Crosscutting | nterfacesfor
Aspect-Oriented Modding’

Christina Chavez!, Alessandro Garcia?, Uira Kulesza®, Claudio Sant’ Anna® and Carlos Lucena®

1 Depto de Ciéncia da Computagdo, UFBA
Av. Adhemar de Barros, s/n
Salvador —Brasil
flach@dcc.ufba.br

2 Computing Department, Lancaster University
South Drive, InfoLab 21, LA1 4WA, Lancaster — UK
garciaa@comp.lancs.ac.uk

3Depto de Ciéncia da Computacdo, PUC-Rio
R. Marqués de S&o Vicente, 225
Rio de Janeiro — Brasil
{uira,claudios,lucena} @inf.puc-rio.br

Abstract

Aspect-oriented software development promotes
improved separation of concerns by introducing a new
modular unit, called aspect, for the modularization of
crosscutting concerns. As a new kind of modular unit,
aspects should have explicit interfaces that describe the
way they interact with the rest of the system and how they
affect other modules. This interaction can be
homogeneous or heterogeneous. In this paper, we present
crosscutting interfaces as a conceptual tool for dealing
with the complexity of heterogeneous aspectsat the design
level. Crosscutting interfaces have been incorporated by
the aSdeML modeling language in order to enhance
aspect description at the design level. Moreover, we
present a modeling notation for the description of
architecture-level aspects that also supports the explicit
representation of crosscutting interfaces. Finally, we
present two large-scale case studies we have performed
using this modeling language that support our arguments
in favor of crosscutting interfaces.

Keywords: Aspect-oriented modeling, crosscutting
interfaces, heterogeneous aspects, software design,
software architecture, separation of concerns.

1. INTRODUCTION

Thereisanincreasing level of complexity of software
systems and the kinds of concerns they address, imposing
new challenges to the mainstream software engineering
paradigms. The object-oriented paradigm is not sufficient
to modularize some common concerns found in most
complex systems. They have been called crosscutting
concerns because they naturally cut across the boundaries
of other concerns [29, 40]. Aspect-Oriented Software
Development (AOSD) [1, 15] isan emerging approach with
the goal of improving the separation of crosscutting
concerns throughout the software development lifecycle.
AOSD considers acknowledged contributionsto separation
of concerns and modularity provided by previous
technologies (mainly the object-oriented paradigm, but not
constrained to it), while introducing a new modular unit,
called aspect, for the modularization of crosscutting
concerns. The expected benefits of AOSD are improved
comprehensibility, ease of evolution and increased potential
for reusein the development of complex software systems.

* extended version of the paper Taming Heterogeneous Aspects
with Crosscutting Interfaces, Best Paper of the XIX Brazilian
Symposium on Software Engineering, Uberlandia, 2005.

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

However, an aspect itself may be the locus of
further complexity. Aspects can be homogeneous, for
example, by providing alogging behavior that affects
all proceduresin acertain interface; but they may also
be heterogeneous, for example, by implementing the
two sides of the subject-observer protocol that affects
two different classes [4, 11, 14]. As a new kind of
modular unit, aspects should have explicit interfaces
[32]. The aspect interface should describe the way an
aspect interacts with the rest of the system and how it
affects other modules. Moreover, since aspects may
possibly affect several classes heterogeneously, the
aspect interface could be decomposed into two or more
partial interfaces that aggregate the different ways an
aspect affects the rest of the system. Explicit aspect
interfaces should ensure proper modularity and
promote predictability of composition, enhancing
comprehension and reuse [4, 28, 33]. Finally, the notion
of aspect interfaces should be supported from early
stages of design, not only at the implementation stage.

Despite of the importance of the subject, very
little work has addressed issues related to the
definition of aspect interfaces. Kiczales and Mezini
[28] have discussed the impact of aspect-oriented
programming on modular reasoning. However, they
were concerned with the influence of aspects on the
specification of classical interfaces of components
(classes) rather than the definition of aspect
interfaces. Mezini and Ostermann [33] have explored
thisissue, but only in the context of a specific aspect-
oriented programming language. Moreover, they do
not elicit the main principles underlying the definition
of aspect interfaces. Similar limitations are found in
the definition of a behavioral interface specification
language for AspectJ, called Pipa [43]. In addition,
existing aspect-oriented modeling languages|[9, 10, 39,
41] lack explicit support for aspect interfaces. In this
context, there is an urgent need for understanding the
common properties of aspectual interfaces at a higher
level of abstraction and supporting them through
modeling notations.

This paper introduces the notion of crosscutting
interfaces as a conceptual tool for dealing with the
complexity of heterogeneous aspects at the design
level. A crosscutting interface is a set of structural or
behavioral enhancements specified inside the aspect
to affect homogeneously one or more modules at some
specified join points [5]. In addition, we have
incorporated crosscutting interfaces in a modeling
language in order to enhance aspect description at
the design level [4]. Our modeling notation also allows
the description of architecture-level aspects that

similarly include the explicit representation of
crosscutting interfaces. As a consequence, our
approach provides, from an early stage of design, a
systematic foundation for minimizing the complexity
caused by the handling of heterogeneous aspects.
Finally, we have also performed some case studies to
support our arguments in favor of crosscutting
interfaces using our modeling language.

The remainder of this paper is organized as
follows. Section 2 presents some background and
motivates the need for supporting crosscutting
interfaces at different development stages. Section 3
presents the definition and properties associated with
crosscutting interfaces. Section 4 introduces our
notation for specifying aspects and crosscutting
interfaces at the architectural and detailed design
stages. Section 5 presents our evaluation of both the
concept of crosscutting interfaces and our modeling
notations in terms of usability and usefulness.

Section 6 presents some additional discussion.
Section 7 summarizes our contributionsin the light of
related work. Section 8 presents concluding remarks.

2. AOSD: Basic CoNCEPTS AND M ODELING

NOTATIONS
This section revisits the basic concepts associated
with modularity and AOSD, and motivates the need for
adequate support for clear aspect interfaces at the design
level.

2.1. Basic ConcEPTS

Separation of concerns is a well-established
principle in software engineering that addresses the
limitations of human cognition for dealing with
software complexity. A concern is some part of the
problem that we want to treat as a single conceptual
unit [13]. Modularity is also a fundamental principle
for managing software complexity [32, 34]. Complex
software systems should be decomposed into a set of
highly cohesive modules, each implementing well-
defined interfaces and dealing with a single concern.
Aninterface is awell-defined prescription of how the
module, which realizesit, interacts with the rest of the
system [32, 33]. The basic modules used in object-
oriented software development (OOSD) are classes and
objects.

However, the modules and the composition
mechanisms provided by OOSD may not be sufficient
for separating some concerns found in most complex
systems. These concerns have been called

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

crosscutting concerns since they naturally cut across
the modularity of other concerns. Aspect-oriented
software development (AOSD) [1, 15] has been
proposed as a technique for improving the separation
of crosscutting concerns. AOSD addresses the
modularization of these concerns by providing a new
abstraction, called aspect, which makes it possible to
separate and compose them to produce the overall
system. Thus, an aspect-oriented (AQO) system is
composed of two kinds of modules: classes and
aspects. The predominant definition for aspectsis the
one that comes from the AspectJ programming
language [2] - aspects are implementation-level
modules that specify and localize: (i) refinements and
redefinitions of behaviors at well-established points
localized in the other system’s modules, (ii) additions
of members (state elements and behaviors) to other
system’s modules, and (iii) modifications of type
relationships with existing modules. In AspectJs
terminology, (i) isimplemented by means of pointcuts
and advice, and (ii) and (iii) are implemented by means
of inter-type declarations [2].

