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Abstract - Minimization of Gibbs free energy using activity coefficient models and nonlinear equation 
solution techniques is commonly applied to phase stability problems. However, when conventional 
techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. 
Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid 
equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase 
stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two 
distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free 
energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability 
analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms 
are compared with those of the Interval Newton method from the literature. Several different binary and 
multicomponent systems from the literature were successfully investigated. 
Keywords: Phase stability; Liquid-liquid equilibrium; Stochastic algorithms; Thermodynamic models. 

 
 
 

INTRODUCTION 
 

The phase split phenomenon in liquid mixtures is 
related to thermodynamic stability of the system and 
comprises important information for the projection, 
modeling and simulation of industrial processes that 
involve liquid phase separation. Phase stability 
analysis allows determination of the exact number of 
coexisting phases in stable equilibrium and also 
provides estimation of phase compositions, affording 
a suitable initialization for phase equilibrium 
calculations. 

Phase stability analysis of multicomponent 
mixtures is usually investigated by the Gibbs tangent 
plane distance criterion (Baker et al., 1982; 
Michelsen, 1982). For a given temperature and 
pressure, the necessary and sufficient condition for a 
phase with composition z to be stable is that the 
Gibss free energy surface of the mixture is not 
intercepted by the tangent hyper plane associated 
with this surface in x. To fulfill this condition, the 
Gibbs tangent plane distance function, TPD(x), must 
be nonnegative for any acceptable x. Therefore, it is 
possible to examine whether a phase is stable by 
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minimization of the TPD(x) function, subject to mass 
balance constraints. If the tangent plane distance 
function at the global minimum point has a value 
greater than or equal to zero, then the analyzed phase 
is thermodynamically stable because the TPD(x) 
function is also nonnegative for all x vectors 
contained in the permissible region. If the TPD(x) 
function is negative at its global minimum point, 
then the tangent plane lies above the Gibbs free 
energy surface, and hence the examined phase is 
unstable and will be subdivided into new phases. 

For the computational evaluation of this test, two 
distinct approaches can be employed: (i) resolution 
of an algebraic nonlinear set of equations that 
represents the stationary points of the Gibbs tangent 
plane distance function and (ii) direct minimization 
of the TPD(x) function, taking into account the 
constraints imposed by the mass conservation 
principle. In both cases, the application of 
conventional mathematical models presents 
difficulties, such as  dependence on an arbitrary 
initialization or the possibility that the solution 
converges to a trial root or to a local minimum. Since 
multiple roots may be found, especially when liquid 
phases are under inspection, the first strategy 
requires a mathematical method able to find all roots 
for the set of equations. The second approach, in 
contrast, requires a reliable global optimization 
method. 

The majority of numerical methods applied to 
phase equilibrium calculations has local convergence 
characteristics resulting in only local solutions and 
are very sensitive to initial guesses. Some work is 
available in the current literature regarding 
application of deterministic techniques for global 
optimization, such as homotopy continuation, 
branch-and-bound and Interval Newton analysis 
(Sun and Seider, 1995; McDonald and Floudas, 
1995; Souza et al., 2006; Lima et al., 2006). 
However, just a few studies make use of global 
stochastic techniques, like Simulated Annealing and 
Genetic Algorithm, for phase equilibrium and phase 
stability calculations (Zhu and Xu, 1999; Zhu et al., 
2000; Rangaiah, 2001). 

In this context, the aim of this work is to provide 
a systematic comparison between the two mentioned 
strategies for phase stability analysis: Simulated 
Annealing (Press et al., 1992), wich is a global 
optimization procedure, and a subdivision method 
(Smiley and Chun, 2001; Corazza et al., 2007) – 
henceforth denominated SubDivNL – employed for 
solution of the stationary points on TPD of liquid 
mixtures modeled by the NRTL activity coefficient 

model (Renon and Prausnitz, 1968). Comparison of 
the approach used in this work with Interval Newton 
analysis is also provided. 
 
