landau sampling algorithm to calculate the density of states for two discrete
spin models and then extract their phase diagrams. The first system is an asymmetric Ising model on a triangular
lattice with two- and three-body interactions in an external field. An accurate density of states allows us to
locate the critical endpoint accurately in a two-dimensional parameter space. We observe a divergence of the
spectator phase boundary and of the temperature derivative of the magnetization coexistence diameter at the
critical endpoint in quantitative agreement with theoretical predictions. The second model is a Q-state Potts
model in an external field H. We map the phase diagram of this model for Q ≥ 8 and observe a first-order phase
transition line that starts at the H = 0 phase transition point and ends at a critical point (Tc,Hc), which must
be located in a two-dimensional parameter space. The critical field Hc(Q) is positive and increases with Q, in
qualitative agreement with previous theoretical predictions.
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I. INTRODUCTION

Conventional Monte Carlo methods[1] generate a canoni-
cal distribution at a fixed temperature T and with other rele-
vant parameters, such as the external field H, fixed as well.
Through histogram reweighting[2] this canonical distribution
can then be extended to a region of T and H near the respective
values used in the initial simulation. For large system sizes,
however, the region in T and H for which the results can be
reweighted is very narrow. Therefore, numerous simulations
have to be carried out for different values of T (and H) in order
to locate phase transitions in an arbitrary case. In contrast, the
Wang-Landau sampling method estimates the density of states
directly and accurately[3–5] and allows determination of most
thermodynamical quantities for all values of T and H with a
single simulation. Wang-Landau sampling has proven very
useful and efficient in many different applications, including
studies of complex systems with rough energy landscapes.

In this paper we show how the Wang-Landau sampling
method can be used to study discrete spin models in two-
dimensional parameter spaces. The first model we consider
is an asymmetric Ising model on a triangular lattice with two-
and three-body interactions in a uniform external field. For
a range of coupling parameters[6] this model has a critical
endpoint (CE), i.e. a point in the phase diagram where a
critical line meets and is truncated by a first-order transition
line. The bulk critical exponents are believed[7] to be un-
changed at the CE, but this has not been checked beyond phe-
nomenological theory and renormalization calculations[8]. In
1990 Fisher and Upton argued that a new universal singu-
larity in the first-order phase transition line should arise at
a CE[7, 9]. This prediction was confirmed by Fisher and
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Barbosa’s phenomenological studies for an exactly solvable
spherical model[9]. Later, Wilding[10] studied critical end-
point behavior in a symmetrical binary fluid mixture using a
large scale Monte Carlo simulation with multicanonical[11]
and histogram reweighting[2] methods. Wilding predicted
and observed a singularity in the derivative of the diameter
of the liquid-gas coexistence curve at the CE. He also pro-
vided the first numerical evidence of the divergence in the
curvature of the spectator phase boundary[10], in accordance
with previous theoretical prediction[7, 9]; however, a quanti-
tative analysis of singularities at the CE was not carried out
because much larger system sizes would have been required.
Our current work provides a quantitative test of the theoretical
predictions[7, 9, 10] for these two divergences at the CE in an
asymmetric model.

The second model that we study with the Wang-Landau
sampling method is a Q-state Potts model in the presence of
an external field H. An accurate estimate of the density of
states allows us to map out the phase diagram in the (T,H)
plane and test the theoretical prediction by Goldschmidt[12]
that this model exhibits a first-order phase transition line start-
ing at the H = 0 phase transition point and ending at a critical
point (Tc,Hc) with Hc(Q) > 0. The value of Hc(Q) is pre-
dicted to increase with Q.

This paper is organized as follows: Sec.II describes the
Wang-Landau sampling method, Sec.III defines the asymmet-
ric Ising model and presents its results, and Sec.IV is dedi-
cated to the Potts model in an external field. Some concluding
remarks are given in Sec.V.

II. WANG-LANDAU SAMPLING

The Hamiltonian of the two models studied in this paper
has the form

H = ±JE −HM, (1)
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where E is an interaction energy term and M is the magne-
tization of the system. The density of states g(E,M) is the
number of spin configurations with energy E and magnetiza-
tion M. To overcome the barriers in both E and M spaces, we
have to perform a two-dimensional (2D) random walk as in
the spin glass problem [4].