2.2. AsPeECT-ORIENTED M ODELING AND A MOTIVATING
ExampLE

Following the above implementation-level
definition, aspects must also be supported at
preliminary development phases, such as the
architectural definition stage and the detailed design
stage. Indeed, both homogeneous and heterogeneous
aspects may show up early in software devel opment,
and aspect-oriented modeling is essential to support
their specification. Aspect-Oriented Modeling (AOM)
[41] isacritical part of AOSD that focuses on notation
and techniques for specifying, visualizing and
communicating aspect-oriented solutions along the
path from requirementsto implementation with Aspect-
Oriented Programming (AOP). Different views of an
aspect are useful for different tasks. In order to model
asystem and communicate its properties, a high-level
view issuitable.

This subsection motivates the need for clear
aspect interfaces at the design level by means of a
simplewell-known example: the design of the Observer
pattern [17] using the AODM approach [39]. The
design is abstracted from the pattern implementation
in AspectJ [25]. Conceptually, the Observer design
pattern emphasizes the use of two key participants:
Observer and Subject. The Subject participant knows
its observers and realizes an interface for attaching,
detaching and notifying Observer objects. The
Observer participant defines an updating interface for

45

objectsthat should be notified of changesin a subject.
The design-level specification of the Observer aspect
should clearly define these two participants as two
modulesthat interact with each other viawell-defined
interfaces. The Observer aspect is aclassical example
of heterogeneous aspect.

Aspect-Oriented Design Model (AODM) [39] is
an UML extension that enhances the existing UML
specification with aspect-oriented concepts that mimic the
crosscutting characteristics of the AspectJ language. The
AODM defines: (1) aspecia stereotypefor standard UML
classes (<<aspect>>) to capture the semantics of aspects,
(2) a new stereotype for standard UML operations
(<<pointcut>>) to capture the semantics of AspectJs
pointcuts, (3) a new stereotype for standard UML
operations (named <<advice>>) that capture the semantic
of AspectJ's advice, and (4) a new stereotype for UML
collaboration templates (<<introduction>>) to describe
inter-type declarations. Figure 1illustrates how an aspect-
oriented implementation for the Observer design pattern
[25] is modeled using the AODM. In the example, the
Observer design pattern is used to make a color label
(playing the Observer role) change its color whenever a
button (playing the Subject role) is clicked. One abstract
aspect (SubjectObserverProtocol) implements the
Observer pattern and a concrete aspect
(SubjectObserverProtocolImpl) implements a particular
instance of this pattern for the Button and ColorL abel
classes.

The AODM provides a visual notation for
AspectJ's programs, where boxes that represent aspects
are polluted with very detailed, implementation-specific
information that is only useful for Aspect. Note that,
although the collaboration templates stereotyped with
<<introduction>> provide some meansto modul arize inter-
type declarations in a per-participant basis, the
specification of join points (pointcuts) and advice are not
properly modularized. Therefore, it lacks adequate support
for dealing with heterogeneous aspects.

In the AODM approach, all pointcuts and advice
are top-level elements and should be described in the
aspect’s Operations compartment. As a consequence, the
notation does not provide means to express that both the
pointcut stateChanges and the advice advice id01 are
related to the Subject participant. Moreover, the aspect’s
local operations are supposed to be mixed with pointcuts
and advice. This design reflects the poor separation of
concerns inside AspectJ's aspects [4, 33] and leads to a
poor separation of concerns inside AODM design-level
aspects as well.

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

*3ASPECT
SubjectObserverProtocol

[instantiation = perdVM}
ibase = undefined}
{prvieged = falsa}

Addrioutes
Cperatiors.
apoinicuts:
pointcut stateChanges| Subject s}

aadvicex advice_all

after(Subject s) |base = stateChangesis)}

bconiains eav nglnstuctonsy 1

,——}*I"argetType {base = Subject} §
¢ watrodustions” 37T
‘.. Subject -

hconiainsVy eav nginstuctonsy |}
.-—-1TargeiType {oase = Shserver} i

-~ D e e o

4 wntroducticnn D

K Observer pe

X IASPECix
SubjectObserverProtocolimpl
Adricutes
Cperallors
agoinicuts

pointcut stateChanges{Subject s}
[base = targetis| &% call(vo d Button click:)]}

pCONIAINSW eay nginstruct onsy 1

weermiEaeilye, | e s it
P atroducticnn \

\ Button K

pconiainsW eav nginstructonsx 1
_.---{TargetType {base = ColcrLabel} !

¥
/7 wntroductionn Ch T T TTTTT

_ ColorLabel ./

~

GCrosscuUls

F_'_"_’E'Es_"_”f"_;-;,

©CrOS5CUL >_ Abroules

ainterfaces
Subject
L Atsioules
| Operations
void addObzerveriChserver cbs)
void removeCbserveriChserver oba)
Vector getObservers{}
Chbject getDatal}

xnterfaces
QObserver
| Abmbules
I Dperations
vold setSubject{Subject 2)
Subject getSubject()

void update()

Button

| Abrioules

Celor defBackgroundColor = gray
Color defForegroundColor = black
String defText = "cycle color”

| Dperations
Button{Cisplay d:splay)
void click()

ColorLabel

Color{] colors = {. .}
int coleelndex =0
int cycleCount =0
| Opeations
ColorLabe!(Display display)
void coiorCycie()

Figure 1. Using the AODM notation to describe the Observer aspect [39].

This design aso leads to a poor scalability: asthe
complexity of an aspect increases, the aspect’s interface
may become bloated. Although advice and pointcuts are
fundamental concepts of aspect-oriented languages, there
is a recognized need for the definition of higher-level
module concepts on top of them [4, 33], especialy for
dealing with heterogeneous aspects. Finally, the design
does not provide a big picture for the solution that
abstracts from programming-specific details and
emphasizes high-level relationships between aspects and
classes. From the diagram presented in Figure 1, itisvery
difficult to capture even basic information such as Button
playsthe Subject rolewhilst ColorLabel playsthe Observer
role.

In this context, explicit aspect interfaces are
necessary for dealing with multi-abstraction aspects and

46

improving comprehensibility at the design level. Theidea
of crosscutting interfaces is essential for the
modul arization of the different waysthat a heterogeneous
aspect affects the different parts of a system.

3. CROSSCUTTING INTERFACES

Thedesign of modular AO systemsisfundamental
for managing software complexity. According to our
viewpoint, the concept of crosscutting interfaces is an
important step in this direction.

This section provides a conceptua framework for
crosscutting interfaces, which consists of a set of
definitions (Section 3.1) and aset of fundamental properties
(Sections 3.2 through 3.4). Thisframework was abstracted
from both the aspect models of existing AO programming

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

languages[2, 27, 30, 33] and our extensivemodeling of AO
systems (Section 5).

Accordingtotheliterature[32, 35], aninterfaceisa
well-defined prescription of how themodule, which realizes
it, interacts with the rest of the system. Our definition of
crosscutting interfaces refines this traditional definition
of moduleinterfaces and adaptsit to the AOSD context as
described in the following subsections.

3.1. DEFINITIONS

Crosscutting interfaces are defined as named sets
of crosscutting features that characterize the crosscutting
behavior of aspects with respect to other modules [4]. We
use the term crosscutting feature whenever we refer to
any structural or behavioral enhancement specified inside
the aspect to affect one or more modules at some specified
join paints [5]. The concept of interface presented here
should not be tied up with the idea of object-oriented
interfaces and their specific models in programming
languages, such as Java; yet, the definition of interfaces
as provided here should be related to the more general
ideaof modular interfaces and their properties[32].

