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Abstract - This work compares the performance of two Lagrangian turbulent particle dispersion models: the 
standard model (e.g., that presented in Sommerfeld et al. (1993)), in which the fluctuating fluid velocity 
experienced by the particle is composed of two components, one correlated with the previous time step and a 
second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001), 
which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced 
by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the 
particle allows capturing some underlying physics of particle dispersion in general turbulent flows while 
keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and 
simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in 
the configurations of grid-generated turbulence (Wells and Stock (1983) experiments), simple shear flow 
(Hyland et al., 1999) and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987) 
experiments). 
Keywords: Turbulence; Two-phase flow; Turbulent particle dispersion; Lagrangian approach. 

 
 
 

INTRODUCTION 
 

In order to describe the dispersed phase in a two-
phase flow (solid, droplet or bubble suspensions), 
two approaches are mainly used. In the so-called 
Lagrangian method, the discrete elements are tracked 
through a random fluid field by solving their 
equations of motion. In the second methodology, 
both phases are handled as two interpenetrating 
continua and are governed by a set of differential 
equations representing conservation laws; this 
approach is referred to as Eulerian. In the later 
context, there are two possibilities. First, the second 
phase is considered as a fluid for all effects. This 
corresponds to the well-known two-fluid model. 
Second, the non-continuous phase is thought of as a 

cloud of material elements, whose behaviour is 
driven by a probability density function (PDF), 
depending on variables of each element, which 
responds to a kinetic transport equation similar to the 
Maxwell-Boltzmann one. The continuum equations 
for the second phase are obtained as the statistical 
moments of this PDF-evolution equation. 

However, the traditional closures, even giving 
approximated values for the mean fields, fail to 
predict the turbulent quantities of dispersed 
elements, specially in non-uniform flows. To 
overcome this limitation, during the last few years 
considerable effort has been devoted to developing 
turbulence closures at the level of second moments 
of the particulate phase (Reeks, 1993; Zaichik, 1997; 
Hyland et al., 1998; Février and Simonin, 1998), 
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allowing the obtention of exact solutions in the case 
of simple shear flow (Hyland et al., 1999). In the 
case of turbulent round jets laden with solids, Laín 
and Aliod (2003) using a Reynolds stress model for 
the solid phase in a two-fluid-like approach, were 
able to capture the asymmetry of particle normal 
Reynolds stresses which is much higher than that of 
the gas phase in the Mostafa et al. (1989) 
experiments. However, the development of a second-
order model for the dispersed phase necessarily 
implies the formulation of new constitutive 
hypotheses. One possibility to avoid this is to use a 
Lagrangian description for the particulate phase, but 
unfortunately in highly non-uniform flows such as 
jets laden with solids, the particle normal stress 
anisotropy is not well reproduced (Laín and Kohnen, 
1999). 

The ultimate objective pursued in this work is to 
elucidate if a physically well-posed Lagrangian model 
for turbulent particle dispersion, such as that of Minier 
and Peirano (2001), is able to reproduce reasonably 
well the anisotropy of the particle fluctuating velocities 
in the configuration of a turbulent jet laden with solids. 
With this objective in mind, the implementation of the 
Minier and Peirano model is validated first against the 
grid turbulence experiments of Wells and Stock (1983) 
and, qualitatively, in a simple shear flow configuration. 
Finally, the particle dispersion in the jet flow of Hishida 
and Maeda (1987) is addressed by means of the Minier 
and Peirano model and the results are compared with 
those obtained with the standard model. 
 