We provide a succinct description of the sampling method
here, and more details can be found elsewhere[3–5]. At the
start of the simulation, the density of states is unknown, so
we simply set g(E,M) = 1 for all possible (E,M). Then we
begin a random walk in (E,M) space by choosing a site ran-
domly and flipping its spin with a probability proportional to
1/g(E,M). If we denote A′(E ′,M′) and A′′(E ′′,M′′) as the
points before and after a spin is flipped, respectively, the tran-
sition probability from A′ to A′′ is:

p(A′ → A′′) = min
[

g(E ′,M′)
g(E ′′,M′′)

,1
]
. (2)

If the point A′′(E ′′,M′′) is accepted we modify the exist-
ing density of states by a modification factor f > 1, that
is, g(E ′′,M′′) → g(E ′′,M′′) ∗ f , and we update the his-
togram h of visited states, that is h(E ′′,M′′) → h(E ′′,M′′) +
1. If A′′(E ′′,M′′) is not accepted, we update g(E ′,M′) →
g(E ′,M′)∗ f and h(E ′,M′) → h(E ′,M′)+1.

We continue performing the random walk until the his-
togram h(E,M) is “flat” in (E,M) space. The modification
factor f introduces a systematic error whose magnitude for
ln[g(E,M)] is proportional to ln( f ). To reduce this source of
error, we systematically reduce the modification factor using
a function like fi+1 = fi

1/n (n > 1) where i here denotes the
level of iteration in the algorithm (in each iteration a separate
2D random walk is performed in (E,M) space). To be ex-
plicit, when iteration i generates a “flat” histogram, we reset
the histogram to zero, and begin the next iteration with a new
factor fi+1 and the last g(E,M) as the starting value. We end
the simulation when the modification factor is smaller than a
predefined value (such as ln ffinal = 10−8 used in Sec.III and
10−6 used in Sec.IV). To speed up the convergence of the
density of states to the true value, the initial modification fac-
tor was as large as f = f0 = e � 2.71828..., and n = 4 in our
simulations.

We should point out that it is impossible to obtain a per-
fectly flat histogram. In this work the histogram is considered
“flat” when the number of entries larger than or equal to 2000
remains unchanged for L2 ×106 spin flip trials. For small lat-
tices (up to L = 24) our tests showed that the results so ob-
tained agree well with those found when using a more strin-
gent flatness criterion, namely the histogram is considered
“flat” when h(E,M) for all possible (E,M) is not less than
80% of the average histogram 〈h(E,M)〉. For large lattices we
may need to divide the two-dimensional parameter space into
regions and perform separate random walks[3, 4, 13], because
with our current computational resources it is very difficult to
obtain a flat histogram for a single random walk over the en-
tire (E,M) parameter space. However, problems arise from
different choices of the parameter space decomposition, as we
will discuss in Sec.IV.

With an accurate estimate of the density of states g(E,M),
we can calculate thermodynamic quantities at any temperature
T , and external magnetic field H for the system with Hamil-
tonian given in Eq.(1).

A mathematical proof of the convergence of the Wang-
Landau method was given by Zhou and Bhatt [14] and ap-
plications of this method already include simulations of flu-
ids [15] (continuum systems), protein folding [16], polymer
films [17], polymer collapse [18–20], binary Lennard-Jones
glass [21], liquid crystals [22], random spin systems [23, 24],
atomic clusters [25], optimization problems [26], combina-
torial number theory [27], Blume-Capel model [28], and 3D
Potts model [29, 30]. This method has been improved by
using N-fold way [31] and multibondic sampling [32, 33],
and it also has been generalized to perform quantum Monte
Carlo simulations [34, 35] and sampling along the reaction
coordinates for a molecular system [36]. By suitable adapta-
tion of the problem, multidimensional numerical integration
has also been successfully treated using Wang-landau sam-
pling [37]. A rigorous derivation for off-lattice implementa-
tion of this algorithm was given in Ref. 38. Further general-
izations and studies of this sampling technique have also been
carried out [13, 39–44].

