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Abstract - This paper addresses the problem of integrating in a single model operational optimization and
cyclic scheduling of continuous plants. Considered are multiproduct, multistage plants with finite intermediate
storage capacity (FIS). A combined optimization approach introduces synergic effects for more effective
scheduling and plant operation (Alle and Pinto, 2001a,b). The representation proposed for this problem results
in an MINLP model with a nonconvex feasible region and nonconvex objective function. In order to deal with
nonconvexity, a spatial branch-and-bound global optimization algorithm is applied. Results show that the
global approach is effectively able to yield more profitable solutions than those obtained by local optimization
methods.
Keywords: scheduling, optimization of process conditions, continuous plants, mathematical programming,
global optimization.

INTRODUCTION

In multiproduct continuous plants, scheduling
involves several trade-offs between length of
production cycle, inventory levels, changeover
times and costs (Pinto and Grossmann, 1994). The
introduction of variable processing rates brings
additional interactions into the scheduling model.
The faster a unit runs, the lower its yield due to the
shortening of residence times. Moreover,
operational costs may increase. On the other hand,
the unit would be free in a shorter period of time.
Alle and Pinto (2001a,b) presented the TSPFLOP
model, which incorporates variable processing rates
and yields for simultaneous scheduling and
operational optimization of these plants. Results
showed that a combined optimization approach may
better capture the complexity of the trade-offs

involved because some operational variables are
additional degrees of freedom in the scheduling
model. However, TSPFLOP does not guarantee
conditions for global optimality because its
objective function and feasible region are
nonconvex. As a matter of fact, a locally optimal
schedule may differ to a great extent from a
globally optimal one because they may be in
completely different regions of the solution space.
As a consequence, solutions from TSPFLOP may
be subject to significant improvement. In order to
avoid suboptimal schedules, global optimization
methods are required to solve the TSPFLOP model.
A review of the most important methods in global
optimization may be found in Pardalos et al. (2000).
Floudas (2000) presents an overview of recent
applications of global optimization methods in the
areas of process design and control.
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The aims of this work are the following: (1) to
introduce a general formulation for the simultaneous
problem of scheduling and operational optimization
of cyclic continuous multiproduct plants with finite
storage and (2) to make use of a spatial branch-and-
bound, based on Horst and Tuy algorithm (1993)
general formulation, as described by Smith and
Pantelides (1999), to solve the simultaneous
problem.

PROBLEM DESCRIPTION

Given is a number of specified products (i=1…N)
that are to be produced in a continuous plant
consisting of several stages that are interconnected
by intermediate inventory tanks for each product
(Fig. 1). Each stage consists of one production line,
which is interconnected with a fixed topology in
order to perform a set of operations (reactions,
separations etc.). Transition times that arise between
the processing of two successive products are
sequence dependent. Constant demand rates in the
form of lower bounds that are to be satisfied are also
given. Intermediate capacities are limited. Final
capacity is not limiting and may be neglected.
Moreover, stages may have their processing rates
changed within a range. The processing yield in a
stage may depend on its processing rate.

The following are the assumptions for modeling
the problem (Alle and Pinto, 2001a):
A1) Every product must be processed in the same
sequence at all stages (i.e., flowshop plant);
A2) Intermediate inventory depends on the maximum
level of material accumulated, as in Buzacott and
Ozkarahan (1983).
A3) Inventory cost of final products depends on the
average amount of material to be stored, as in
Sahinidis and Grossmann (1991).
A4) Stages must operate continuously within one
cycle, i.e., waiting times are not allowed between
operations once production has started.
A5)  The product yield in every stage is an
exponential decaying function of the processing rate,
as in Alle and Pinto (2001a,b).

The problem then consists of determining the
following items for a cyclic scheduling:
(a) sequence of products, (b) length of cycle time, (c)
length of production times, (d) amounts to be
produced,  (e) levels of intermediate storage and (f)
processing rates for every product in stages. The
objective is the maximization of profitability (profit
per unit of time), which includes income from the

sale of products, inventory, transition, raw material
and operational costs.

MODEL FOR SIMULTANEOUS
SCHEDULING AND OPERATIONAL

OPTIMIZATION

Model TSPFLOP (Alle and Pinto, 2001a,b) was
presented for the case in which only the processing
rates and yields of the first stage were allowed to
vary. The proposed model is extended to cover a
more general case where every stage may have its
rate adjusted.