Crosscutting interfaces modularize sets of related
crosscutting features. Without proper meansfor separation
and structuring, crosscutting features tend to be mixed
with each other and with other aspect features, such as
local attributes and methods. The natural consequences
are reduced comprehensibility of aspects as well as
difficultiesfor predicting their composition, especially for
heterogeneous aspects. As the interfaces of conventional
modules, crosscutting interfaces are sub-contracts
between the aspectual module, which implements them,
and each module affected by that aspectual module.
However, the notion of crosscutting interfacesisdifferent
from the traditional notion of interfaces because each
crosscutting interface al so embodiesthe definition of how
an aspect partially crosscuts other system modules. The
aspect interface (or aspectual interface) therefore,
consists of one or more crosscutting interfaces.

Crosscutting interfaces follow six fundamental
properties, which are described below. Note that each
property either holds or refinesthe definition of aclassical
property of moduleinterfaces[32]. Crosscutting interfaces
also entail new properties. They are classified into three
categoriesaccording to their nature: (i) interfacerealization,
(ii) interfaces and crosscutting, and (iii) interface
specialization. In this context, the term crosscutting
denotes a relationship between an aspect and one or more
modules, so that the aspect may affect the modules
structure and behavior at well-defined points. The term
normal interfaces denote interfaces of conventional
modules, other than aspects.

47

3.2. INTERFACE REALIZATION

Property #1 - Multiplicity. Each homogeneous
aspect implements only one crosscutting interface.
However, similarly to the realization of normal interfaces
by conventional modules, each aspectual module can also
realize more than one crosscutting interface. One aspect
can define more than one crosscutting interface because
it may affect heterogeneously different categories of
modules in the system.

Property #2 — Distinct Realizations. One or more
components can realize the same crosscutting interface.
An interface, whether aspectual or not, is a contract
between two modules. As a consequence, it is areusable
abstraction and can be realized in distinct manners by
different aspects. Each aspectual module may provide
different implementations to the crosscutting interfaces it
realizes.

3.3. INTERFACES AND CROSSCUTTING

Property #3 - Quantification. A given
crosscutting interface can affect one or more modules.
Each crosscutting interface affects these modules
homogeneously. The modules can be either aspectual
ones or conventional ones. The interface prescribes the
same changes to the structures and/or behaviors of the
target modules. In fact, this property of crosscutting
interfaces satisfies the quantification property of AOP
[16] and is not satisfied by traditional notions of module
interfaces.

Property #4 — Contractual Crosscutting. A
crosscutting interface can directly affect (crosscut)
normal interfacesin addition to theinternals of amodule
itself. Crosscutting interfaces change the definition of
normal interfaces by adding new elements or refining
their existing elements. As a consequence, aspectual
interfaces may modify the contract prescribed by each
affected normal interface. This property is not found in
conventional definitions of module interfaces. The
crosscutting characteristic of aspectual interfaces means
that a given aspect interface can crosscut more than one
normal interface. The next property isan important special
case of this property.

Property #5 — Chain of Crosscutting I nterfaces.
A crosscutting interface can affect other crosscutting
interfaces, not only normal interfaces. In this way, an
arbitrary crosscutting interface X may crosscut a
crosscutting interface Y, which in turn can crosscut an
interface Z, and so on, producing a chain of crosscutting
interfaces. Thisis a particularly important property for
aspect-oriented design because heterogeneous aspects
are often interactive and overlapping in real complex
systems (Section 5).

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

3.4. INTERFACE SPECIALIZATION
This property is related to a special kind of
relationship between interfaces: specialization.

Property #6 - Extenshility. A crosscutting interface
canbeextended by other crosscuttinginterfaces. Theextending
interfacemay add, refineor redefine some crosscutting features
defined inthe parent crosscutting interface. Thisproperty isin
line with the notion of specidization of aspectua modules.
The specialization of crosscutting interfaces is a property
required in several examples of heterogeneous and
homogeneous aspects, such ascode mohility [19, 23], learning
[20, 22], and design patterns[18, 24].

4. NOTATION

Crosscutting interfaces can be regarded as a
conceptua tool for dealing with the inner complexity of
aspects at the design level. They can be supported by an
aspect-oriented modeling language that provides notation
for specifying aspects at the design level. Moreover, the
description of architecture-level aspectsmay a so benefit from
the support for explicit representation of crosscutting
interfaces. In this section, we introduce our notation for
specifying aspects and crosscutting interfaces at the
architectural and detailed design stages. Our notation follows
the principles underlying the conceptua framework for
crosscutting interfaces (Section 3).

4.1. CROSSCUTTING INTERFACES AND DESIGN-LEVEL ASPECTS
The aSideML [4] is an aspect-oriented modeling
language that provides notation, semantics and rules for
specifying aspects and crosscutting at the design level. In
particular, the language supports the explicit definition of
oneor moreexplicit crosscutting interfacesthat organizethe
aspect’s join point description and crosscutting behavior.

Legend:

aspect

= o crosscutting interface
.

<«--- crosscut
|
Subject
1
< stateChanges -> click >E
i..| Additions
<gcrosscut>>|

Button - ‘: - observers: Vector = new Vector();
i +addObserver(Observer obs): void;
H +removeObserver(Observer obs):void;

Button i +getObservers(): void;

+click: void 1| +getData(): Object;

Refinements
+ stateChanges_();

Observation

The aSideML language enables the designer to build
mode sthat focuson keysconcepts, mechanismsand properties
of AO systems, inwhich aspectsand crosscutting areexplicitly
treated as first-class citizens. These models help in dealing
with the complexity of aspect-oriented systems, by providing
essential views of structure and behavior that emphasize the
role of crosscutting eements and their relationships to other
elements. Someof thesemodel spresent adetailed designview
of AO systemsthat may al so serveaspreliminary blueprintsto
be evolved towards the implementation models of AO
programming languages and toals.

The aSideML model elements can be structural or
behaviora. The main structural model elements are aspects,
crosscutting interfaces, crosscutting features, base elements
(elements that aspects are supposed to enhance) and the
relationships between them. Aspects are defined as
parameterized e ementswith oneor moreexplicit crosscutting
interfaces to organize join point description and aspect
crosscutting behavior. Aspects abstract over the identity of
the elements they will eventually crosscut, by declaring
template parameters to hold actual names of classes and
methods. A new kind of relationship, the crosscutting
relationship, subsumes a relationship between an aspect
and a base element; it also performs a binding that defines
the base elements and operations that replace the aspect’s
template parameters. Thebehavioral model elementsandthe
detailed semantics of aSideM L aspects are presented in [4].

Figure 2 presentsthe design of the Observer pattern
using the aSideML notation. The aspect is drawn as a
dashed rectangle, with a diamond symbol containing the
aspect name. Crosscutting interfaces are declared inside
aspects and are drawn as solid-outline rectangles with
inner compartments separated by horizontal lines.
Crosscutting features arelisted in different compartments,
depending on the kind of enhancement they support.

i
Observer i
i
. \ <update -> colorCycle >
Additions !
. . i
- subject: SleJCCF =null; <<?crosscut>> ColorLabel
tsetSubject(Subject s): void; i R
+getSubject(): Subject; H
i ColorLabel
Uses ! .
+ .
apdate() colorCycle: void

Figure 2. Design-level aspects and crosscutting interfaces in aSideML.

48

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

The Additions compartment lists data and operations
to be introduced in classes. The Refinements compartment
lists crosscutting operations to be combined before, after or
before/after class operations and the Redefinitions
compartment lists crosscutting operationsthat override class
operations. In these two compartments, each operation name
(op) is adorned with the _ symbol, with three permitted
combinations: _op, op_ and _op_. These adornments
indicate that the crosscutting operation provides behavior
to be combined before, after or before/after thebase operation
behavior. Finally, an optional compartment may be supplied
to define placeholders for required operations (Uses). The
aspect is presented with a small dashed rectangle
superimposed on the upper right-hand corner of therectangle
for theaspect. Thisrectangleisatemplate parameter box that
containslists of formal parameters, onelist for each aspect’s
crosscutting interface. Thefirst parameter of each list isthe
name of the corresponding crosscutting interface.

