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Abstract - A mathematical model is developed to describe the coupling between heat, mass, and momentum 
transfers and is applied to simulate the drying of saturated and shrinking media. This model is called “the 
Darcy-flow model”, which is based on the fact that the liquid flow is induced by a pressure gradient. The 
main novelties of the model are that firstly no phenomenological law need be introduced by keeping solid 
mass conservation and solid volume conservation together and secondly we use the effective stresses notion 
strongly coupling mechanical behaviour with mass transport. The analysis is limited to the preheating and the 
constant rate drying periods because shrinkage occurs during these two periods for most materials. Our 
purpose is to simulate the drying process and to compare the results of the simulations and the experiments 
done on clay material to demonstrate the consistency of the model developed. One of the important 
conclusions is that is no correlation between moisture flow and moisture gradient. 
Keywords: Drying; Darcy-flow model; Shrinkage; Saturated media; Liquid pressure gradient; Effective stresses. 

 
 
 

INTRODUCTION 
 

The drying phenomenon is viewed as a process of 
simultaneous energy and mass transfer, occurring 
both inside and outside the material. Heat and mass 
transfer are coupled by the requirement that all 
phases remain in thermodynamic equilibrium at the 
local temperature (Whitaker, 1977). Thus 
evaporation rates are determined locally by the 
balance between heat flow, temperature change, and 
moisture flow, all subject to phase equilibrium 
constraints. The overall drying phenomenon results 
from the simultaneous interaction of all of these 
processes. These mechanisms of heat and mass 
transport are critical factors in this conceptual 
description of drying. 

There is a large body of literature comparing 
predicted results of drying models that either 
consider or neglect shrinkage. But it is necessary to 
incorporate shrinkage into the drying model, 
especially when dealing with agricultural products 
(Perré and May, 2001) and building materials like 
wood (Perré and Passard, 2004) and ceramics (Gong 
and Mujumdar, 1998), where shrinkage is a key 
factor in the dehydration phenomena. 

The complexity of considering all the transport 
mechanisms in the drying process renders the 
solution impracticable. In order to take into account 
these relevant mechanisms, the most common 
practice is to lump all effects of liquid migration into 
the diffusion coefficient (Coumans, 1987; Kechaou 
and Roques, 1990; Katelaars, 1992; Achanta et al., 
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1997; Zagrouba et al., 2002a; Mihoubi et al., 2004; 
Chemkhi et al., 2004a; Chemkhi et al., 2005a). In so 
doing, the diffusion coefficient becomes an effective 
coefficient. Fick’s first law of diffusion is at times 
replaced by Darcy’s law in describing moisture 
movement in drying. Darcy’s law in its simplest 
form expresses the proportionality between the 
average velocity of a fluid flow and the flow 
potential, comprised of the pressure gradient existent 
through porous media and the gravitational 
contribution. Even though it is an empirical 
formulation, it was theoretically derived and may be 
used in place of the momentum balance for fluid 
phases. Darcy’s law is applicable to multiphase 
mixtures as opposed to Fick’s law, which requires the 
assumption of a homogeneous mixture. For that reason 
the former is preferable (Katekawa and Silva, 2006). 

In this paper, we present a mathematical model to 
describe the drying of a clay material. This moisture 
transfer model is based on the fact that the liquid 
flow is induced by a pressure gradient and it is valid 
for saturated and shrinking media. The analysis is 
limited to the preheating and the constant rate drying 
periods because shrinkage occurs essentially during 
these two periods. The description takes into account 
the shrinkage via coupling between the mechanical 
behaviour of the material, which is supposedly 
elastic, and mass transfer through liquid pressure. 
Moisture and temperature profiles are presented and 
discussed. Stress fields developed during drying are 
also presented and discussed. Finally, the results of 
the model are discussed and criticized. 