Binary variables zij are used to determine product
sequence:
 zij : 1 if product i precedes product j; otherwise 0.

As the plant is a flowshop, every product j must
be preceded by the same product i at all stages. Only
one product succeeds and precedes the other, as
shown in (1).

1   ,   1   ij ij
i i

z j z i = ∀ = ∀∑ ∑    (1)

A transition time, τijm, and a transition cost, Ctrijm,
are incurred every time a unit changes from the
production of product i to that of another product, j.
The overall transition cost for a product i in a cycle
Ct is given by (2).

i ij ijm
j m

Ct z Ctr      i= ∀∑ ∑    (2)

The total amount of product i produced at stage
m, Wim (ton), during one subcycle is the product of
the processing rate, γim (ton.h-1), and processing time,
Tpim (h), as follows:

im im imW Tp     i,m= γ ∀    (3)

The amount produced at stage m must be
completely consumed at stage m+1 in order to avoid
accumulation of material within cycles.

im im 1 im 1W W       i,m 1...M 1+ += α ∀ = −    (4)

The mass balance coefficient, αim, is the inverse
of process yield of product i at stage m. It is assumed
to depend on the processing rate.

( )im im imexp / b       i,mα = γ ∀    (5)
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Processing rates are allowed to vary within limits
imposed by the operational range of the units:

uplo
im im im       i,mγ ≤ γ ≤ γ ∀    (6)

Equation (5) states that αim increases (thus yield
decreases) exponentially as processing rate increases.
The amount of raw material Fi (ton) consumed to
produce final product i is given by (7).

i i1 i1F α W     i= ∀    (7)

The total demand for final products must be
satisfied at the end of the cycle:

iM iW d Tc       i≥ ∀    (8)

The maximum level of intermediate inventory
Imaxim (ton) is modeled as in Alle and Pinto (2001
a,b) with the aid of binary variables yim , defined as
follows:
yim : 1 if processing of product i finishes at stage m
before starting processing at stage m+1; otherwise, 0.

The continuous variable Invim (ton) is defined as
the difference between Wim and the maximum
inventory level, Imaxim. Therefore,

im im imImax W Inv                     

i,m 1...M 1

= −

∀ = −
   (9)

im
up

im im0 Inv y W       i,m 1...M 1≤ ≤ ∀ = −  (10)

im

im im im im im 1

up
im

0 Inv (Ts Tp Ts )

(1 y )W      i,m 1...M 1

+≤ − δ + − ≤

≤ − ∀ = −
   (11)

where auxiliary variable δim is defined as follows:
 

im im        i,m 1...M 1δ ≤ γ ∀ = −  (12)

im im 1 im 1              i,m 1...M 1+ +δ ≤ α γ ∀ = −  (13)

As the plant has finite intermediate storage
capacity (FIS), there is a limit on the storage capacity
of the intermediate tanks:

im
up

imImax Imax           i,m 1...M 1≤ ∀ = −  (14)

Constraint (15) states that product j starts in stage
m at Tsjm, immediately after the processing of the
preceding product i (Tsjm+Tpim) plus the
corresponding transition time, τijm.

T
ij m

jm im im ij ijm

T
ij m

(1 z )U

Ts (Ts Tp z )

(1 z )U   i, j 1,m

− − ≤

≤ − + + τ ≤

≤ − ∀ >
 (15)

As the plant is a flowshop, the processing of
product i at stage m must start (end) before the start
(end) of processing of the same product at stage
m+1:

im im 1

im im im 1 im 1

Ts Ts       

and     

Ts Tp Ts Tp      

i,m 1...M 1

+

+ +

≥

+ ≥ +

∀ = −  (16)

As the schedule is cyclic, product 1 is arbitrarily
chosen as the first to enter the production line:

11 i1 i11
i

Ts z= τ∑
 (17)

At any stage, the sum of the total occupation time
plus the transition times for all products must not
exceed the cycle time, Tc.

im ij ijm
i i j

Tc Tp z     m≥ + τ ∀∑ ∑∑
    (18)