The Observation aspect presented in Figure 2 has
two crosscutting interfaces, one for each pattern participant.
Observer is a crosscutting interface that modularizes
crosscutting features that enhance arbitrary objects so that
these elements become observers. Observer declares three
additions — the attribute subject and two public operations,
setSubject(Subject s) and getSubject() —and onerequirement
— update(). The Subject crosscutting interface modularizes
crosscutting features that enhance objects so that these
elements become subjects. Subject declares five additions
and onerefinement —stateChange () —that denotesbehavior
to be executed after the affected base behavior.

The Observation aspect is connected to the elements
it affects (Button and ColorLabel) by means of two
crosscutting relationships (shown as a dashed arrow with
thetail onthe crosscutting element and the arrowhead on the
base element, and the keyword <<crosscut>>). The
crosscutting information is displayed as a comma-separated
list of template parameter matches. The crosscutting
relationships connect the Observation aspect to Button

NN Figure

[]

(binding stateChangeto click) and ColorL abel (binding update
to colorCycle). Observation enhances Button by means of
the Subject crosscutting interface; the structure of instances
of Button includes new attributes and operations listed in
the Additions compartment and their behavior is enhanced
at the defined join point (click). Observation enhances
ColorLabel by means of the Observer crosscutting interface.

4.2. CROSSCUTTING INTERFACES AND ARCHITECTURAL -

LEVEL ASPECTS

The very nature of the detailed design notation for
crosscutting interfaces does not provide a big picture of the
AO system. Hence this section presents a model for
specifying and communicating AO software architectures,
depicting ahigh-level view of the AO design and respective
crosscutting interfaces. An AO software architecture provides
componentsfor aspectizing crosscutting concernsat an early
stage of design. Our architectural model provides notation
and semanticsthat enable architects of AO software to build
models that focuses on the key concepts and properties of
AO systems at the architectura level. The main god isto
prevent the architect from dealing with detailed designissues
that are not relevant at the architectural level.

Figure 3 illustrates the notation elements of our
architectural model, based on the exampl e of the Observer
design pattern, asin the previous sections. |n our modeling
approach, the architecture designers should concentrate
on two main issues. First, they work on the specification
of the central components of the AO system. The architect
has modeling support to distinguish between normal
components and aspectual components. Aspectual
components (or architectural aspects) are aspects[19, 21]
at the architectural level. Architectural aspects are UML
components[42] represented as diamonds. Each aspectual
component is related to more than one architectural
component, representing its crosscutting nature. Note that
the architectural view of an aspect suppresses all
information about itsinner elements.

loggedElements

y Legend:
5 Factory £ aspectual component
“\\ 2] component
< O~ crosscutting interface
Figure normal interface
Editor <*--- crosscuts

Figure 3. Crosscutting Interfaces and Architecture-Level Aspects.

49

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

Second, software architects define the interfaces
of the architectural componentsin a higher-level fashion.
Figure 3 illustrates some architectural components and
interfaces. Each interface is displayed as a small circle
with the interface name placed next to the circle. The
interfaces are attached to the architectural components,
and are categorized in two groups: nhormal interfaces and
crosscutting interfaces. Normal interfaces (or regular
interfaces) are colored in white and crosscutting interfaces
in gray. Each architectural component has one or more
interfaces (Property #1), and different components can
realize the sameinterface (Property #2).

Crosscutting interfaces in the architectural model
specify which architectural components an aspectual
component affects; they do not declare how the
components are affected. A crosscutting interface is
different from anormal interface. Thelatter only provides
services to other components. Crosscutting interfaces
specify when an architectural aspect affects other
architectural components. An aspectual component
conforms to a set of crosscutting interfaces. The aspect
interface crosscutseither internal elementsof architectural
components or other interfaces. The first case means that
the architectural aspect directly affects the internal
structure or dynamic behavior of the target component
(Property #3). The second case means that the aspect
affectsthe contract defined by other interfaces (Properties
#4 and #5). The specialization of crosscutting interfaces
(Property #6) is supported only in the detailed design
notations (see Section 5.1 for an illustrative example).

The purpose of crosscutting interfaces here is to
modularize parts of aconcernwhich usually crosscut other
concerns in traditional kinds of architectural
decomposition, such as object-orientation. For example,
Figure 3 shows the Subject interface in the Observation
component that modularizes the event observation
mechanism and the referenceto observers, which areissues
that usually crosscut the other concerns [18, 25].

5. Case StupIES

The applicability of the concept of crosscutting
interfaces and the usefulness and usability of our modeling
approach (Section 4) have been evaluated in the context of
several casestudies([4, 12, 18, 19, 21, 22] that encompassed
different characteristics, diverse domains, and different
degrees of complexity. The selected domains include the
GoF design patterns [4, 18], multi-agent systems [19, 21,
22], web-based information systems [12, 37, 38], and a
Telecom example[4]. Dueto spacelimitation, fromall these
systems, we have selected three particular case studies to
be presented in this paper. This selection was based on the
heterogeneity of the crosscutting concerns and their

respective domains. For further details about the other case
studies, the reader should refer to [12].

The first case study example is the Observer
pattern, which was presented in the previous sections. It
is a canonical example in the sense that it is frequently
used by several modeling approaches[39, 41] toillustrate
their features. Moreover, it represents crosscutting
concerns relative to the GoF patterns [18, 25], which are
recurring design solutions used in every kind of
application. The second case study (Section 5.1) isaweb-
based information system that entails classical crosscutting
concerns, such as persistence and distribution. The third
case study (Section 5.2) is a multi-agent system that has
been chosen for anumber of different reasons: (i) itinvolves
both domain-specific and appli cation-dependent concerns;
(ii) it is not focused only on traditional crosscutting
concerns (such as logging and tracing); and (iii) it
addresses concerns that have not been deeply
investigated by the AOSD community.

5.1. HEALTH WATCHER

This section presents the architectural and detailed
design modeling of HeathWatcher (HW), a web-based
information system (WIS) developed by the Software
Productivity research group from the Federal University
of Pernambuco [37, 38]. The HW system wasimplemented
inAspectJ[2].

We present an overview of the modeling of the
HW system and discuss how the concept of crosscutting
interfaces and our notations were useful to cope with the
complexity of modeling heterogeneous aspectsin the HW
system. For further details, the reader should refer to[12].
The main purpose of the HW systemisto alow citizensto
register complaints to the health public system.

Figure 4 presents the architectural model of the
HW system. There are three functional components: GUI
(graphical user interface), Business, and Data. They are
structured by following the Layer architectural pattern|[3].
The HW architecture model also specifiesthree aspectual
components to capture typical crosscutting concerns
encountered in web-based information systems: (i)
Distribution — this aspectual component is responsible
for making distributed the Business component services;
(i) Persistence — models the implementation of several
crosscutting i ssues (transaction management, data update,
repository configuration) related to the data management
in web-based information systems; (iii) Concurrency —
specifies mechanisms to apply different concurrency
strategies to the functional components.