 
LAGRANGIAN PARTICLE DISPERSION 

MODELS 
 

The starting point is the particle equations of 
motion, which in the Lagrangian frame can be 
written as 
 

p i
p i

dx
u

dt
=                     (1) 

 
p i

p p D i p i p
p p

p i i
p

du 3m m c (u u ) u u
dt 4 D

m g 1 F

ρ
= − − +

ρ

 ρ
− +  ρ 

     (2) 

 

where Fi stands for forces other than drag and weight 
– buoyancy acting on the particles, such as added 
mass or transverse lift forces, relevant to the motion 
of bubbles or light solids. Here xpi are the 
coordinates of the particle position; upi are the 
velocity components; Dp is the particle diameter, and 
ρp is the particle density, which is assumed to be 
constant at present. In this work only the dispersion 
of solid particles in a gaseous continuous phase is 
addressed (ρp >> ρ); therefore, the most relevant 
forces are just the drag and the weight, with Fi = 0. 

The drag coefficient cD was calculated using the 
standard empirical correlations for a rigid sphere: 
 

1 0.687
p p p

D
p

24 Re (1 0.15 Re ) Re 1000
c

0.44 Re 1000

− + ≤= 
>

    (3) 

 
where Rep = ρ Dp |u – up|/µ is the particle Reynolds 
number. 

The fluid driving velocity in (2) is the 
instantaneous velocity of successive fluid particles 
that cross the solid particle trajectory xp(t); hence 
u(t) = u(xp(t), t) hereafter will be called fluid 
velocity experienced or seen by the particle. The 
main difficulty lies in predicting accurately u in a 
general turbulent flow. However, the usual Reynolds 
averaging of fluid turbulence results in transport 
equations for the mean variables; therefore, detailed 
information about instantaneous fluid structures is 
lost. The Lagrangian approach to particle dispersion 
requires reconstruction somehow of the 
instantaneous fluid velocities seen by the particles as 
the composition of a mean component (obtained 
from the continuous phase computation and 
interpolated at the particle location) and a fluctuating 
part, which has to be modelled. The modelling of u 
is cumbersome due to the existence of two effects 
that cause the fluid element and particle trajectories 
to differ: particle inertia, which induces a relatively 
instantaneous motion of particles with regard to their 
fluid neighbourhood, and mean particle drift due to 
gravity, the so-called crossing-trajectories effect. To 
be more specific, the particle P and the fluid element 
(fluid particle), whose positions coincide at some 
time instant, say tn, F = P, will generally separate 
during the next time interval, tn+1, with the solid 
particle located at P’ and the fluid particle at F’ 
(Figure 1). 
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Figure 1: Solid and fluid particle trajectories 

 
To describe turbulent particle dispersion in a 

Lagrangian frame the following two-step approach is 
frequently found in the literature: first, a Lagrangian 
step is assumed where the velocity of the same fluid 
particle at F at the next time step tn+1, located at F’, is 
computed; second, a subsequent Eulerian step is 
performed, generating the new driving fluid velocity 
at P’ from that at F’ for tn+1. The Lagrangian step is 
written generically as a Langevin-type equation: 
 

n 2
L L f Lu R ( t)u 1 R ( t)dW= ∆ + σ − ∆                (4) 

 
where un is the fluid velocity seen by the particle at 
tn, ∆t = tn+1 – tn, σf is the rms value of fluid velocity 
and RL is the Lagrangian autocorrelation function 
 

L
L

tR ( t) exp
T

 ∆
∆ = − 

 
             (5) 

 
with TL the Lagrangian fluid scale written as 
 

2
f

L TT C
σ

=
ε

                               (6) 

 
where CT is a coefficient and dW are independent 
Wiener processes with a zero mean and a variance 
equal to the time interval ∆t. 

The Eulerian (spatial) step is expressed as (Zhou 
and Leschziner, 1991; Lu et al., 1993) 
 

n 1 2
E L f Eu R ( t)u 1 R ( t)dW'+ = ∆ + σ − ∆                 (7) 

 
with the Eulerian autocorrelation function 
 

E
E

rR (r) exp
L

 ∆
= − 

 
                        (8) 

 

which depends on ∆r = |un – up
n| ∆t, the relative 

displacement between particle and fluid element, and 
LE(r), the Eulerian length scale. dW’ again denotes 
independent Wiener processes. 