Every unit has a processing or operational cost
for every product i, OCim, that is assumed to be
proportional to the processing rate, γim; the total
amount processed, αimWim; and a cost coefficient,
Coim:

im im im im imOC co W              i,m= γ α ∀  (19)

The objective function is given by the difference
between revenues due to sale of final products and
costs (transition, raw material, operation, and
intermediate and final inventory).
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M 1
i iM i i i im im im im im im

i m m

1max profitability p W Ct c F co W Cinv Imax
Tc

− 
 = − − − γ α −
 
 
∑ ∑ ∑

                                                   iM
i iM

i

Tp1 Cinvf W 1
2 Tc

 − − 
 

∑                                                                          (20)

Note that a continuous time domain
representation is used. For more details on the
model, please refer to Alle and Pinto (2001b).

GLOBAL OPTIMIZATION ALGORITHM

The proposed model is reformulated in order to
eliminate nonconvex terms and to contain only linear

(convex) constraints and nonlinear term definitions,
as proposed by Smith and Pantelides (1999). For
instance, the nonconvex objective function (20) is
reformulated as

i iM
i

max profitability FR1 0.5 Cinvf W= − ∑ (21)

where

A1FR1
Tc

= ,     
M 1

i iM ij ij i i im im im im i iM
i j m m

A1 (p W z Ctr c F co BL1 Cinv Imax 0.5Cinvf BL2 )
−

= − − − − −∑ ∑ ∑ ∑

   im im imBL1 BL3= γ ,                                  im im imBL3 W= α ,                                       iM im iMBL2 W Tp=

New variable FR1 replaces a fractional term,
whereas BL1im, BL2im and BL3iM replace bilinear
terms; A1 replaces the sum that is the numerator of
the fractional term. All constraints that contain
nonlinear terms are submitted to similar
transformation, except constraint (5). Actually, this
equation may be relaxed to

( )im im imexp / b       i,mα ≥ γ ∀  (22)

without changing the global optimum. The reason is
that inequality (22) must be active in the global
optimum since the smaller the αim (i.e, the greater
the yield) for a given γim, the greater the
plant profitability. Since the OA/ER/AP algorithm
 (Viswanathan and Grossmann, 1990) used here is
based on equality relaxation, constraint (5) does not
need to be replaced by a linear constraint and a

nonlinear term definition because it defines a convex
region when relaxed.

After the replacements, the global optimization
algorithm shown in Fig. 2 is applied. It is a spatial
branch-and-bound, based on Horst and Tuy
algorithm (1993) general formulation, extended by
Quesada and Grossmann (1995) and Ryoo and
Sahinidis (1995, 1996), as described by Smith and
Pantelides (1999). The algorithm makes use of the
nonconvex MINLP reformulated model to generate
lower bounds for the max problem and of a MINLP
convex relaxation subproblem to find upper bounds.
The convex relaxation is obtained through
substitution of the nonlinear term definitions
(fractional and bilinear terms) by new variables that
are constrained by linear over- and under-estimators
such as those from McCormick (1976), shown in
Table 1.

Table 1: McCormick over- and underestimators for bilinear and fractional terms.

lo lo lo lo
im im im im im im imBL B L +  B L B L≥ −

Underestimators { up up up up
im im im im im im imBL B L +  B L B L≥ −

lo up lo up
im im im im im im imBL B L + B L B L≤ −

Bilinear term

im im imBL B L≡
Overestimators   { up lo up lo

im im im im im im imBL B L + B L B L  ≤ −
lo lo lo lo

im im im im im im imF FR R +FR R FR R≥ −
Underestimators { up up up up

im im im im iM iM iMF FR R +FR R FR R≥ −
lo up lo up

im im iM im im im imF FR R +FR R FR R≤ −

Fractional term

im
im

im

F
FR

R
≡

Overestimators   { up lo up lo
im im im im im im imF FR R +FR R FR R  ≤ −
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RESULTS

The spatial branch-and-bound algorithm was
implemented in GAMS (Brooke et al., 1998). The
MINLP solver used for both the nonconvex problem
and the convex relaxation subproblem is DICOPT++
based on the OA/ER/AP method (Viswanathan and
Grossmann, 1990). CONOPT2 (Drud, 1992) and
XPRESS 12.5 solver (Dash Associates, 1999) were
the solvers for the NLP subproblems and MILP
master problems, respectively. The ε (global
optimality gap) adopted is 1 %.