The use of crosscutting interfaces was particularly
useful in this system modeling because each of thesethree
architectural aspects define more than one crosscutting

Christina Chavez, Alessandro Garcia, Uird Kulesza,
Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

interface. For example, the Distribution aspectual
component defines three crosscutting interfaces in order
to enabl e the di stributed communi cation between the GUI
and Businessfunctional components. The Server interface
models the crosscutting behavior to become distributed
the Business component services. On the other hand, the
RemoteA ccess interface models the addition of behavior
in the GUI component that makes possible the remote

RemoteAccess

Y Element

Serializable ~~~__

Participant U O—

Business []

N DataCollection
Pessimistic S Creation
Synchronization L R
ElementO_ -------------- el T

Optimistic
Synchronization
Element

IBusinessServices .-~

access of the Business component. Finally, the
Serializabl eParticipant interface defineswhich elementsin
the Business component need to be prepared to be
transmitted over the network. Thus, each crosscutting
interface defined for an aspectual component in the
HealthWatcher architecture modularizes different
behaviors to be included in its functional components in
order to implement a specific crosscutting concern.

UpdateElement

Persistence
Initialization

.-~ Transactional

SynchronizableObject

Figure 4. The architectural model of the HW system.

Figure 5 shows the detailed design of the
HealthWatcher system. Due to space limitation, Figure 5
only presents the detailed design of the GUI, Business
and Distribution components. These components are
detailed to present the different classes, interfaces and
aspects responsible to implement their respective
functionality. Also, the different relationships between
their internal elements are specified to define clearly how
they are connected. Finally, the crosscutting interfaces of
the Distribution aspectual component are refined to
specify the way in which it affects the different elements
of the GUI and Business components.

Asmentioned before, the GUI component provides
aweb user interface for the HealthWatcher system. Thus,
it is implemented as a set of Java Servlet classes. The
Business and Data components are refined by using the
Persistent Data Collection (PDC) [31] design pattern. This
pattern is used to offer a better separation between the
code related to the user interface, business rules and data
access. Following the guidelines of the PDC pattern, a
facade class (HWFacade), was specified to expose the
services of the Business component. Each servlet can
access the services of the Business component by
invoking the methods of the HWFacade class.

51

The HWFacade class aggregates several business
collection classes (such as, ComplaintRegister,
EmployeeRegister), which implements the business|ogic
related to a specific and significant business class (such
as, Complaint and Employee). Business classes are used
to store relevant information manipulated by the system.
Figure 5 omits the classes and interfaces that refine the
Data co mponent. For further details, please refer to [12].

The notion of crosscutting interfaces was also
important to support aclear documentation of the detailed
design of the HW system. The detailed design of the
Distribution aspectual component (Figure 5) defines two
distinct hierarchies of aspects. These hierarchies model
the distribution concern from the different perspectives
of server and client elements. Thefirst hierarchy contains
the ServerSide abstract aspect and the DistributedServer
aspect. These aspects are modeled to realize the
crosscutting behavior of making distributed the Business
component.

The ServerSide aspect aggregates the Server
interface. This crosscutting interface offers the
_facadeMainExecution_redefinition whichisresponsible
to init a specific class of the Business component as a

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

distributed object. The ServerSide aspect aso defines a set
of abstract methods which are realized by the
DistributedServer subaspect. This latter aspect is also
responsible for specifying how the crosscutting interfaces
Server and SerializableParticipant must affect classes of the
Businesscomponent. For example, the SerializableParticipant
crosscutting interface affects the Complaint and Employee
classesin order to make serializable those elements. On the
other hand, the Server crosscutting interface affects the
HWFacade class to allow that class to implement the
IRemoteFacadeinterfaceand toinitializeitsdistributed service
during the execution of the main() method.

Remote facade

getSystemName()
getServerName()
getRemoteFacade()

a

The ClientSide abstract aspect and the HWClient
aspect model the crosscutting behavior responsible for
alowing the Servlet classesto access remotely the distributed
sarvicesof theHWFFacade class. The ClientSide aspect defines:
(i) the getRemoteFacade() method responsible to model the
behavior of looking up adistributed facade object; and (ii) the
abstract _facadel ocaCalls _ redefinition which models the
redirection of loca calstotheHWFacadedlasstoitsequivalent
remote calls. The HW(Client subaspect specializes the
RemoteAccess crosscutting interface by realizing the
_facadel ocd Cdlls _redefinition to intercept the local method
invocations from the servlets classes to the HWFacade class.

{RemoteAccess, _facadeLocalCalls_}

RemoteAccess

Redefinitions
facadeLocalCalls

Uses
remoteFacadeOperation

getSystemName()
getServerName()

getRemoteFacade()

RemoteAccess

Redefinitions
facadeLocalCalls

<<crosscut>>

HttpServlet

=

N U Qeromn T |
< facadeLocalCalls > IRemoteFacade.All> | {Server, . . :
________________________ ServerSide _facadeMainExecution_} |

Server

ServletUpdateComplaint ServletInsertEmployee

i |Redefinitions
i | _facadeMainExecution_

initFacadelnstance()
getSystemName(...)

java.io.Serializable
getServerName(...) J

HWFacade
IRemoteFacade e
RN NP i T o |
msertEmploye§(. L) 1 {SerializableParticipant,
updateComplaint(..) e ___________ | A _________ DistributedServer : _serializableRealization_}
o : {Server, _ServerRealization_}
<<crosscpit>> . ! i
; . Server
» R | N
Complaint Employee | ... Additions Serializable
ServerRealization initFacadelnstance() Participant
x i vetSystemName(...)
' E X . zetSZwerName(...) Addﬁtif)ns L
' 1 <facadeMainExeg¢ution Redefiniti _scrializableRealization_
H ; main> oo edefini IOFIS)
' ' _facadeMainExecution_|
H |
| <<crosscut>> |

Figure 5. Detailed design of the HealthWatcher system.

5.2. ExpPerT COMMITTEE

This section presentsthe modeling of amulti-agent
system (MAS), named Expert Committee (EC) [19, 21],
using the notation for crosscutting interfaces presented

52

in Section 4. First, we present the architectural model for
the software agentsin the EC system, and then the detailed
design of some architectural components. Figure 6
introduces the model of the AO agent architecture that

Christina Chavez, Alessandro Garcia, Uird Kulesza,
Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

encompasses the components for aspectizing common
crosscutting concerns in MASs, such as learning and
collaboration. Each crosscutting agent property is
modularized by anindividual architectural aspect [19]. For
simplicity, some additional normal and aspectual
components are omitted.

The AO architecture is composed of two main
normal components. The Environment component
represents the agent location and the system services,
such as naming service, registration, communication, and
so forth. The Kernel component encapsulates the basic
services provided by the agent for its clients; these
services are non-crosscutting. As a result, this
component realizesthe Services normal interface to make
those basic agent functions available to the external
entities. This component is also responsible for
modularizing the knowledge elements, such as actions,
plans, goals, and beliefs. The KnowledgeUpdating
interface is used to alter and evolve the internal agent
knowledge.

Messaging

Namin,
Conﬁgurationo &

Registration

Environment

There are also aspectual components that separate
the crosscutting agent-related concerns from each other
and from the Kernel component. Most of the aspectual
components crosscut multiple agent componentsin different
wayss, capturing their crosscutting characteristic. Asaresult,
they realize more than one crosscutting interface and also
affect other architectural aspects. For example, the
M essageSending interface crosscutsthe Kernel component
and the Collaboration architectural aspects.

Figure 7 shows a partia representation of the AO
design of the EC system using the aSideML modeling
language. Due to space limitation, we illustrate only the
detailed design of the Kernel, Learning and Collaboration
components; parameters and attribute types were also
omitted. Note that these architectural components are
refined as a set of classes and aspects with additional
design information. The figures present some of these
classes and aspects; others essentially follow the same
pattern. A complete description of the design elements
can befound at [19, 21].

o
Sl

Information

......