III. ASYMMETRIC ISING MODEL

The model considered here is described by the Hamiltonian

H = −J ∑
〈i j〉

SiS j − J3 ∑
〈i jk〉

SiS jSk −H ∑
i

Si (3)

where Si = ±1 is an Ising spin on site i of a triangular lattice
with linear size L, 〈i j〉 denotes nearest-neighbor spin-pairs,
and 〈i jk〉 represents the three spins on the elementary trian-
gles. The parameters J and J3 are two- and three-body nearest-
neighbor spin couplings, respectively, and H is an external
field. Previous Monte Carlo simulations by Chin and Lan-
dau [6] showed that this model exhibits critical endpoints for
a range of values of J and J3. In particular, for J = 1 and J3 = 2
(parameters used here) there is a CE that is well-separated
from a critical point at the end of the first-order phase tran-
sition line.

We use Wang-Landau sampling[3–5] described in Sec.II
with E = ∑〈i j〉 SiS j + 2∑〈i jk〉 SiS jSk and M = ∑i Si to deter-
mine the density of states g(E,M), and from it we obtain
thermodynamical quantities such as the magnetization, spe-
cific heat, susceptibility, order parameter[45, 46], etc. Mul-
tiple, independent random walks were performed to look for
unexpected behavior resulting from different random number
streams as well as to allow the determination of error bars.

Figure 1 shows the phase diagram in the (T,H) plane ex-
trapolated to L = ∞ using finite size scaling relations. For
finite lattices, the phase boundaries were determined by the
locations of the maximum of the susceptibility [46]. There
are three distinct phases with different values of magnetiza-
tion at T = 0: phase A(+ + +) with M(0,H) = 1 (all spins are
up), phase B(- - -) with M(0,H) = −1 (all spins are down)
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FIG. 1: (left) Phase diagram in the (T,H) plane extrapolated to
L = ∞. For finite L, the phase boundaries were determined by the
locations of the maximum of the susceptibility. The solid line is a
critical line and the dashed line is a first-order phase transition line.
The figure on the right shows the region near the critical endpoint and
includes data for L = 30 (circles) and L = 42 (triangles) to illustrate
the finite-size effects.

and a ferrimagnetic phase C(- - +) with M(0,H) = −1/3 (the
spins on two sublattices are down and on the other are up).

The critical endpoint for L = ∞ is estimated as
(T,H)CE = (2.443(10),−2.934(10)) and the Ising-like crit-
ical point at the end of the first-order line is at (T,H)c =
(6.125(3),−1.879(2)). Our tests[45, 46] showed that the
critical line Tc(H) for this asymmetric Ising model is in the
same universality class as the two-dimensional Q = 3 Potts
model[47], as expected due to symmetry considerations. We
recall that the conjectured values[47] for the critical exponents
of the 2D Q = 3 Potts model are α = 1/3, β = 1/9, γ = 13/9,
and ν = 5/6.

In Fig.2(left), the curvatures d2Hσ(T )/dT 2 of the specta-
tor phase boundary show a very clear singularity at the CE.
According to a general finite-size scaling argument [7, 10],
this curvature should diverge at the CE with a specific heat-
like form

d2Hσ(T,L)
dT 2

∣∣∣∣
CE

= a0 +a1Lα/ν, (4)

where α and ν are critical exponents defined on the critical
line Tc(H) and a0 is a background. Using the conjectured
exponents for the 2D Q = 3 Potts model[47], the predicted
scaling exponent (see Eq. (4)) is α/ν = 2/5.

Figure 2(right) shows a plot of the maximum of d2Hσ/dT 2,
denoted as f (L), as a function of Lα/ν = L0.4. The scaling re-
lation is obtained by a linear fit to the data for L = 18 to 42 to
Eq. (4), with a0 and a1 as fitting parameters and with the ex-
ponent fixed at α/ν = 2/5 = 0.4. Because we obtained quite a
good fit to the scaling function f (L) = a0 + a1L0.4 [solid line
in Fig. 2(right)] we can conclude that our data are in good
agreement with the predicted scaling exponent (see Eq. (4)),
but the background term is not negligible. Our data also in-
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FIG. 2: (left) Singularity of the curvature d2Hσ/dT 2 of the spectator
phase boundary Hσ and (right) the finite-size scaling of the maximum
of this curvature, which we denote f (L), versus Lα/ν = L0.4. For
clarity, in (left) we only show a few of the larger error bars for L = 42.
(Other error bars are smaller, particularly away from the peaks.) The
solid line in (right) is a linear fitting of the data.
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dicate that there are small correction terms to the finite-size
scaling; however, the resolution of our data and the lattice
sizes used here are not adequate to estimate these correction
terms.