 

PHASE STABILITY ANALYSIS 
 

The Gibbs free energy for liquid mixtures at low 
or moderate pressures can be modeled in terms of 
activity coefficients. Thus, the Gibbs tangent plane 
distance for a mixture with n number of components 
at specified temperature T and pressure P is given by 
(Baker et al., 1982): 
 

( ) ( ) ( )
n

*
i i i i i

i 1

TPD x ln x ln z
=

 = γ − γ ∑x x z             (1) 

 
where iγ  and *

iγ  are the activity coefficient of 
component i of tried and tested phases, respectively, 
and 1 n(x ,..., x )=x  and 1 n(z ,..., z )=z  represent the 
composition of tried and tested phases, respectively. 

Since a phase is stable if ( )TPD 0≥x , the 
function represented in Eq. (1) must be minimized 
with respect to all possible compositions, i.e.: 
 

( )
n

i
i 1

TPD

: 1 x 0
=

− =∑
xmin

subject to            (2) 

with i0 x 1≤ ≤  and i 1,..., n= . 
 
As discussed previously, this optimization 

problem can be solved by direct minimization of the 
objective function (Eq. 1) or computation of the 
stationary points of the  TPD(x) function, wich are 
determined by the first-order derivatives with respect 
to the ( n 1− ) independent mole fractions. The 
stationary points of TPD(x) can be obtained by 
solving the following set of algebraic nonlinear 
equations, subject to the mass balance restriction: 
 

( ) ( ){ }
( ) ( ){ }

i i i i

n n n n

ln x ln z

ln x ln z 0

 γ  −  γ  −   

 γ  −  γ  =   

x z

x z
        (3) 

 i 1,...,n 1= −     
 

When the activity coefficients are estimated using 
the NRTL model, this set of equations may have 
multiple roots in addition to the trivial solution x = z. 
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Simulated Annealing 
 

Simulated Annealing (SA) is a stochastic global 
optimization technique suitable for detecting a global 
minimum hidden among many local minima (Press 
et al., 1992). This method explores the analogy with 
the way that, when cooled slowly, a metal forms a 
crystalline structure with minimum energy. 
Metropolis et al. (1953) proposed that the thermal 
equilibrium of an annealing process could be 
simulated by the Boltzmann probability distribution. 

The Simulated Annealing algorithm is based on 
the Monte Carlo method and makes use of an 
objective function ( )ϕ x  to replace energy E. The 
vector x is defined in the n-dimensional space of the 
optimization variables and represents a particular 
configuration of the system. A parameter AT , 
analogous to the annealing temperature, is employed 
for evaluation of the Boltzmann factor. In 
accordance with Faber et al. (2005), a new vector, 

k 1+x , is randomly generated from the earlier state 
kx . If ( ) ( )k 1 k+ϕ ≤ ϕx x , then the new vector is 

unconditionally accepted, i.e., k 1 k opt+ = =x x x ; 
otherwise, the acceptance probability is determined 
by the Metropolis criterion. 

The progressive decrease in annealing 
temperature reduces the probability that a more 
energetic state be selected. As suggested by Faber et 
al. (2005), the annealing schedule can be set by 

j 1 j
A AT T+ = α  for j 1,...,= ζ , in which 0 1≤ α ≤ . However, 

just as excessively fast cooling may produce a structure 
with a higher energetic content, an inappropriate 
change in the annealing temperature can result in 
convergence to a local minimum. Furthermore, it is 
also essential to start from a conveniently high 
temperature in order to allow a more detailed 
exploration of the solution space of the problem. 

Over the past years the SA algorithm has been 
applied to several types of phase equilibrium 
calculation problems involving phase stability tests 
and flash equilibrium calculations by minimizing the 
Gibbs free energy (Zhu and Xu, 1999; Zhu et al., 
2000; Rangaiah, 2001; Teh and Rangaiah, 2003; 
Corazza et al., 2004; Souza et al., 2004; Bonilla-
Petriciolet, 2006) and parameter estimation of 
thermodynamics models (Henderson et al. 2001; 
Moura et al., 2005; Carvalho Jr., 2006; Franceschi et 
al., 2006). Preliminary studies indicated that the best 
values for phase stability calculations are 0

AT 1000.0= , 
0.9α =  and 10000ζ = . In this work, the SA 

algorithm used was that presented in Press et al. 