Message"/ i :
= Knowledge ! L
Rcccp}}bn Sensory Updatinio f Serv10:es
Message
Sending le-

Decision T
Making-”__ .~

Agent
Kernel

Klole

““Knoledge
PN \\ v H

O L o
OBin(Zliig

‘ Collaboratio
5

Figure 6. The Aspect-Oriented Architecture of EC Agents.

The Kernel component is refined as a set of classes,
which represent the agent itself, and knowledge el ements (e.g.
plans). The hierarchy, derived from the Agent class, contains
the methods that implement the agent actions and agent’s
basic services (i.e. theintrinsic interface Services presented in
Figure6). TheLearningand Collaboration architectura aspects
are decomposed in terms of abstract aspects, concrete aspects,
and auxiliary classes(omitted for smplicity). Each crosscutting
interfaceisrefined asaset of additions, refinements, and uses

53

definitions, which are al realized by the attached aspect.
Learning aspects are heterogeneous aspects that encapsulate
the entire implementation of the learning concern. Their
heterogeneity is mastered by the Expertise interface and the
InformationGathering interface. These crosscutting interfaces
are defined by the Learning abstract aspect and speciaized by
the ReviewerLearning aspect (Figure 7). The specidization of
crosscutting interfaces was useful to moded the EC system
since it has a number of both abstract and concrete aspects.

Christina Chavez, Alessandro Garcia, Uird Kulesza,
Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

|
P [T~ e
Role Role
tocol
Knowledge profoco Binding
Additions init(....) Refinements
- papersToReview getGoal(...) +agentInit_(...)
- deadlines getPlan(...)
+getPapers(...)
Agent <<crosscut>> Plan i | RevisionProposal
goals : : goal paper
plans : : agent deadlines
agents i <rolelnit -> new> isAccepted() <
addAgent() : execute () . -
: i Kernel ==)
4& : : <rolelnit -> execute>

UserAgent :j --------- ’ ‘

researchlnterests CVUpdatePlan| | Judg, tPlan RJUdgt?mﬁ)nlt
pub]icatim?s» execute () execute () | Receptiontian
addPCparticipant() updateCV() judgeProposal() execute ()
getlnterests() getEntry() emitJudgement() evaluateResponse())
updatelnterests()

x

L <events -> addPCparticipant> % <events -> judgeProposal>

E <<crosscut>> !
R R \ReVI& : {RoleBinding, roleInit_} - ““"“"“i """" % : {InformationGathering, events_} |

Expertise learningComponents Information
events Gathering
i
- learningRate init(...) Refinements
- learn(...) +events_{(...)

adaptKnowledge(...) Uses

Z‘x getPapers(...)

Reviewer
"""""""""" Learning
crosseut>> \/
7 Expertise TDtable Information
Gathering
Additions init(....) Refinements
- paperlnterest learn(...) events_(..)
- proposalEval recalculateTD(...) ==
+getlnterest(...) Uses
+getProposalEval()| getInterests(...)
updateInterests(...)

<<crosscut>>

Figure 7. Refining the Architectural Aspects and Crosscutting Interfaces.

The Collaboration component aggregates
collaboration protocols and roles played by the agents
during their collaborative activities. Each role is
represented by a design aspect and, as a consequence,
the Collaboration component is realized by a set of inner
role aspects. It is composed by four inner aspects, each
onefor aspecific agent role: Author, Reviewer, PCMember,
and Chair. Figure 7 illustrates the Reviewer aspect. Each
inner aspect implementsthe RoleBinding interface and the
RoleKnowledge interface. The first interface determines
the eventsin which agiven roleis bound to the agent; the
events_ refinement specifies the binding behavior. The
second interface defines a set of additionswhich comprise
the role-specific knowledge introduced to the agent
playing that role.

5.3. ANALYSIS

This section analyses the results of the application
of our modeling approach in terms of its usability and
usefulness to master complex situations involving
heterogeneous aspects. First, through the application of
our approach, we were able to easily specify aspectual
modules with multiple crosscutting interfaces both at the
architectural and detailed design levels. The notation is
even suitable to support the modeling of heterogeneous
aspects with three or more crosscutting interfaces, such
asthe Distribution aspect (Section 5.1) and the Interaction
aspect (Section 5.2). It is unlikely that we would have
straightforwardly addressed thisissue with other modeling
approaches, such as AODM [39] and Theme/UML [10],
either because they do not directly support crosscutting

interfaces as modeling elements or because they do not
enforce the concept of crosscutting interfaces and the
relevance of aspect interfaces.

Also, we observed that our design language was
effectiveto cope with intriguing crosscutting rel ationships
(Section 3.3). We can see from Figures 6 and 7 that the
presence of contractual crosscutting (Property #4) and
chains of crosscutting interfaces (Property #5) are
recurring in complex AO systems. With explicit support
for crosscutting interfaces, it was possible to express
which exact part (interface) of a component, whether
aspectual or not, a given aspect is acting over. It is
particularly interesting in the case of chainsof crosscutting
interfaces becauseit iseasier to understand thefinal result
of the weaving process; it minimizes the need for looking
at the code to understand the inter-module composition.
Thismay be otherwisedifficult to determine based on other
existing modeling notations.

Figure 7 also shows that our notation is effective
to represent the refinement of elements in different
compartments of a crosscutting interface (Property #6).
Note that the InformationGathering interface, in the
concrete aspect ReviewerLearning, specializes not only
the declaration of refinements, but also the specification
of theelementsin the Usescompartment. A similar extension
is made for the Expertise interface. Hence, it also makes
evident how the proposed notation scales to support
different kinds of extensions (Property #2). Finally, the
design of the InformationGathering interface illustrates
how different implementations can be provided for certain

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

compartments in the crosscutting interfaces, such
as the definition of the events abstract pointcut.

6. DiscussioN AND LESsoNs L EARNED

This section provides further discussion of issues
and lessons we have learned in the evaluation of our
approach.

Mastering the Internal Complexity of Aspects.
Heterogeneous aspects are very complex to be represented
in a single rectangle, since they aggregate numerous
disparate members, such as additions, refinements,
redefinitions, and internal methods and attributes. Our
notation, with its support for representing crosscutting
interfaces separately from theinternal structure of aspects,
helped to organize these members in distinct inner
rectangles, enhancing the design comprehension. In
addition, instead of providing a single aspect interface,
decomposing the aspect interface into two or more partial
interfaces that aggregate and provide boundaries for
related setsof join pointsand crosscutting behavior further
enhances understandability and promotes predictability
of composition.

Design Guidance. The explicit modeling of
crosscutting interfaces helps the software architects and
designers in achieving good design decisions. The
definition of crosscutting interfaces allows the software
engineers reasoning about the aspect design in terms of
separate, well-structured design elements. In addition,
when there is an aspect realizing two interfaces with no
coupling between them, it potentially means that this
aspect should be decomposed in two loosely-coupled
aspects. Otherwise, the designer will come up with anon-
cohesive aspectual module.

Language-Independent Approach. Several
existing modeling languages are strongly tied up to AspectJ
constructs, such asthe AODM approach [39]. As aresullt,
design models look like snapshots of the Aspectd code.
Our notation islanguage agnostic because it encompasses
aset of generic operators, namely additions, refinements,
and redefinitions. These operators are commonly found
in several programming languages. Redefinitions, for
example, can be implemented as around advice without
proceed in AspectJ [2], and by using override integration
inHyper/J[27].