In order to compare with the dispersion model 
given in Minier and Peirano (2001), the two-step 
Lagrangian approach employed by Sommerfeld et al. 
(1993), hereafter called standard dispersion model, is 
presented. 

In the approach of Sommerfeld et al. (1993) the 
fluctuating fluid velocities seen by the solids are 
built according to the following Langevin equation: 
 

n 1 n
i P,i i

2
f i P,i i

u ' R ( t, r)u '

1 R ( t, r)dW

+ = ∆ ∆ +

σ − ∆ ∆
            (9) 

 
where the correlation functions have Lagrangian and 
Eulerian components (see Figure 1): 
 

P,i L,i E,iiR ( t, r) R ( t)R ( r)∆ ∆ = ∆ ∆                        (10) 
 
and the repeated index i does not represent a sum. 

The Lagrangian correlations are exponentials 
depending on the Lagrangian time scale in the 
appropriate directions: 
 

2
f i

L,i L,i T
L,i

tR ( t) exp ; T C
T

σ ∆
∆ = − =   ε 

     (11) 

 

with 2 2
f i iu 'σ =  and CT = 0.24.  

 
The Eulerian correlation functions are expressed as: 
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r r
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∆ = − ∆ = − −     
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with 
 

2
2f

E L L f f L f T f i i
1L C T ; T C ; u ' u '
3

σ
= σ = σ =

ε
  (13) 

 
and  
 
CL = 3.0. 
 

The particle dispersion model presented in Minier 
and Peirano (2001), hereafter called the M&P model, 
uses the following equation for the increments of 
fluid velocity seen by the particle and is summarised 
as follows (the repeated index j does represent a 
sum): 
 

( )

( )

i
i p j j

i j

ij j j ij j

P U1du dt u u dt
x x

G u u dt B dW

∂ ∂
= − + − +

ρ ∂ ∂

− +
       (14) 

 
where U is the mean (Eulerian) fluid velocity and 

P  is the mean pressure. Let us emphasise that in 
Equation (14) the gradients of mean pressure and 
mean fluid velocity appear explicitly. The tensor Gij 
reads 
 

ij ij i j* * *
L, L, L,

1 1 1G r r
T T T⊥ ⊥

 
 = − δ + −
  

         (15) 

 
with r the unit vector aligned with the mean drift r 
= r rU / U , Ur = up – u and *

L,T , *
L,T ⊥ are the 

Lagrangian time scales seen in the directions parallel 
and perpendicular to the mean drift given according 
to the Csanady (1963) analysis: 
 

* *L L
L, L,

r r2 2

T T
T ; T

U U
1 1 4

2k / 3 2k / 3

⊥= =

+ β + β

  (16) 

 
Here β = TL/TE is the quotient between the 
Lagrangian and Eulerian fluid time scales and 
theLagrangian time scale is written as 
 

L
0

4 kT
3(C 2 / 3)

=
+ ε

                                   (17) 

The C0 coefficient is related to the CT coefficient 
previously introduced in Eq. (6). It is useful to 
reexpress the matrix Gij as 
 

ij 0 ij ij

ij i j

1 3G C H ; H
2 4 k

b (b b )r r⊥ ⊥

ε = − + = 
 

δ + −
                       (18) 

 
with  
 

*
L L,b T / T=  and *

L L,b T / T⊥ ⊥= . 
 

The diffusion matrix Bij is obtained as the 
solution of 
 

( )t
ijij

BB D=  

 
where Bij

t is the transpose matrix of Bij (in practice 
Bij is obtained by the Cholewski decomposition) and 
the symmetric matrix Dij is given by 
 

ij 0 ij ij ij
2D C H ( H )
3

 = ε λ + λ − δ 
 

                       (19) 

 
with the factor λ given as λ = 3Tr(H R)/2kTr(H), 
where Tr(H) denotes the trace of the matrix Hij and 
Rij the fluid Reynolds stress tensor. 