The magnetization coexistence diameter Md is defined as
the average magnetization along the first-order transition line
Hσ(T ). Using generalized scaling arguments, Wilding [10]
predicted that the coexistence diameter derivative diverges as

dMd(T,H)
dT

∣∣∣∣
CE

= c0 + c1Lα/ν + c2L(1−β)/ν (5)

where α, β, and ν are critical exponents defined on the critical
line Tc(H). We observe a clear divergence of the derivative
of the magnetization coexistence diameter (see Fig. 3(left))
near the critical endpoint. Figure 3(right) shows the scaling
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FIG. 4: Phase diagram in the (T,H) plane for the Q = 10 ferromag-
netic Potts model. For finite L the phase transition lines are deter-
mined from equal height peaks in the magnetization probability dis-
tribution P(M,T,H). The solid circle shows the L = ∞ critical point,
denoted (Tc,Hc). The long-dashed line shows the extrapolation of
the phase transition lines to L = ∞, and the line segment for H > 0
starts at H = 0 and ends at (Tc,Hc).

of the maximum of −dMd/dT with lattice size L. The solid
line in Fig. 3(right) is a least squares fitting of the maximum
of −dMd/dT using Eq. (5) with L = 15 to 42 data. For the
symmetric binary fluid studied by Wilding [10], the coeffi-
cient c2 in Eq. (5) is predicted to vanish; therefore dMd/dT
should diverge with Lα/ν at the CE. However, for the asym-
metric model studied here, we obtained a better fit when all
terms in the right-hand side of Eq. (5) were included.

IV. Q-STATE POTTS MODEL IN AN EXTERNAL FIELD

The second model considered here is described by the
Hamiltonian

H = −J ∑
〈i j〉

δσi,σ j −H ∑
i

δσi,1 (6)

where σi = 1,2, · · ·Q on site i of a two-dimensional L × L
square lattice, 〈i j〉 denotes pairs of nearest-neighbor spins,
J > 0 is a ferromagnetic coupling, and H is an external field.
We use the Wang-Landau sampling[3–5] described in Sec.II
with E = −∑〈i j〉 δσi,σ j and M = ∑i δσi,1 to determine the den-
sity of states g(E,M) and from it we obtain the energy and
magnetization probability distributions at different values of
T and H.

Figure 4 shows the phase diagram for the Q = 10 Potts
model, for lattices with L = 24,32,48 and the extrapolation to
L = ∞ using finite size scaling. For finite lattices, three “1st-
order” phase boundaries meet at a triple point which occurs
for non-zero field; however, this point extrapolates to H = 0
in the thermodynamical limit. This means that the “ordinary”,
1st order Potts model transition is actually a triple point. The
phase transition lines are determined from equal height peaks
in the magnetization probability distribution P(M,T,H). Near
the triple point, P(M,T,H) has three peaks, corresponding to
(i) a phase rich in state 1, (ii) a phase poor in state 1, and
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FIG. 5: Magnetization probability distribution P(M,T,H) for Q =
10, L = 48, obtained from the density of states g(E,M).
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FIG. 6: Critical field Hc as a function of Q. The solid line is a guide
to the eye and the point at Q = 4 is the exact value.

(iii) a disordered state, as illustrated in Fig.5. For each set of
parameters (T,H) the right-most peak in Fig.5 corresponds
to phase (i), the left-most peak to phase (ii), and the mid-
dle peak to (iii). For L = ∞ we observe a first-order phase
transition line starting at the H = 0 phase transition point and
ending at a critical point (Tc,Hc), shown as a solid circle in
Fig.4. Note that for finite lattices P(M,T,H) continues to have
two equal height peaks for H > Hc; however, the logarithm
of the value of the peak height over the value of the mini-
mum of the distribution between the two peaks decreases[48]
with L for H above Hc. For each L the phase transition line
separating phases (i) and (ii) goes to (T,H) = (0,0). The
H = 0 phase transition temperature obtained in our simula-
tion is Tpt = 0.701228(10), in good agreement with the exact
result T exact

pt = 0.701231... .
For Q = 8,9 we have also located a first-order phase tran-

sition line starting at the respective H = 0 phase transition
points and ending at a critical point. The critical field Hc(Q)
increases with Q, as shown in Fig.6, in qualitative agreement
with previous theoretical predictions[12]. For smaller Q the
critical field becomes tiny, and determining its location as Q
approaches 4 will be challenging.