This study is part of a larger project on drying 
being conducted in our laboratory since 2000. 
Zagrouba et al. (2002b) and Mihoubi et al. (2002) 
presented the kinetics, the characteristic curve, and 
the experimental characterisation for the drying of 
clay. Then Zagrouba et al. (2002a), Mihoubi et al. 
(2004), and Chemkhi et al. (2004a; 2005a) discussed 
the transfer phenomena during the drying of 
deformable media using the diffusion model. Finally, 
Chemkhi et al. (2004b; 2005b) and Chemkhi and 
Zagrouba (2005) presented the water sorption 
equilibrium, the water diffusion coefficient, and 
some physical and chemical properties of clay 
material. 
 

 
MATHEMATICAL MODELLING 

  
In this paragraph, we present the mathematical 

modelling to describe the process of drying of 
saturated and shrinking media. Conservation 
equations are first written for each phase. The 

macroscopic partial differential equations are derived 
by integrating over a representative volume of these 
microscopic conservation laws. The total momentum 
conservation is the sum of solid and liquid 
momentum conservation. Darcy’s law is established 
by introducing, on a phase scale, the rheological 
behaviour of a classic fluid for the liquid phase in the 
liquid momentum conservation. This law, which 
links the average liquid velocity to the pressure 
gradient, can be used to replace the liquid 
momentum conservation. The assumption of 
incompressibility of each phase gives the two 
supplementary equations necessary to complete the 
macroscopic description. So, both volume and mass 
conservation equations are maintained for the solid 
phase so that the introduction of a phenomenological 
law becomes unnecessary. 

The continuum approach, based on the volume 
averaging theory developed by Whitaker (1977), 
couples the heat and mass transfer with the 
mechanical behaviour of the material and takes into 
account the basic transport phenomena on the pore 
scale, including liquid transport by capillary forces. 
The analysis is limited to the preheating and the 
constant rate drying periods: the medium is still 
saturated and the deformations occur essentially 
during the constant drying rate period for clay 
material (Katelaars, 1992). 

The above description of moisture transfer 
mathematical modelling was also developed by Sfair 
et al. (2004), but it isn’t solved and the authors don’t 
validate their theoretical formulation. The novelty 
that we defined the momentum conservation that 
assures the high coupling between mass transfer and 
the mechanical behaviour of the material. The notion 
of Terzaghi’s effective constraint is introduced to 
respect the total momentum conservation. But the 
formulation of Sfair et al. (2004) does not respect the 
mechanical equilibrium because they deduce the 
constraints from the volume shrinkage. 
 
Assumptions 
 
To simplify the problem of heat, mass, and 
momentum transfer, the following assumptions are 
made: 
 The medium is assumed saturated and biphasic 

(solid and liquid phase only), 
 Mass and energy transport are considered one-

directional because of the small thickness of the 
sample compared to the other dimensions, so all 
cross effects are neglected, 
 The gravity and the convective inertial effects are 

both neglected, 
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 The evaporation of water takes place only at the 
surface of the material because it is still saturated 
during the constant rate drying period, 
 The liquid phase is incompressible, 
 Local thermodynamic equilibrium is assumed, 
 The initial distribution of moisture and 

temperature are uniform, and initially no mechanical 
constraints are applicable to the medium. 
 
Phase Scale Equations 

 
The mass, momentum, and heat transports are 

initially described for each phase by classical 
balance equations as well as the boundary conditions 
on the phase scale, where the subscripts “l” and “s” 
mean liquid and solid phases, respectively. 

The mass conservation for the liquid phase is 
given by this equation: 
 

( )l
l l. v 0

t
∂ρ

+∇ ρ =
∂

             (1) 

 
The gravity and the convective inertial effects are 

both neglected. Thus, the liquid momentum 
conservation equation for a mono-component phase is 
 

l. 0∇σ =                 (2) 
 

The energy conservation equation is written, with 
the assumption of no external heat sources: 
 

( ) ( )l l
l l l l l

h . v h . K T
t

∂ρ
+∇ ρ =∇ ∇

∂
        (3) 

 
At this stage, for the liquid phase we have five 

scalar equations, which are not enough to describe 
the phenomena. To close the set of equations for the 
liquid phase, one more equation is necessary to 
obtain the six scalar unknowns: density, the three 
components of velocity, temperature, and liquid 
pressure, which come from the rheological behaviour 
of the Newtonian liquid. The additional equation is 
obtained by assuming the flow of liquid phase to be 
incompressible: 
 

l.v 0∇ =                 (4) 
 