(1992), where the probability acceptance criterion used 
is ( )( )k+1Pr xrϕ ≥x , Pr is the Boltzmann probability 
distribution and xr is a random number [0,1]. 
 
Subdivision Algorithm 
 

According to Smiley and Chun (2001) the 
subdivision algorithm consists in a given set of 
algebraic nonlinear equations ( )F x  and a primitive 
interval (hyper rectangle) dR∈R , where d is the 
problem dimension, and the aim of a subdivision 
algorithm is to determine all values 

( ){ }* d F 0= ∈ =x x R x  through systematic subdivisions 

and trials in R. The first partition of R to congruent 
subrectangles is by division of all coordinates 
(variables) into two equal parts so as to obtain d2  
subrectangles ijR  from one rectangle in the dR  space 
(the index j identifies the subrectangles produced at a 
subdivision level i). 

For each subdivision level, the subintervals 
obtained are tested for the existence of roots in order 
that only those containing one or more solutions are 
maintained. The selection criterion is based on 
calculation of the Euclidean norm of the set of 
equations: 
 

( ) i
ij ijif F x 2−≤ + τ             (4) 

 
where 
 

( )
ij

d

ij k k
y R k 2k 1

F1 max b a
2 y∈

=

 ∂
τ = −  ∂ 

∑ x
       (5) 

 
then the subrectangle ijR  is retained or else, it is 
discarded (y is the vector of the randomly sampled 
points), and ak and bk are the lower and upper bonds of 
unknowns. 

After a finite number of subdivisions, a 
conventional method (e.g. the Newton-Raphson 
method) is employed to determine the roots, taking 
as initial values the middle points of the last 
subintervals. Since the solutions are confined to the 
retained subintervals, the convergence of the adopted 
method becomes more efficient and reliable (Smiley 
and Chun, 2001). 

A recent study, a subdivision algorithm for phase 
equilibrium calculations of systems at high-pressures 
modeled with an equation of state was proposed. The 
results obtained were quite satisfactory (Corazza et 
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al., 2007). It may be interesting to note that, to our 
knowledge, an application of a subdivision algorithm 
to liquid-liquid equilibrium calculations is not 
available in the literature. In this work, from 
preliminary tests, the appropriate maximum number 
of subdivisions for phase stability tests was 
determined to be six. 
 
 

RESULTS AND DISCUSSION 
 

To validate the algorithms used in this work 
(Simulated Annealing and SubDivNL subdivision 
method), some results presented in the literature for 
liquid-liquid stability calculations with the NRTL 
model were selected. The investigated systems 
include binary, ternary and multicomponent 
mixtures. All the calculations were performed in a 
PC Pentium 4 2.66GHz with 512MB RAM. 

Case 1: citric acid (1) + butan-2-ol (2) system 
 

In Table 1 the results of phase stability tests for 
the citric acid (1) + butan-2-ol (2) binary system at 
25ºC and different overall compositions are 
presented. The binary parameters of the NRTL 
model were taken from Gecegormez and Demirel 
(2005), which were presented by Lintomen et al. 
(2001). One can see in Table 1 that, for this system, 
solutions obtained in this work are in perfect 
agreement with the roots found by Gecegormez and 
Demirel (2005), which used an interval analysis 
algorithm. It can also be observed that the 
SubDivNL algorithm had lower computational effort 
in terms of CPU time that the SA algorithm (our 
results) and was shown to be much less time-
consuming than the Interval Newton (IN/GB) 
algorithm reported on Gecegormez and Demirel 
(2005). 