Traceability. We found that the aSideM L language
provides traceability by explicitly linking elements of the
architectural model (Section 4.2) to their corresponding
elements in the detailed design model (Section 4.1). Our
proposal allowsthe software devel opersto traceably refine
architectural interfaces into design interfaces and vice-
versa; crosscutting interfaces are supported in both

55

models. Our detailed design notations are also
straightforwardly transformed to specific aspect models
of well-known programming languages, such as Caesar
[33], AspectI[2], and Hyper/J[27]. With respect to Caesar,
for exampl e, our design models are more directly mapped
to code because this language has explicit support for
aspect interfaces [33]. Considering AspectJ, although it
does not support aspectual interfaces, all the other
modeling elements have a 1-to-1 mapping to their
counterparts in the AspectJ code, as discussed in Section
2.1. For further details about the traceability between
aSideML and specific aspect models, including Hyper/J,
the reader should refer to [4, 8].

Scalability. Our architectural notation is scalable
in several senses. First, it supports the description of the
main structure and relationships of more than twenty
aspects and normal componentsin asingle sheet of paper.
It also copes with the complexity of modeling multiple
crosscutting interfaces. Finally, the notation also supports
the expression of aspects affecting each other both at the
internal structure and at the interface-level.

Maturity. In our experience, the support for
crosscutting interfaces is a natural step to make AO
modeling languages more mature and modular. The
aSideML modeling language, with its support for
crosscutting interfaces, hasreached thismaturity and, more
than that, has been applied into a number of case studies.
A number of adaptationsinto the aSideML language have
been carried out in response to the flaws and
inconsistencies detected in our experiments. In addition,
the conceptual framework presented in Section 3 and our
modeling notations are defined on the basis of asystematic
extension to the UML metamodel [4, 6] and a consistent
theory of aspectsfor AOSD [5]. In order to enable the use
of theaSideML language in the modeling of other aspect-
oriented systems, we are implementing a tool based on
the Eclipse platform [36] that supports the modeling of
aspectsand crosscutting interfacesaswell asthe structural
code generation to specific aspect-oriented languages.

7. ReELATED WORK

The idea of crosscutting interfaces has been
originally definedin[4, 7]. Other researchers have aready
proposed similar abstractions. However, their work focuses
on discussing those abstractions only at the
implementation level.

Lieberherr et a [30] proposed an AOP model, in
which aspects are captured by aspectual components. The
functionality captured by an aspectual component is
written in terms of its own class graph, called participant
graph (PG), referring to abstract join points when needed.

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

The participants forming the PG play the role of
crosscutting interfaces.

Also in the implementation level, Caesar [33] has
been proposed. It defines an AOP model based on the
notion of Aspectual Collaboration Interfaces (ACI). ACI
isan interface that provides support for: (a) expressing an
aspect as a set of collaborating abstractions, comprising
the modular structure of the world as seen by the aspect,
and (b) structuring the interaction between two parts of
an aspect: aspect implementation, and aspect binding into
a particular code base. Then, ACI can be regarded as
crosscutting interfaces.

For the design level, Composition Patterns [9] is
the most referenced AOM approach. Interestingly, it has
itsroots on Subject-Oriented Design, adesign counterpart
for Subject-Oriented Programming [26]. Clarke’s
Composition Patterns are based on the Subject-Oriented
Design Model [9]. Therefore, Composition Patterns specify
crosscutting concerns in a subject-oriented manner that
isinappropriate for the design of AO programsin AspectJ
in several ways. To overcome these limitations, Clarke's
research on Composition Patterns approach has evolved
to Theme/UML [10], with the goal of providing a“generic
AQOSD design language”. In [10], the authors provide a
mapping from Composition Patterns (or Crosscutting
Themesin Theme/UML) to the programming elements of
Aspectd. Composition patterns are UML templates for
design subjects that expect classes and operations as
template parameters. Pattern classes are the placehol ders
to be replaced by real class elements. Although pattern
classes provide some sort of separation of concernsinside
the “theme”, the notation does not enforce the concept of
crosscutting interfaces and the relevance of aspect
interfaces.

Stein’s AODM [39], on the other hand, presents a
design model that complieswith the semantics of AspectJ.
He proposesaset of extensionsthat supplementsthe UML
with means for the design of aspect-oriented programs
with AspectJ exclusively. The use of collaboration
templates to modularize inter-type declarations provides
very limited support for crosscutting interfaces. Our
approach is language independent and provides full
support for crosscutting interfaces, as previously
discussed.

Pinto et a [35] have proposed DAOP-ADL, an
architecture description language used to describe
software architectures composed of components and
aspects as first-order elements. The specification of a
componentin DAOP-ADL iscomposed of two interfaces:
(i) aprovided interface — which describes the component
services; and (ii) arequired interface—which specifiesthe
output messages and events that a component is able to

56

produce. The aspect specificationin DAOP-ADL contains:
(i) an evaluated interface — which defines the messages
that the aspect is ableto intercept; (ii) arequired interface
— which specifies the output messages required to the
aspect providesits service; and finally (iii) atarget events
interface — responsible to describe the events which the
aspect can capture. The composition between components
and aspectsin DAOP-ADL issupported by a set of aspect
evaluation rules. They define when and how the aspect
behavior isexecuted. Thus, DAOP-ADL somewhat makes
explicit theinterfaces of an aspect by defining its evaluated
and target events interfaces. The aspect evaluation rules
are responsible to realize those interfaces to specific
components. However, opposed to the aSideM L language,
the use of DAOP-ADL has been restricted to a specific
platform proposed by its authors. In addition, it does not
fully support all the important properties for crosscutting
interfaces presented in Section 3.

8. FiNnaL REMARKS

In this paper, we presented crosscutting interfaces
asan important conceptual tool for taming the complexity
of heterogeneous aspects at the design level. First, we
presented a conceptual framework for crosscutting
interfacesat thedesign level that includesaset of definitions
and fundamental properties (Section 3). A subset of these
properties has been already reified by some well-known
aspect-oriented programming languages (Section 7). We
also proposed a set of notationsin the aSideML language
(Section 4) that conforms to and implements our
conceptual framework for crosscutting interfaces. Our
language uniformly supports aspect interfaces at both the
architectural stage and the detailed design stage.

It is important to highlight that, especially in a
young research areasuch asAOSD, other researchers may
identify further properties for crosscutting interfaces or
may intend to refine the properties and definitions
presented here. However, these properties constitute a
first important survey and may be regarded as a first
approach towards the identification of fundamental
properties of design aspects, their interfaces and
relationships. Besides, they have emerged from practical
modeling demands while developing real case studies.

Acknowledgments. Christina has been partially
supported by CNPg-Brazil (the Brazilian Council for
Scientific and Technological Development), under Grant
No. 479395/2004-7 and by Fapesh (Fundagdo deAmparo a
Pesquisa do Estado da Bahia). Alessandro is supported
by European Commission aspart of the Grant | ST-2-004349:
European Network of Excellence on Aspect-Oriented
Software Development (AOSD-Europe), 2004-2008. Uira

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

issupported by CNPg-Brazil under Grant No. 140252/03-7
and by FAPERJ under grant No. E-26/151.493/2005.
Cléudioispartially supported, by CNPg-Brazil under Grant
No. 140214/04-6. The authors are also supported by the
ESSMA Project under grant 552068/02-O0.

REFERENCES

[Aspect-Oriented Software Development. http://

aosd.net

Aspect] Team. The AspectJ Programming Guide.
http://eclipse.org/aspectj/.

Buschmann, F. et al. Pattern-Oriented Software

Architecture: A System of Patterns. 1996: Wiley and

Sons.

Chavez, C. A Model-Driven Approach to Aspect-

Oriented Design. PhD Thesis, PUC-Rio, Rio de Janeiro,

Brazil, April 2004.

Chavez, C., Lucena, C. A Theory of Aspectsfor Aspect-

Oriented Development. Proc. of the Brazilian

Symposium on Software Engineering (SBES 2003),

Manaus, Brazil, October 2003, pp. 130-145.