A description similar to that for the liquid phase 
is obtained for the solid phase: 
 

( )s
s s. v 0

t
∂ρ

+∇ ρ =
∂

                   (5) 

 

s. 0∇σ =                 (6) 

( ) ( )s s
s s s s s

h
. v h . K T

t
∂ρ

+∇ ρ = ∇ ∇
∂

        (7) 

 
It is also reasonable to assume the solid phase as 

incompressible: 
 

s.v 0∇ =                 (8) 
 

Contrary to Eq. 4, this last equation is not 
necessary to provide a complete modelling of the 
solid phase. We have five scalar equations and five 
unknowns: density, the three components of velocity, 
and temperature. Pressure does not appear in the 
stress-strain relation of the solid phase. Eq. 9 is an 
extra equation for the solid phase that will be 
maintained because it will be helpful for not having 
to use a phenomenological law later. The average of 
this equation will replace the arbitrary link between 
averaged liquid pressure and liquid volume fraction 
introduced in the literature. 

The boundary conditions are 
 

( )s s slv w .n 0ρ − =              (9) 
 

( )l l lsv w .n 0ρ − =            (10) 
 

l ls s sl.n .n 0σ + σ =            (11) 
 
( ) ( )l l ls s s slK T .n K T .n 0∇ + ∇ =       (12) 
 
Darcy-Flow Model 

 
During the drying process the volume of a clay 

sample depends on its moisture content (Katelaars, 
1992; Chemkhi et al., 2005b). It is well known that 
beyond a certain critical moisture content the 
decrease of volume in clay equals the volume of the 
amount of moisture removed: the shrinkage is ideal. 
This means that the internal transfer of moisture to 
the drying surface is completely controlled by 
Darcy’s law in a deformable porous matrix. So it is 
necessary to introduce a model that takes into 
account the basic transport phenomena on the pore 
scale, including liquid transport by capillary forces: 
the Darcy-flow model. After presenting the phase 
scale equations, the transport phenomena are 
described rigorously. However, to solve these 
equations requires knowledge of the microscopic 
geometry and very important computational time. 
Volume averaging allows this difficulty to be 
overcome and results in the local scale description 
constituted by the averaged previous equations. 
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Local Scale Equations 
 

The mathematical developments necessary to 
pass from the phase scale description to the local one 
are not presented here: both of the descriptions are 
presented in order to emphasise the physical origin 
of the relations used. 

First, the medium is saturated: no gaseous phase 
will be developed and at any time the material is 
composed of liquid moisture and solid only. 
 

s l 1ε + ε =              (13) 
 

Using the classical volume averaging theory 
(Marle, 1967; Slattery, 1967; Whitaker, 1967), we 
have for the solid phase: 
 

( )ss
s s. v 0

t
∂ρ

+∇ ρ =
∂

          (14) 

 

sl
s s sl

A

1. .n dA 0
V

∇σ + σ =∫         (15) 

  

sl

sl

s ss s
s s s

s
s s s sl s s s

A

s s sl
A

h .( h )
t

1. K T T .n dA h
V

1 K T .n dA
V

∂ρ
+∇ ρ ν =

∂

  ∇ ∇ + −ρ ν +  
  

∇

∫

∫

   (16) 

 
s
s csteρ =               (17) 

 
For the liquid phase, we obtain 

 

( )ll
l l. v 0

t
∂ρ

+∇ ρ =
∂

           (18) 

 

ls
l l ls

A

1. .n dA 0
V

∇σ + σ =∫         (19) 

 

( )

ls

ls

l ll l
l l l

l
l l l ls l l l

A

l l ls
A

h . v h
t

1. K T T .n dA h v
V

1 K T .n dA
V

∂ρ
+∇ ρ =

∂

  ∇ ∇ + −ρ  
  

+ ∇

∫
∫

    (20) 

 
l
l csteρ =               (21) 

 

For the energy conservation (Eqs. 16 and 20), the 
hypothesis of thermodynamic equilibrium is 
commonly assumed (Whitaker, 1977): 
 

s lT T T= =              (22) 
 

With this assumption and the boundary equation 
(Eq. 12), the sum of Eqs. 16 and 20 results in: 
 

( )

( ) ( )

l l s s

l l s s eff
l l l s s s

h h
t

. v h v h . K T

∂
ρ + ρ +

∂

∇ ρ + ρ = ∇ ∇

      (23) 

 
The effective conductive tensor (Keff) is given by 

the experiment. 
 