 
Table 1: Results of phase stability analysis for the citric acid (1) + butan-2-ol (2) system at 25ºC. 

 
SubDivNL Simulated Annealing Interval Newton* 

(z1, z2) Stationary points  
(x1, x2) 

TPD 
(x) 

CPU 
(s) 

Global minimum  
(x1, x2) 

TPD 
(x) 

CPU 
 (s) 

Stationary points  
(x1, x2) 

TPD  
(x) 

CPU  
(s) 

(0.05, 0.95) 
(7.0315×10–3, 0.9930) 

(0.0500, 0.9500) 
(0.7096, 0.2904) 

–9.6957×10–3 
1.0000×10–9 

–0.6614 
0.09 (0.7096, 0.2904) –0.6614 0.53 

(7.0315×10−3, 0.9930) 
(0.0500, 0.9500) 
(0.7096, 0.2904) 

−9.6957×10–3 

0.0000 
–0.6614 

25 

(0.10, 0.90) 
(2.6555×10–3, 0.9973) 

(0.1000, 0.9000) 
(0.5705, 0.4295) 

–5.9344×10–3 
1.0000×10–9 

–0.2535 
0.11 (0.5705, 0.4295) –0.2535 0.56 

(2.6555 × 10−3, 0.9973) 
(0.1000, 0.9000) 
(0.5705, 0.4295) 

−5.9344 × 10–2 
0.0000 
−0.2535 

23 

(0.15, 0.85) 
(1.5716×10–3, 0.9984) 

(0.1500, 0.8500) 
(0.4558, 0.5442) 

–0.1147 
1.0000×10–9 

–7.3246×10–2 
0.11 (1.5716×10–3, 0.9984) –0.1147 0.48 

(1.5716×10−3, 0.9984) 
(0.1500, 0.8500) 
(0.4558, 0.5442) 

−0.1147 
0.0000 

−7.3246×10–2 
22 

(0.20, 0.80) 
(1.1991×10–3, 0.9988) 

(0.2000, 0.8000) 
(0.3695, 0.6305) 

–0.1570 
1.0000×10–9 

–1.2904×10–2 
0.10 (1.1991×10–3, 0.9988) –0.1570 0.56 

(1.1991×10−3, 0.9988) 
(0.2000, 0.8000) 
(0.3695, 0.6305) 

–0.1570 
0.0000 

−1.2904×10–2 
22 

(0.25, 0.75) 
(1.0739×10–3, 0.9989) 

(0.2500, 0.7500) 
(0.3044, 0.6956) 

–0.1795 
1.0000×10–9 

–4.3190×10–4 
0.10 

(1.0739×10–3, 0.9989) 
 
 

–0.1795 0.55 
(1.0739×10−3, 0.9989) 

(0.2500, 0.7500) 
(0.3046, 0.6956) 

–0.1795 
0.0000 

−4.3191×10–4 
23 

(0.30, 0.70) 
(1.0701×10–3, 0.9989) 

(0.2539, 0.7461) 
(0.3000, 0.7000) 

–0.1800 
2.6410×10–4 

1.0000×10–9 
0.08 (1.0701×10–3, 0.9989) –0.1800 0.58 

(1.0701×10−3, 0.9989) 
(0.2539, 0.7461) 
(0.3000, 0.7000) 

–0.1800 
2.6409×10–4 

0.0000 
24 

(0.40, 0.60) 
(1.3013×10–3, 0.9987) 

(0.1806, 0.8194) 
(0.4000, 0.6000) 

–0.1151 
2.7671×10–2 
1.0000×10–8 

0.09 (1.3013 × 10–3, 0.9987) –0.1151 0.55 
(1.3013×10−3, 0.9987) 

(0.1806, 0.8194) 
(0.4000, 0.6000) 

–0.1151 
2.7671×10–2 

0.0000 
22 

(0.50, 0.50) 
(1.8835×10–3, 0.9981) 

(0.1291, 0.8709) 
(0.5000, 0.5000) 