Chavez, C., Lucena, C. A Metamodel for Aspect-

Oriented Modeling. In: Workshop on Aspect-oriented

Modeling with the UML, 1st Intl Conf. on Aspect-

Oriented Software Devel opment, Netherlands, 2002.

Chavez, C.; Lucena, C. Design Support for Aspect-

oriented Software Development. In: Workshop on

Advanced Separation of Concernsin Object-Oriented

Systems (OOPSLA 2001), Tampa, USA, October 2001.

Chavez, C.; Garcia, A.; Lucena,, C. Somelnsightson

the Use of AspectJ and Hyper/J. In: Work. on Aspect-

Oriented Programming and Separation of Concerns,

Lancaster, UK, 2001.

Clarke, S., Walker, R. J. Composition Patterns: An

Approach to Designing Reusable Aspects. In: Proc.

of the 23rd International Conference on Software

Engineering (ICSE), Toronto, Canada, May 2001.

[10] Clarke, S., Walker, R. J. Generic Aspect-Oriented
Design with Theme/UML. In: Aspect-Oriented
Software Devel opment, Addison-Wesley, pp. 425-458,
2005.

[11] Colyer, A., Clement, A. Large-scale AOSD for
middleware. Proc. of the 3rd Intl Conf. on Aspect-
Oriented Software Development (AOSD’2004),
March 2004, Lancaster, UK, pp. 56-65.

[12] Crosscutting Interfaces for Aspect-Oriented
Modeling. http://www.teccomm.les.inf.puc-rio.br/
SoCAgents/Cl/index.htm.

[13] Dijkstra, E. A Disciplineof Programming. Prentice-Hall,
1976.

[14] Elrad, T. et al. Discussing aspects of AOP.
Communication of the ACM, 44(10), October 2001,
pp. 33-38.

[2
3

[4

(5

(6l

[

(8l

(9

57

[15] Filman, R., Elrad, T., Clarke, S., Aksit, M. Aspect-
Oriented Software Development. Addison-Wesley,
2005.

[16] Filman, R. What Is Aspect-Oriented Programming,
Revisited. In: Workshop on Advanced Separation of
Concerns, 15th ECOOP, Budapest, June 2001.

[17] Gamma, E. et d. Design Patterns: Elementsof Reusable
Object-Oriented Software. Addison-Wesley, Reading,
1995.

[18] Garcia, A., Sant’ Anna, C., Figueiredo, E., Kulesza, U.,
Lucena, C., Stag, A. Modularizing Design Patternswith
Aspects: A Quantitative Study. In: Proc. of the 4th
Intl Conf. on Aspect-Oriented Software Devel opment
(AOSD’2005), Chicago, USA, March 2005, pp. 3-14.

[19] Garcia A., Kulesza, U., Lucena,, C. Aspectizing Multi-
Agent Systems: From Architecture to |mplementation.
Software Engineering for Multi-Agent Systems I11.
Springer-Verlag, LNCS 3390, December 2004, pp. 121-
143

[20] Garcia, A. et al. The Learning Aspect Pattern. Proc. of
the 11th Conference on Pattern Languages of
Programs (PLoP2004), Monticello, USA, September
2004.

[21] Garcia, A. From Objectsto Agents: An Aspect-Oriented
Approach. Doctoral Thesis, PUC-Rio, Rio de Janeiro,
Brazil, April 2004.

[22] Garcia, A., Lucena, C., Cowan D. Agents in Object-
Oriented Software Engineering. In: Software: Practice
& Experience, Elsevier, 34 (5), April 2004, pp. 489-521.

[23] Garcia, A., Sant’ Anna, C., Chavez, C., Lucena, C., Staa,
A. Separation of Concernsin Multi-Agent Systems:
An Empirical Study. In: Software Engineering for
Multi-Agent Systemsl |, Springer, LNCS 2940, Jan 2004,
pp. 49-72.

[24] Garcia,A., Silva, V., Chavez, C., Lucena, C. Engineering
Multi-Agent Systems with Aspects and Patterns. J.
Braz. Computer Society, 1(8), July 2002, pp. 57-72.

[29] Hannemann, J., Kiczales, G. Design Pattern
Implementation in Java and AspectJ, In: Proc. of
OOPSLA' 02, November 2002, pp. 161-173.

[26] Harrison, W., Ossher, H. Subject-Oriented
Programming (A Critique of Pure Objects). In: Proc. of
OOPSL_A'93, 1993, pp. 411-428.

[27] Hyper/J Web Page,http://www.research.ibm.com/
hyperspace/HyperJ/HyperJ.htm, 2001.

[28] Kiczaes, G, Mezini, M. Aspect-Oriented Programming
and Modular Reasoning. In: Proc. of the ICSE’ 05,
New York, NY, USA, 2005. ACM Press, pp. 49-58.

[29]Kiczales, G. et a. Aspect-Oriented Programming. In:
European Conf. on Object-Oriented Programming
(ECOOP), LNCS 1241, Springer, Finland, 1997, pp. 220
242,

[30] Lieberherr, K., Lorenz, D., Mezini, M. Programming
with Aspectual Components. Tech. Report NU-CCS-

Christina Chavez, Alessandro Garcia, Uird Kulesza,

Claudio Sant’Anna and Carlos Lucena

Crosscutting Interfaces for
Aspect-Oriented Modeling

99-01, College of Computer Science, Northeastern
University, Boston, MA, March 1999.

[31] Massoni, T., et al. PDC: Persistent Data Collections
Pattern. In Proc. of the Sugar LoafPLoP" 2001, Brazil,
October 2001.

[32] Meyer, B. Object-Oriented Software Construction. 2™
Edition. PrenticeHall, 1997.

[33] Mezini, M., Ostermann, K. Conquering Aspects with
Caesar. In: Proc. of the 2™ Intl Conf. on Aspect-
Oriented Software Development (AOSD’2003),
Boston, USA, March 2003, pp. 90-99.

[34] Parnas, D. Onthe Criteriato Be Used in Decomposing
Systems into Modules. In: Communications of the
ACM, 15 (12), December 1972, pp. 1053-1058.

[35] Pinto, M. et al. DAOP-ADL: An Architecture
Description Language for Dynamic Component and
Aspect-Based Development. In: Generative
Programming and Component Engineering (GPCE
2003), pp. 118-137.

[36] Shavoar, S. et d. The JavaDeveloper’s Guideto Eclipse.
Addison-Wesley, 2003.

[37] Soares, S. An Aspect-Oriented Implementation
Method. Doct. Thesis, Federal University of
Pernambuco, Recife, Brazil, October 2004.

[38] Soares, S., Laureano, E., Borba, P. Implementing
Distribution and Persistence Aspects with AspectJ.
In: Proc of OOPSLA’ 02, 2002, pp. 174-190.

[39] Stein, D. An Aspect-Oriented Design Model Based
on AspectJ and UML, Master Thesis, University of
Essen, January, 2002.

[40] Tarr, P. et al. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: Proc. of the
ICSE’99, May 1999, pp. 107-119.

[41] The 5th Aspect-Oriented Modeling Workshop. In
Conjunction with UML 2004. October 11-15, 2004
Lisbon, Portugal.http://www.cs.iit.edu/~oal dawud/
AOM/.

[42] Unified Modeling Language (UML) Specification:
Infrastructure Version 2.0, December 2003.
www.omg.org/uml/.

[43] Zhao, J.,Rinard, M. Pipa: A Behavioral Interface
Specification Language for AspectJ. In: 6th Intl Conf.
on Fundamental Approaches to Software
Engineering, (FASE 2003), Warsaw, LNCS 2621, pp.
150-165.