The Langevin M&P-like models have a number 
of interesting properties (Minier and Peirano, 2001), 
such as 
 Gaussian probability functions obtained in 

homogeneous turbulence and deviations of the 
Gaussianity in non-homogeneous turbulence are 
results of the model. 
 There is an absence of spurious drifts. 
 The form of the autocorrelation functions is 

derived from the model instead of assuming a certain 
form beforehand. 
 Correct particle dispersion coefficients are 

obtained for limiting cases. 
 Tchen's formulae for equilibrium values of fluid 

and particle turbulent kinetic energies are recovered 
in the case of isotropic turbulence. 

All these properties reflect that the Langevin 
M&P-like models are able to capture interesting 
physics of particle dispersion in general turbulent 
flows, while relatively simple mathematical 
manipulation of the stochastic model allows 
avoidance of some pitfalls and simplification of the 
derivation of macroscopic relations. 
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RESULTS 
 

In this section the performance of both particle 
dispersion models, the standard and the M&P, is 
compared to those of three experimental configurations: 
grid-generated turbulence, simple shear flow and 
confined jet flow laden with solids. In the first two, 
the particles are tracked in a prescribed turbulent 
flow field, whilst in the last one the fluid phase is 
described using a Reynolds stress model also taking 
into account the two-way coupling. 
 
Particle Dispersion in Grid-Generated Turbulence 
 

To validate the performance of models describing 
turbulent particle dispersion it is common to use this 
flow configuration. In particular, use of the Wells 
and Stock (1983) experiments is frequently seen in 
the literature. In that study the dispersion of solid 
particles from a point source in grid-generated 
turbulence were examined. The wind tunnel had a 
square cross section of 200 mm by 200 mm and the 
mean air velocity was 6.55 m/s. The mean 
fluctuating components in the streamwise and lateral 
directions along the wind tunnel (coordinate x) were 
determined by the correlation 
 

2 2

u u v v2 2

U x U xa b ; a b
M Mu ' v '

   = + = +   
   

   (20) 

 
where M = 25.4mm is the grid spacing and au = 
56.55, bu = - 8.87, av = 53.52 and bv = -7.05. The 
turbulent kinetic energy is determined by 
 

2 21k u ' 2v '
2

= +  

 
and the dissipation rate of turbulent kinetic energy is 
determined by 
 

3

2 2

u u v v

U 1 1
2M x xa b a b

M M

 
 
 ε = +     + +        

       (21) 

 
For calculation of particle dispersion these flow 

properties along the wind tunnel are prescribed for 
the cases considered. 

The experiment of Wells and Stock (1983) was 
designed to study the influence of external forces on 
the dispersion process. Due to the crossing 
trajectories-effect, the dispersion of particles in a 
turbulent flow is reduced, since particles drop faster 
through the turbulent eddies due to gravity. In order 
to simulate different gravitational fields the particles 
were charged and an electric field was applied to the 
flow channel. The dispersion of particles from a 
point source was measured by Laser-Doppler 
anemometry. Particles of different sizes were 
considered, as summarised in Table 1. The 
dispersion of the 5 µm particles was not expected to 
be strongly affected by an increasing gravitational 
force, since the drift velocity was small compared to 
turbulent fluctuations. In the case of larger particles, 
the crossing trajectories effect resulted in a strong 
reduction of the dispersion process. The effect of the 
electric field on particle dispersion could be 
simulated by introducing an effective gravitational 
constant, which was obtained from the particle 
equation of motion at steady state: 
 

D S
eff

p p

18 f V
g

D
µ

=
ρ

 

 
where fD = 1 + 0.15 Rep

0.687 is the non-linear term of 
the drag coefficient and Vs is the effective drift 
velocity or terminal velocity. 