3.5767×10–2 
0.1282 

1.0000×10–8 
0.11 (0.5003, 0.4997) 1.6625 × 10–7 0.59 

(1.8835×10−3, 0.9981) 
(0.1291, 0.8709) 
(0.5000, 0.5000) 

3.5767×10–2 
0.1282 
0.0000 

24 

(0.75, 0.25) 
(1.1696×10–2, 0.9883) 
(3.3412×10–2, 0.9666) 

(0.7500, 0.2500) 

0.8308 
0.8323 

1.0000×10–8 
0.11 (0.7500, 0.2500) –8.5248×10–17 1.38 

(1.1696×10−2, 0.9883) 
(3.3412×10−2, 0.9666) 

(0.7500, 0.2500) 

0.8308 
0.8323 
0.0000 

26 

*Results obtained from Gecegormez and Demirel (2005) 
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Case 2: n-pentanol (1) + 2,2-dimethylbutane (2) 
system 

 
Results of phase stability analysis obtained in this 

work for the n-pentanol (1) + 2,2-dimethylbutane (2) 
system at 25 ºC and several global compositions are 
presented in Table 2. Results from the SA and 
SubDivNL algorithms are compared with solutions 
reported by Gecegormez and Demirel (2005). The 
NRTL parameters, which refer to a VLE set of 
parameters previously reported in the literature, were 
taken from Demirel and Gecegormez (1991).  

It can be observed in Table 2 that for the two 
overall compositions, z = (0.05, 0.95) and z = (0.20, 
0.80), results obtained in this work are different from 
those presented by Gecegormez and Demirel (2005). 
The TPD curves for mixtures containing respectively 
0.05 and 0.20 in mole fraction of n-pentanol are 
represented in Figures 1 and 2. As clearly shown in 
these figures, the nontrivial solutions reported by 
Gecegormez and Demirel (2005) are not true 
solutions for the phase stability test, so the system 

has only one phase in both cases.  
Moreover, the solutions presented in the literature 

are not stationary points on the TPD surface. In fact, 
the Euclidean norms of the set of equations 
calculated for such roots are far from zero: for z = 
(0.05, 0.95) and x = (0.1294, 0.8706), the value 

found is 
i i j

TPD
x ≠

∂
=

∂
0.0229, and for z = (0.20, 0.80) 

and x = (6.5086 × 10-2, 0.9349), the result is 0.0292.  
For all overall compositions tested for this 

system, our calculations only indicated the existence 
of a one-phase, homogeneous system, which just 
corroborates phase equilibrium data reported by 
Sayegh and Ratcliff (1976). 

Nevertheless, one should call attention to the fact that 
the use of a set of parameters coming from VLE to LLE 
calculations is not recommended (Poling et al., 2000). In 
this work, however, a parameter set from VLE (Demirel 
and Gecegormez, 1991) for LLE computations is applied 
just to enable numerical comparison with the results of 
Gecegormez and Demirel (2005). 

 
Table 2: Results of phase stability analysis for the n-pentanol (1) + 2.2-dimetilbutane (2) system at 25ºC. 

 
SubDivNL Simulated Annealing Interval Newton* 

(z1, z2) Stationary points  
(x1, x2) 

TPD  
(x) 

CPU  
(s) 

Global minimum  
(x1, x2) 

TPD   
(x) 

CPU 
(s) 

Stationary points  
(x1, x2) 

TPD  
(x) 

CPU  
(s) 

(0.05, 0.95) (0.0500, 0.9500) 1.0000 × 10–9 0.14 (0.0500, 0.9500) –3.8511 × 10–17 1.42 (0.0500, 0.9500) 
(0.1294, 0.8706) 

0.0000 
–1.8495 × 10–3 38 

(0.10, 0.90) 
(6.9187×10–2, 0.9308) 

(0.1000, 0.9000) 
(0.1500, 0.8500) 

–4.7463×10–5 

1.0000×10–8 
–9.8204×10–5 

0.11 (0.1500, 0.8500) –9.8214×10–5 1.50 
(6.9187×10–2, 0.9308) 