The phase diagrams for Q = 8,9,10 were obtained using
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L ≤ 48, and a single random walk in the entire (E,M) space.
For smaller Q values (Q = 5,6,7), the finite size effects are
stronger and larger lattices are needed in order to locate the
critical point accurately. However, with our current computa-
tional resources it is very difficult to carry out a single 2D
random walk over the entire (E,M) parameter space for L
much larger than 48. Parallel, one-dimensional Wang-Landau
sampling, in which independent random walks are carried out
in restricted phase space regions, has been implemented with
success in previous work[3, 4, 13]. Therefore, we have also
tried to parallelize the 2D algorithm by performing indepen-
dent random walks on overlapping (E,M) regions. We di-
vided the parameter space into strips with: (i) restricted val-
ues of E and unrestricted M, (ii) restricted M and unrestricted
E, and (iii) both E and M restricted. The independent random
walks were carried out in parallel, and each generated a den-
sity of states for the respective random walk regions. The den-
sities of states from two adjacent random walk regions were
then normalized with one overlapping (E,M) point. However,
we found that the resulting density of states over the entire
(E,M) range had some small discontinuities, which carried
over to the probability distributions of energy and magnetiza-
tion, as illustrated in Fig.7. For the division in case (i), the

-800 -600 -400 -200
E

0

1

2

3

4

5

P(
E

,T
,H

) 
x 

10
3

Single random walk

Random walks in

-640 -620 -600 -580
E

4.3

4.4

4.5

4.6

P(
E

,T
,H

) 
x 

10
3

regions with restricted
E and unrestricted M 

FIG. 7: Energy probability distribution for Q = 5, L = 20, T =
0.85977 and H = 0 computed from a g(E,M) obtained with a par-
allel two-dimensional random walk, where the independent random-
walk regions have restricted values of E and unrestricted M, as in
case (i) in the text. The inset shows an enlarged view of the jump
in P(E,T,H), in the region marked by the square box in the main
figure.

distribution P(M,T,H) agreed well with the result from a sin-
gle random walk over the entire (E,M) space; however, the
energy distribution P(E,T,H) had a number of discontinu-

ities. For case (ii), P(E,T,H) was correct, but P(M,T,H) had
a number of small jumps. The parallelization in (iii) also gen-
erated jumps in P(M,T,H). The general source of these diffi-
culties seems to be due to the difficulty in matching surfaces at
the boundaries rather than curves as in one-dimensional ran-
dom walks. Thus, the simple parallelization described above
cannot be used to obtain accurate phase diagrams. In the par-
allel Wang-Landau sampling of g(E) performed in Ref.4 the
random walk within each energy region was restarted period-
ically from independent spin configurations, to ensure that all
spin configurations with energies in the restricted range can be
equally accessed. This approach might be helpful too for the
parallel Wang-Landau sampling of g(E,M). Another viable
simulational approach to study the Q = 5,6,7 models is to
perform 2D Wang-Landau sampling on systems with L ≤ 48
and use these results to guide more standard hybrid Monte
Carlo algorithms for larger lattices at a few values of (T,H).

V. CONCLUSION

We used Wang-Landau sampling with a two-dimensional
random walk to determine the density of states g(E,M) for an
asymmetric Ising model with two- and three-body interactions
on a triangular lattice, in the presence of an external field. An
accurate g(E,M) allowed us to map out the phase diagram
accurately and to observe a clear divergence of the spectator
phase boundary and of the magnetization coexistence diame-
ter derivative at the critical endpoint. The exponents for both
divergences agree well with the predicted values[7, 10].

We also applied the 2D Wang-Landau sampling method to
obtain g(E,M) for the Q-state ferromagnetic Potts model in
the presence of an external field. We mapped out the phase
diagram for Q = 8,9,10 and observed a first-order phase tran-
sition line starting at the H = 0 phase transition temperature
and ending at a critical point (Tc,Hc) with Hc > 0. The critical
field increases with Q, in qualitative agreement with previous
large-Q series expansion results[12]. Our attempts to paral-
lelize the algorithm demonstrated that further development is
needed to avoid subtle errors that arise from the process.
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