In order to build up the statistics for the mean 
square displacement y2, 20000 particles were 
injected at the location x/M = 10 with a mean 
streamwise velocity of 6.55 m/s and an initial mean 
fluctuating velocity of 0.5 m/s, as suggested in the 
test case of the ERCOFTAC Summer School entitled 
"Experiments, Modelling and Numerical 
Calculations for Dispersed Multiphase Flow" held at 
Martin Luther University Halle-Wittenberg 
(Germany) from the 16th to the 19th of July 2001. 

Once the relevant fluid properties had been 
prescribed, Eqs. (20)-(21), the particles were tracked 
through the flow field with the particle equations of 
motion, Eqs. (1) and (2), using both particle 
dispersion models: the standard and the M&P 
models. 
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Table 1: Experimental parameters in the experiments of Wells & Stock (1983). 
 
Particle Diameter [µm] Particle Density [kg/m3] Gravitational Constant [m/s2] Terminal Drift Velocity [m/s] 

5 2475 0 0 
5 2475   900   0.17 

57 2420 0 0 
57 2420 28.4 0.545 
57 2420 72.4 1.216 

 
The simulation results are presented in Figure 2. 

The left plot shows the results for the small 5 µm 
particles. There it can be readily seen that in the case 
without external forces (Vs = 0) both models, 
standard and M&P, provide essentially the same 
results. However, when a mean drift velocity is 
present (Vs = 0.17), only the M&P model fits the 
experimental curve; in this case, the standard model 
underestimates the particle dispersion. This ability of 
the M&P model is not surprising because it explicitly 
incorporates the crossing-trajectory effect through 
the presence of the mean drift velocity in the 
modified fluid Lagragian time scale seen by the 
particles (Equation (16)).  

The right plot in Figure 2 contains the results for 
the inertial 57 µm particles where the effects of 
particle inertia and crossing-trajectories are expected 
to be more pronounced. In this case, the experiments 
show distinguishable dependence of particle 

dispersion on the applied external field due to the 
slower response of the particles to the fluid 
fluctuating velocity. Again, the M&P model is able 
to capture the experimental points satisfactorily, but 
the results obtained with the standard model show 
some differences with the experiments. It is 
necessary to point out that the level of agreement 
with the Wells and Stock measurements obtained in 
this work using the M&P model is comparable to 
that reported by Pozorski and Minier (1998). 
However, due to the factor u  that appears in the 
Langevin model for the velocity increments, Eq. 
(14), the M&P model needs to be worked out 
iteratively because in the beginning the statistics for 
fluid velocity seen by the particles u are still 
unknown. Nevertheless, a good initial estimation is 
the fluid mean velocity. Consequently, the CPU time 
necessary for the M&P model is remarkably higher 
than that for the standard model. 

 
 

 
(a)  

(b) 
Figure 2: Mean square displacement for the experiments of Wells & Stock (1983).  

Small particles (a) and larger particles (b) 
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Particle Dispersion in a Simple Shear Flow 
 

The second flow configuration considered is a 
simple shear flow. This numerical experiment is 
interesting because there are exact analytical 
solutions (Reeks, 1993; Zaichik, 1997; Hyland et al., 
1999). We deal with a two-dimensional flow with 
mean velocity values given as 
 
U = α y;  V = 0                    (22) 
 
Here α is the shear gradient, which is taken as 
constant. The fluid velocity fluctuations are written 
as Gaussian processes whose variances are the 
Reynolds stresses in the corresponding direction. 
The magnitude of these Reynolds stresses is 
prescribed from the beginning. 

As this was a numerical experiment, the 
simulations performed were inspired by those 
presented in Hyland et al. (1999), where the topology 
of particle concentration profiles were analysed for 
shear gradient strength and turbulent fluid shear 
stresses. However, the particle sizes considered were 
those in the experiments of Wells and Stock (1983), 
namely Dp = 5, 57 µm. The normal Reynolds stresses 
were prescribed to be one, u ' u ' v ' v ' 1= = , whilst the 
effect of the turbulent shear stresses on particle 
concentration was be investigated. In the 
simulations, the particles were injected into the 
center of the domain with zero initial velocity and 
were tracked during a total time of 5 s. No external 
forces were considered in the calculations.  