Reformulation of Mass Transfer Equation 
 

By introducing the volume fraction (ε) for the two 
mass conservation equations, we obtain 
 

( )l
ll l
l l. v 0

t
∂ε ρ

+∇ ρ =
∂

          (24) 

 
Taking into account the incompressibility (Eq. 

21), the following ensues: 
 

( )l
l. v 0

t
∂ε

+∇ =
∂

           (25) 

 
The same logic for the solid phase gives 
 

( )s
s. v 0

t
∂ε

+∇ =
∂

           (26) 

 
The sum of Eqs. 25 and 26 is 
 

( ) ( )s l
s l. v v 0

t
∂ ε + ε

+∇ + =
∂

        (27) 

 
Using Eq. 13, the left term of Eq. 27 is nil, which 

results in: 
 

( )s l. v v 0∇ + =             (28) 
 

Introducing the generalised Darcy’s law for the 
liquid flow (Eq. 29) and neglecting the effect of 
gravity (Eq. 30): 
 

( )l s l l
l s l l

l l

k
v v . P g= − ∇ −ρ

ε µ
        (29) 
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s s l
s l s s l s l

l

k
v v v v . P+ = ε + ε − ∇

µ
        (30) 

 
So we finally obtain the first conservation 

equation substituting Eq. 30 into Eq. 28: 
 

s l
s l

l

k
. v . P 0
 

∇ − ∇ = µ 
          (31) 

 
The second conservation equation is deduced from 
Eqs. 26 and 30: 
 

s ll
l s l

l

k
. v . P 0

t
 ∂ε

+∇ ε − ∇ = ∂ µ 
       (32) 

 
Energy Conservation 
 
 The energy balance for a general control volume 
assumes that heat is transferred only by the 
conduction process, which is logical due to the weak 
thickness of the sample (Couture, 1995): 
 

( )TCp . K. T 0
t

∂
ρ −∇ ∇ =

∂
         (33) 

 
with: 
 

s s l lCp Cp Cpρ = ρ + ρ               (34) 
 
Mechanic Equilibrium, Effective Stresses 
 

The sum of equations 2 and 6 gives the 
mechanical equilibrium equation: 
 

.( ) 0∇ σ =              (35) 
 

Using Biot’s consolidation theory (Biot, 1941) 
and the work of Coussy (1991), the total stress tensor 
is the sum of two contributions: the first contribution 
is the pure mechanical solid behaviour and the 
second is the fluid pressure contribution: 
 

l
s s l lε ε P Iσ = σ −            (36) 

 
Introducing the notion of effective stresses 

proposed by Terzaghi (1943), these stresses (σeff) are 
defined as the sum of the total constraint (σ) and the 
liquid pressure (Pl

l):  
 

eff l
lP Iσ = σ +            (37) 

 

Because of the coupling between the solid matrix 
and the liquid phase, this equation links mechanical 
behaviour with liquid pressure and we obtain a 
strong coupling between mechanical behaviour and 
mass transport. 

So we obtain the momentum conservation 
equation assuming the elastic behaviour of the 
medium: 
 

( )( )l
l. .tr  I 2. P I 0∇ λ ε + µε − =       (38) 

 
The strain tensor is defined as a function of the 

displacements: 
 

( ) ( ) ( ) ( )t t1 u u u . u
2
 ε = ∇ + ∇ + ∇ ∇
 

     (39) 

 
Boundary Conditions 
 
 Adiabatic surface (x=0): No exchange: 

 

l
lP 0∇ =              (40) 

 

( )K T .n 0− ∇ =             (41) 
 
u 0=               (42) 
 