Table 2 shows the relative difference, ∆P*,
between global and local optimal profitability for
different problems. Global optimization yields
solutions as good as or better than the
straightforward local optimization procedure at the
expense of a much larger computational effort,
attributed  mainly to steps 2 and 4 of the algorithm

(Smith and Pantelides, 1999).
Table 3 contains data on a plant with two stages

that processes three products. Fig. 3 shows the
difference between global and local optimal
schedules for this plant. The profitability increases
3.6% from the local to the global optimum. Upper
bounds of Tc and processing rates are all active in both
solutions. Note the large difference between the
processing times for products B and C in each schedule
as well as the different inventory control profiles.

Note, however, that global optimization
performance highly depends on the quality of the
convex relaxation. The closer the relaxed model to
the exact one, the better the algorithm performs. As
seen in Table 4, tight bounds for cycle time Tc are
essential for a good relaxation. In fact, Tc bounds
most of the variables in the model. As a
consequence, the algorithm performance is very
sensitive to Tc bounds.

Table 2:  Results for local and global optimization.

Problem size Local opt. Global opt.

Products Stages
∆P*

CPU(s) CPU (s) Iterations

3 2 3.6% 0.4 32.5 9
4 2 0% 1.7 25.9 1
5 3 0% 5.0 101.2 1

Table 3: Plant data for the example of the 3-product-2-stage plant.

Pr. Pi di Coi1 Coi2 Cfi =30 $/ton Cinvim =10 $/ton

($/ton) (ton/d) (ton/d) (ton/d) Cinvfim =0.1 $/ton/h Imaxim
up=10.0 ton

A 290 0.05 28 25 βi1=10.0 ton/h βi2 =1000.0 ton/h
B 320 0.10 20 25 γim

lo=1.1 ton/h γim
up =1.25 ton/h

C 330 0.25 25 30 Tclo = 0 Tcup = 800 h

Transition times, τijm (h) Transition costs, ijm
m

Ctr∑ ($)

Stage 1 Stage 2 Stages 1+2

Pr. A B C A B C A B C

A 0 3 8 0 3 4 0 46000 26000
B 10 0 3 7 0 0 25000 0 35000
C 3 6 0 3 10 0 37000 17000 0

Table 4: Dependence of algorithm performance on Tc bounds (3 product/2 stage example).

Tcup Tclo Initial relaxation gap Iterations

800 0 4.8 % 9
1100 0 9.8% 11
1400 0 16.4% >200
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CONCLUSIONS

A general framework model for global
optimization of the simultaneous problems of
scheduling and operating conditions for continuous
multiproduct plants was developed. The model
extends Alle and Pinto’s (2001a,b) formulation to a
more general case, where operating conditions
(processing rates and yields) are allowed to vary at
every plant stage. A spatial branch-and-bound
algorithm was successfully applied to achieve
globally optimal solutions. Results showed that the
difference between a local and a global optimal
schedule means a completely different way of
planning production.

NOMENCLATURE

Sets

Products i, j =  1,..., N
Stages m = 1,..., M

Binary Variables

xim denotes whether the production of i in
stages m and m+1, occurs
simultaneously

zij denotes whether product i is
immediately preceded by j

Continuous Variables

Iim intermediate inventory level of product i
in stage m

Invim difference between amount produced
and maximum inventory level of
product i between stages m  and m+1

Tc cycle time
Tpim processing time of product i in stage m
Tsim start time of product i in stage m
Wim amount of product i  produced in stage

m
Fi amount of raw material consumed  by

product i

Parameters

Cinvfi cost coefficient for inventory of final
product i

Cinvim cost coefficient for inventory of product
i in stage m

Coim operating cost coefficient for processing

product i at stage m
Ctrijm cost of transition between product i and

product j at unit m
di, pi minimum demand rate and price of

product i
Imaxim maximum inventory capacity for

product i after stage m
UI

im  UT
im upper bounds of processing time and

inventory of product i  in stage m
*P∆    

* *
global local

*
global

Profitability Profitability
100%

Profitability

 − ×
 
 

τijm transition time from product i to product
j in stage m

γim  αim processing rate and mass balance
coefficient of product i in stage m
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