Figure 3 shows the small particle (Dp = 5 µm) 
concentration profiles when there is no mean shear  

present. The left plot shows the case without turbulent 
shear stress, u ' v ' 0= . In this case, it is known that the 
particle concentration profiles are concentric circles 
centered at the origin. Therefore, due to the isotropy of 
turbulence, the particles diffuse equally from the point 
source in all directions with the maximum 
concentration found at the center of the domain. It is 
necessary to point out that the lines are not exactly 
circles becuase the number of parcels used in the 
statistics was set as 104 in order to limit the CPU time. 
As the number of trajectories increases, the contours 
tend to become circular. When the turbulence is not 
isotropic (Figure 3, right), e.g., u ' v ' 0.5= − , the 
concentration profiles become concentric ellipses 
rotated -45o, as is also shown in Hyland et al. (1999). 

When 0α ≠ , i.e., shear is present and turbulence 
is isotropic (Figure 4, top left) the particle 
concentration profiles become concentric, rotated 
ellipses, this time a positive angle. As the shear 
increases, these ellipses stretch and rotate (Figure 4, 
top right). In addition, as the time increases, the 
ellipses expand due to diffusion. In the case of larger 
particles, Dp = 57 µm, the ellipses diffuse and 
expand less (Figure 4, bottom left). When a mean 
shear is combined with non-isotropic turbulence, 
u ' v ' 0.5= − , two rotational trends concur (Figure 4, 
bottom right): the turbulent shear stresses prevail 
near the center of the domain (where the mean 
velocity module is small), whilst the mean shear 
governs as we move further away. These results are 
in line with those presented in Hyland et al. (1999). 

It is worth emphasising that the former results are 
roughly the same for both particle dispersion models, 
standard and M&P, due to the absence of mean drift. 

 
 

 
(a) 
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(b) 

Figure 3: Profiles of particle concentration without mean shear (α = 0): u ' v ' 0=  
(a) and u ' v ' 0.5= −  (b). Small particles, Dp = 5 µm. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4: Profiles of particle concentration with mean shear. (a) α = 5, u ' v ' 0= , Dp = 5 µm.  (b) α = 10, 
u ' v ' 0= , Dp = 5 µm. (c) α = 5, u ' v ' 0= , Dp = 57 µm. (d) α = 5, u ' v ' 0.5= − , Dp = 5 µm. 

 
Particle Dispersion in an Axisymmetric Jet Flow 
 

The last experimental configuration considered is 
a confined axisymmetric jet flow laden with solids. 
This is a non-idealized flow frequently found in 
industrial processes, so the quality of the results 
obtained provide an idea of the ability of the 
numerical models used to predict real industrial 
flows. Moreover, the single-phase flow is well-
known and the usual turbulence models provide 
good fit to the single-phase data; the geometry is 
relatively simple with a number of symmetries and 
well-defined boundary conditions; there are several 
experiments that provide a complete set of data for 
both fluid and dispersed phase variables; and this 
flow configuration has historically been used to 
calibrate turbulent two-phase flow models since the 
sixties. 

An important characteristic of the jet flow 
configuration is its high non-uniformity and 
anisotropy of the turbulent Reynolds stresses. For 

instance, in a single-phase axisymmetric round jet it 
is known that normal radial and azimuthal stresses 
are half of the normal axial stresses, a situation 
which is more or less maintained for the gas phase in 
the two-phase flow case. On the other hand, the 
quotient of axial and radial stresses for the particle 
phase, 2 2