 Exchange surface (x=e): 

 
l m
l l

l l

k F. P .n
 
− ∇ = µ ρ 

          (43) 

 

( ) ( )v c eK. T .n mh h T T∞− ∇ =− + −       (44) 
 

.n 0σ =               (45) 
 
Fm is the mass flow defined as 
 

( )m m g satF h C C∞= ρ −          (46) 
 
m  is the evaporating mass flow defined as (Kechaou 
and Roques, 1990) 
 

( )m v
v,surf v,a

a

h M
m  P P

R T
= −         (47) 

 
Km is the mass transfer coefficient calculated from 
the Colburn analogy (Sieder and Tate, 1936) only in 
the case of a pure convective process: 
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c
m

air air

hh
Cp

=
ρ

            (48) 

 
The heat transfer coefficient hc is given by the 
correlation of Sieder and Tate (1936) in the case of a 
rectangular duct (length “L” and hydraulic diameter 
“dh”): 
 

c
h

0.8 1 3 h

K  Nuh
d

6 dNu 0.023 Re  Pr  1
L

=

 = + 
 

       (49) 

 
Numerical Strategies Used for Resolution of the 
Transport Model 
 
 To sum up, the model consists of the following 
averaged equations:  
 the mass conservation equations (Eqs. 31 and 32), 
 the energy conservation equation (Eq. 33), 
 the momentum conservation equations (Eq. 38), 
 and the boundary conditions (Eqs. 40-45). 

Here liquid pressure is an unknown that has to be 
calculated as liquid volume fraction, solid velocity, 
and temperature. The first step in numerical 
resolution of this model is the simulation of one-
dimensional convective drying of clay material. 

The generalized system of transport equations is 
discretised by applying the well-known conservative 
finite-volume technique originally devised by 
Patankar (1980). During the inner iteration phase the 

system is solved by employing the biconjugate 
gradient stabilised method (Van der Vorst, 1992). 
This method is a computationally efficient technique 
for solving the complicated set of drying equations 
and has been shown in previous research to offer 
better rates of convergence to the fixed point (Perré 
and Turner, 1997). 
 

 
MATERIAL AND EXPERIMENTS 
 

The relevance of the model was justified by 
experimental verification. The experiments were 
performed in the drying tunnel (see Figure 1) with 
adjustable temperature, air velocity, and air 
humidity. A parallelepiped sample of clay material, 
with approximate dimensions of 1.5x12x15 cm was 
placed on the sample holder and the drying air 
circulated over its surface. The mass evolution of the 
sample was controlled by a precision balance 
connected to a computer, allowing data acquisition. 
Inlet air temperature and relative humidity were 
measured by a thermo-hygrometer. Air velocity was 
measured by an anemometer. The accuracy of the 
measurements is as follows: 10-3 g for mass, 0.1 °C 
for temperature, 0.1 m/s for air velocity and 1% for 
humidity. The drying process was controlled by a PC 
with a developed acquisition program. During the 
experimental run the following parameters were 
controlled and registered: drying time, inlet air 
velocity, inlet air temperature, inlet air relative 
humidity, and sample mass. 

 

 
 

Figure 1: The drying tunnel in the TREFLE laboratory 
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SIMULATION AND DISCUSSION 
  

The main physical characteristics of the clay 
material used in the simulations are summarised in 
Table 1. 
 
Simulation Results  
  

The model was validated through a comparison of 
predicted variable values with those obtained 
experimentally. In fact, Figures 2 and 3 represent 
respectively validation of the average moisture 
content and the volume shrinkage for the following 
drying conditions (T=40°C, RH=40% and V=2m/s). 
We can consider that the mathematical model was 
largely satisfactory for an overall experimental 
measurement. The deviations between experimental 
and simulated data are essentially due to calculation 
errors and to the hypothesis of a one-dimensional 
problem. So the computation is sufficiently accurate 
to provide a perspective tool to analyse the different 
physical phenomena governing the drying process. 