(0.1000, 0.9000) 
(0.1500, 0.8500) 

–4.7473×10–5 

0.0000 
–9.8214×10–5 

26 

(0.15, 0.85) 
(6.9168×10–2, 0.9308) 

(0.1000, 0.9000) 
(0.1500, 0.8500) 

5.0025×10–5 
9.7775×10–5 
1.0000×10–8 

0.05 (0.1500, 0.8500) –1.1395 × 10–16 0.61 
(6.9168×10–2, 0.9308) 

(0.1000, 0.9000) 
(0.1500, 0.8500) 

5.0013×10–5 
9.7765×10–5 

0.0000 
26 

(0.20, 0.80) (0.2000, 0.8000) 1.0000 × 10–8 0.08 (0.2000, 0.8000) –1.5542 × 10–16 0.53 (6.5086×10–2, 0.9349) 
(0.2000, 0.8000) 

2.9150×10–3 
0.0000 25 

*Results obtained from Gecegormez and Demirel (2005) 
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Figure 1: TPD curve for the n-pentanol (1) + 2,2-dimetilbutane (2) system at 25 oC and z1 = 0.05. 
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Figure 2: TPD curve for the n-pentanol (1) + 2,2-dimetilbutane (2) system at 25 oC and z1 = 0.20. 

 
Case 3: water (1) + butyl glycol (2) system 

 
The NRTL parameters for this system, which are 

presented in the literature (Demirel and Gecegormez, 
1991) and refer to a set of parameters from VLE, 
were taken from Gecegormez and Demirel (2005). 
Solutions of the phase stability test in relation to 
LLE for the water (1) + butyl glycol (2) system at 

5ºC and several global compositions are presented in 
Table 3. As depicted in Figures 3 and 4 the nontrivial 
roots reported by Gecegormez and Demirel (2005) 
for the water overall molar fractions of 0.05 and 
0.10, respectively, are not true roots. According to 
the results from the SA and SubDivNL algorithms 
presented in this work, this system has only one 
stable phase at these compositions. 

 
Table 3: Results of phase stability analysis for the water (1) + butyl glycol (2) system at 5ºC. 

 
SubDivNL Simulated Annealing Interval Newton* 

(z1, z2) Stationary points  
(x1, x2) 

TPD  
(x) 

CPU  
(s) 

Global minimum  
(x1, x2) 

TPD 
 (x) 

CPU 
 (s) 

Stationary points  
(x1, x2) 

TPD  
(x) 

CPU  
(s) 

(0.05, 0.95) (0.0500, 0.9500) 1.0000×10–8 0.09 (0.0500, 0.9500) –4.6230 × 10–17 4.04 (0.0500, 0.9500) 
(0.8403, 0.1597) 

0.0000 

0.4708 30 

(0.10, 0.90) (0.1000, 0.9000) 1.0000 × 10–8 0.03 (0.1000, 0.9000) –1.5432 × 10–16 4.05 (0.1000, 0.9000) 
(0.7324, 0.2766) 

0.0000 

0.1255 39 

(0.15, 0.85) 
(0.1500, 0.8500) 
(0.4768, 0.5232) 
(0.8438, 0.1562) 

1.0000×10–9 

2.6938×10–2 

–7.7671×10–3 
0.07 (0.8438, 0.1562) –7.7671 × 10–3 1.91 

(0.1500, 0.8500) 
(0.4768, 0.5232) 
(0.8439, 0.1561) 

0.0000 

2.6938×10–2 

–7.7671×10–3 
22 

(0.20, 0.80) 
(0.2000, 0.8000) 
(0.3656, 0.6344) 
(0.8709, 0.1291) 

1.0000×10–9 

3.9322×10–3 

–7.0380×10–2 
0.05 (0.8709, 0.1291) –7.0380 × 10–2 1.70 

(0.2000, 0.8000) 
(0.3656, 0.6344) 
(0.8709, 0.1291) 