p pu ' / v ' , is typically larger than 10, which 
means that the anisotropy of the dispersed phase is 
much higher than that of the gas phase. This fact has 
also been found in a simple shear flow where Reeks 
(1993) showed that the particle normal Reynolds 
stresses for long times are anisotropic in spite of the 
fact that the fluid Reynolds stresses were imposed 
isotropically and homogeneously. Such particle 
turbulence anisotropy is not well captured by the 
Lagrangian approaches to the dispersed phase (Laín 
& Kohnen, 1999). One reason could be that the 
standard Langevin models used to describe particle 
turbulent dispersion in the Lagrangian approach are 
still too simplified. Therefore, given that the M&P 
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model more accurately reflects the underlying 
physics than the standard models, it is worth 
applying it in an attempt to improve estimation of 
particle turbulence anisotropy. 

The experimental configuration used was that of 
Hishida and Maeda, which is characterised by an air jet 

laden with glass particles flowing downwards without 
inlet swirl, issuing from a 13 mm diameter nozzle into 
a tube with a 60 mm diameter (Figure 5). The primary 
stream is confined by an annular flow in order to 
prevent recirculation. Details of the experimental set-up 
are given in Hishida and Maeda (1987).  

 
 

 
 

Figure 5: Sketch of the jet flow of Hishida & Maeda (1987). 
 
 
In the selected case, the velocity at the centerline 

of the inner pipe was 30 m/s and the velocity of the 
secondary flow, 15 m/s. The glass particle mean 
diameter was 64.4 µm and its density, ρp = 2590 
kg/m3. The mass loading ratio was 0.3, which 
corresponds to a mean volume fraction αp = 1.4× 10-4. 

The simulation was carried out with the 
axisymmetric two-dimensional Reynolds stress 
model presented in Laín and Sommerfeld (2003), 
considering the influence of the particles on the fluid 
turbulence, i.e., the so-called two-way coupling. 
Hence, in the calculations symmetry conditions were 
used and only half of the flow domain was 
calculated. Therefore, the computational domain 
considered was 520 mm in the streamwise and 30 
mm in the radial direction and it was discretised with 
a non-uniform mesh of 150× 60 control volumes in 
the axial and radial directions, respectively. This 
resolution was found to be sufficient to produce grid 
independent results. The profiles measured at x = 0 
were used as initial conditions, while at x = 520 mm 
an outlet condition was established. At r = 0 a 
symmetry axis condition was imposed and at r = 30 
mm a non-slip condition due to the solid wall was 
implemented. For the rather small particles 
considered drag and gravity were the most relevant 
forces, hence transverse lift forces were neglected in 
this case. Statistics were based on 25000 particle 

trajectories. The comparison between measurements 
and calculations at x = 130 mm downstream from the 
nozzle is illustrated in dimensional values, i.e., x/D = 
10 where D is the diameter of the nozzle. 

The results obtained in the jet flow of Hishida and 
Maeda with both particle dispersion models, 
standard and M&P, are discussed below. In Figure 6 
the comparison of calculations and experimental data 
for mean velocities and Reynolds stresses of both 
phases at x/D = 10 is presented. It can be readily 
seen that the results for the fluid properties are fairly 
similar for both particle dispersion strategies, where 
the two-way coupling was taken into account. 
Moreover, agreement with the fluid experimental 
data is satisfactory enough. Regarding the particle 
properties, the M&P model provided mean velocity 
values slightly above those in the results of the 
standard model (Figure 6 top left). This difference is 
due to the fact that the mean fluid velocity seen by 
the particles was higher in the M&P model than in 
the standard one, which in the latter cases coincided 
with the unconditional mean fluid velocity (see 
Figure 7). In the case of the particle Reynolds 
stresses, the M&P model had larger velocity 
fluctuations of p p pu ' u ' u '=  and p pu ' v '  than the 