In Figure 3, we remark that for moisture contents 
less than 0.13 (d.b), the simulated shrinkage does not 
agree with the measured values. In fact, during the 
drying of clay material, porosity can be developed 
when air penetrates and the medium becomes 
unsaturated. For the simulations, we assume that the 
medium is still saturated so the shrinkage is ideal. 
 In Figure 4 the moisture distribution in the

sample as a function of effective thickness of the 
sample and time is presented for the drying process 
in air at 40°C during the two first phases.  
The moisture content (W) is deduced from the liquid 
volume fraction as follows: 
 

( )

l
l l

s
l s

W
1
ε ρ

=
− ε ρ

            (50) 

 
Every curve in the Figure refers to the moisture 

distribution from the bottom to the surface of the 
sample after the drying time indicated on the curve. 
The effect of shrinkage on the sample was taken into 
account during calculation of moisture content. A 
uniform moisture profile was assumed at the 
beginning of drying. It can be seen that the surface 
moisture content and the thickness of the sample 
during drying decrease sharply with time. The weak 
thickness of the sample (7.5 mm), the hypothesis of 
saturated medium, and the important permeability 
value result in quasi-flat profiles for moisture 
content. 

The spatiotemporal distribution of temperature is 
presented in Figure 5. These curves are nearly flat, 
which is logical considering the weak thickness of 
the sample. Temperature increases considerably at 
the beginning of drying (time<30 minutes) up to the 
humid temperature (Th=301 K) and then it increases 
slowly with time, tending towards drying air 
temperature. 

 
 

Table 1: Physical characteristics of clay material used in the simulation 
 

Parameter Formula or value 

Equilibrium water sorption: GAB model parameters (Chemkhi et al., 
2004b) 

mX 0.0282
k 0.8331
C 10.408

=
 =
 =

 

Initial material porosity 0.332ε =  

Intrinsic permeability (m²) 11k 10−=  

Intrinsic solid density (kg/m3) s
s 2678ρ =  

Poisson’s ratio (Katelaars, 1992) 0.35ν =  

Solid specific heat (J/kg) (Boukadida and Ben Nasrallah, 2002) sCp 1900=  

Solid thermal conductivity (W/m.k) (Boukadida and Ben Nasrallah, 2002) s 1.442λ =  

Young modulus (Pa) (Katelaars, 1992) 4.818
1E 0.96exp

0.061 1.735X
 =  + 
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Figure 2: Comparison between the simulated average moisture contents  

and the experimental data (T=40°C, RH=40% and V=2m/s) 
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Figure 3: Comparison between the simulated and the measured volume shrinkage 
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Figure 4: Simulated moisture content profiles 
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Figure 5: Simulated temperature profiles 

  
The liquid pressure profiles of the mechanistic 

model are presented in Figure 6. We notice that they 
are parabolic in shape and decrease as a function of 
time. Liquid pressure gradients appear at the beginning 
of drying and they will be the driving force of the water 
migration. As a response to this moisture flux, the solid 
matrix shrinks in the opposite direction to overcome the 
volume of liquid evacuated. 

The liquid pressure remains constant at the 
surface because at the liquid/gas interface, its value 
is equal to the difference between the gas phase 
pressure (atmospheric pressure) and the capillary 
pressure at the surface, which is assumed constant 
during the constant drying rate period: 
 

l g
l g cP P P= −                               (51) 

 If we compare Figures 4 and 6, we also observe 
that there is no concordance between the pressure 
gradients and the moisture gradients issuing from the 
model, so moisture gradient can not be the driving 
force of water migration (Sfair, 2004). 

In Figure 7 profiles for normal stress during time 
are presented. This normal stress is the stress in the 
“x” direction. Since the thermal conditions of drying 
are moderate (low temperature, T=40 °C and 
moderate air velocity, V=2 m/s), the stress gradients 
in the sample are not important. Stresses are 
compression forces because the material shrinks 
along the drying process. These forces will return to 
equilibrium after the end of the drying in the 
decreasing drying rate period, which is not of 
concern in this study. 
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Figure 6: Simulated liquid pressure profiles 
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Figure 7: Simulated stress profiles 

 
 