standard model. In the case of the shear stresses the 
increment was large enough to capture the 
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experimental value, but it was not in the case of the 
axial stresses, which still lay below those in the 
experiments. Also, both dispersion models gave 
roughly the same results for particle radial stresses 
due to the fact that the radial direction was 
approximately homogeneous and particle and fluid 
stresses attained the equilibrium values (Lain and 
Aliod, 2003). It is necessary to point out that the 
underestimation of particle axial stresses typically 
occurs when a Lagrangian approach is applied to the 
dispersed phase in the jet flow, despite the careful 
implementation of particle inlet conditions (Lain and 
Kohnen, 1999). Therefore, the M&P model 
improved the estimations of particle stresses in the 
jet flow, as expected, but the improvement was not 
large enough to capture the particle turbulence 

anisotropy. 
One possible way to improve the performance of 

the M&P model would be to extend the drift vector 
in Equation (14) to include the gradients of particle 
mean velocity. The idea behind this proposal is that 
in simple shear flow the particle axial stresses 
contain contributions proportional to the particle 
mean velocity gradients (see, for instance, Zaichik 
(1997)). Moreover, using an Eulerian second-order 
model for the particles, Lain and Aliod (2003), 
showed that in the particle Reynolds stress equations 
there is an intrinsic source proportional to the 
particle mean velocity gradients, finally making it 
possible to reproduce the particle phase anisotropy in 
the jet flow of Mostafa et al. (1989). This idea is 
currently being investigated. 

 
 

 
(a) 

    
(b) 

    
(c) 

 
(d) 

 
Figure 6: Mean velocities and Reynolds stresses for both phases in the jet flow of Hishida and Maeda (1987). 

Mean velocities (a), axial normal stresses (b), radial normal stresses (c) and shear stresses (d). 
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Figure 7: Mean fluid velocity seen by the particles in the standard and M&P models. 

 
 

SUMMARY AND CONCLUSIONS 
 

In this article the performance of the turbulent 
particle dispersion model presented in Minier and 
Peirano (2001), which is based on a Langevin model 
for the acceleration of the fluid velocity seen by the 
particles, was evaluated and compared with the 
model reported in Sommerfeld et al. (1993), 
representative of what we call a standard turbulent 
particle dispersion model. The tests comprised three 
flow configurations: grid-generated turbulence 
(Wells and Stock, 1983), simple shear flow (Hyland 
et al., 1999) and axisymmetric round jet flow 
(Hishida and Maeda, 1987). In general, the Minier 
and Peirano model provided better results than the 
standard model because its construction better 
reflects the underlying physics of particle dispersion 
for general turbulent flows, but at the expense of a 
higher computational cost. In particular, the Minier 
and Peirano model provides estimations closer to the 
particle Reynolds stresses in the axisymmetric jet of 
Hishida and Maeda (1987) than the standard model, 
but still underestimated the particle axial stresses. 
Modification of the Langevin model to include terms 
proportional to the gradient of particle mean velocity 
could result in an improvement of the results for 
strongly non-uniform flows, such as the jet 
configuration. 
 
 

NOMENCLATURE 
 
cD  Drag coefficient   (-)
D Nozzle diameter (m)
Dp  Particle diameter   (m)
dW  Wiener process    (s1/2)

g  Acceleration of gravity  (m/s2)
K Turbulent kinetic energy (m2/s2)
LE Eulerian length scale (m)
mp  Particle mass (kg)
P  Pressure  (Pa)
RE Eulerian autocorrelation 

function 
(-)

RL Lagrangian autocorrelation 
function 

(-)

Rep   Particle Reynolds number (-)
t  Time  (s)
TE Eulerian time scale  (s)
TL Lagrangian time scale  (s)
u  Fluid velocity   (m/s)
u’  Fluctuating velocity (m/s)
up  Particle velocity (m/s)
x  Position  (m)
 
Greek Letters 
 
α  Fluid flow shear rate  (s-1)
ε  Rate of dissipation of 

turbulent kinetic energy   
(m2/s3)

ρ  Fluid density   (kg/m3)
ρp  Particle density    (kg/m3)
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