DISCUSSION 
  

In the literature, we can observe that the moisture 
content profiles for most materials are classically 
parabolic (strong gradients of moisture content). In 
fact, the product surface exposed to air flow dries 
fast and quickly enters the unsaturated zone. But in 
the case of deformable media, evacuation of 
moisture is compensated by the shrinkage of the 
solid matrix, and the medium remains saturated 
despite the decrease in the quantity of moisture. 
Thus, the gradients of moisture content should not be 
strong because of the small difference in humidity 
from the surface to the inside of the material. For the 
model developed, water transport is easy because the 
permeability of the medium is important (k=10-11) 
and thus the moisture profiles are not parabolic. We 
have also assumed that the medium remains 
saturated along the constant rate drying period, so 
the moisture content at the surface does not decrease 
quickly and remains similar to that inside the 
medium. 

 Most drying modelling adopts a diffusion 
model, but there are many critics of this formulation 
(Fortes and Okos, 1980; Katekawa and Silva, 2006). 
Liquid diffusion may not be the only mechanism 
responsible for moisture migration inside a dried 
material. Other authors argue that a 
phenomenological law is without physical 
foundation and its use should be avoided and suggest 
a solid incompressibility equation to replace it 
(Fortes and Okos, 1980). In fact the Darcy-flow 
model avoids the use of a phenomenological law and 
its formulation has physical bases. Besides, contrary 

to affirmations in the literature, there is no 
correlation between mass flux and moisture gradient 
in the medium, contrary to the diffusion model 
formulation. 
 
 

CONCLUSIONS 
  
 A mathematical model called “the Darcy-flow 
model” presented in one-dimensional coordinates 
allows description of the coupling between heat, 
mass, and momentum transports during drying of 
deformable media considered an immiscible two-
phase system. The main novelties of the model are 
that by keeping solid mass conservation and solid 
volume conservation together no phenomenological 
law need be introduced and the strong coupling 
between mass transport and mechanical behaviour is 
maintained through the liquid pressure present in the 
momentum conservation equation. A finite volume 
method was used to solve the equations. The model 
is applied to the clay drying process. It is valid only 
for describing the preheating and the constant drying 
rate periods, where the medium remains saturated 
and shrinkage is observed. The simulated data agree 
with the measured values. The important conclusions 
are that our model is more consistent than the 
diffusion model because, from a physical point of 
view, the natural driving force is the pressure 
gradient and not the moisture gradient, and from a 
practical point of view, an equivalent transport 
coefficient must be identified numerically by 
matching experimental and predicted data in such a 
way that further validation becomes of no interest. 
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Besides, contrary to affirmations in the literature, the 
simulation demonstrates that there is no correlation 
between the moisture flow and the moisture gradient 
in the medium. 
 

 
NOMENCLATURE 

 
Cp specific heat  J/kg K
dh hydraulic diameter of the 

duct  
M

e thickness of the sample  M
E Young modulus  Pa
Fm mass flux  kg/m2 s
h enthalpy  J/kg
hc  convective heat transfer 

coefficient  
W/m K

hm  mass transfer coefficient  m/s
hv  vaporisation heat of the 

water  
J

I unit tensor 
k permeability  m²
K thermal conductivity  W/m K
L length of the duct  M
m  mass evaporation rate  kg/m s
Mv molar mass of the pure 

water  
g/mol

Nu Nusselt number 
P pressure  Pa
Pv,a vapor pressure in the 

ambient medium  
Pa

Pv,surf  vapor pressure at the 
product surface  

Pa

R ideal gas constant  J/K mol
Re Reynolds number 
Rv volume shrinkage  Rv=V/V0
T temperature  K
u displacements  M
v  phase velocity  m/s
w solid-liquid interface 

displacement velocity  
m/s

W moisture content  kg/kg
 
Greek  Letters 
 
ε strain (-)
εi  volume fraction (-)
λ, µ Lamé coefficients  Pa
µl liquid dynamic viscosity  Pa.s
ρ  density  kg/m
σ stress  Pa
 

Subscripts 
 
e surface (-)
l liquid (-)
s solid (-)
 
Averaging 
 

ix  average (-)

i
ix  intrinsic average (-)
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