0.0000 
3.9322×10–3 

–7.0380×10–2 
23 

(0.25, 0.75) 
(0.2500, 0.7500) 
(0.2956, 0.7044) 
(0.8786, 0.1214) 

1.0000×10–8 

8.5009×10–5 

–9.2025×10–2 
0.08 (0.8786, 0.1214) –9.2025 × 10–2 1.57 

(0.2500, 0.7500) 
(0.2956, 0.7044) 
(0.8786, 0.1214) 

0.0000 
8.4999×10–5 

–9.2025×10–2 
26 

(0.30, 0.70) 
(0.2463, 0.7537) 
(0.3000, 0.7000) 
(0.8783, 0.1217) 

–1.3868×10–4 

1.0000×10–8 

–9.1484×10–2 
0.09 (0.8783, 0.1217) –9.1484 × 10–2 1.83 

(0.2463, 0.7537) 
(0.3000, 0.7000) 
(0.8783, 0.1217) 

–1.3869×10–4 

0.0000 

–9.1484×10–2 
24 

(0.40, 0.60) 
(0.1815, 0.8185) 
(0.4000, 0.6000) 
(0.8644, 0.1356) 

–8.7794×10–3 
1.0000×10–9 

–6.2151×10–2 
0.09 (0.8644, 0.1356) –6.2151 × 10–2 1.40 

(0.1815, 0.8185) 
(0.4000, 0.6000) 
(0.8644, 0.1356) 

–8.7794×10–3 
0.0000 

–6.2151×10–2 
23 

(0.50, 0.50) 
(0.1426, 0.8574) 
(0.5000, 0.5000) 
(0.8358, 0.1642) 

–3.4091×10–2 
1.0000×10–9 

–2.7355×10–2 
0.10 (0.1431, 0.8569) –3.4091 × 10–2 1.50 

(0.1426, 0.8574) 
(0.5000, 0.5000) 
(0.8358, 0.1642) 

–3.4091×10–2 
0.0000 

–2.7355×10–2 
22 

(0.60, 0.40) 
(0.1198, 0.8802) 
(0.6000, 0.4000) 
(0.7895, 0.2105) 

–6.8384×10–2 
1.0000×10–8 

–5.3761×10–3 
0.11 (0.1198, 0.8802) –6.8384×10–2 1.63 

(0.1198, 0.8802) 
(0.6000, 0.4000) 
(0.7895, 0.2105) 

–6.8384×10–2 
0.0000 

–5.3761×10–3 
23 

(0.75, 0.25) 
(0.1126, 0.8874) 
(0.6590, 0.3410) 
(0.7500, 0.2500) 

–8.4479×10–2 
6.1271×10–4 
1.0000×10–9 

0.13 (0.1126, 0.8874) –8.4479×10–2 1.45 
(0.1126, 0.8874) 
(0.6590, 0.3410) 
(0.7500, 0.2500) 

–8.4479×10–2 
6.1269×10–4 

0.0000 
24 

*Results obtained from Gecegormez and Demirel (2005) 
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Figure 3: TPD curve for the water (1) + butyl glycol (2) system at 5oC and z1 = 0.05. 
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Figure 4: TPD curve for the water (1) + butyl glycol (2) system at 5oC and z1 = 0.10. 

 
Case 4: water (1) + citric acid (2)+ 2-butanol (3) 
system 

 
The LLE binary parameters of the NRTL model 

for this system were used as presented by 
Gecegormez and Demirel (2005), originally reported 
by Lintomen et al. (2001). Table 4 contains the 
results of phase stability analysis for this ternary 
system at 25ºC and different overall compositions. 
Solutions found in this work are compared with the 
roots presented by Gecegormez and Demirel (2005).  

As shown in Table 4, some divergences between 
our results and those presented in the literature can 
be verified. For the global composition of z = (0.10, 
0.05, 0.85), the composition with the lowest TPD 
value found in this work was x = (8.4640×10-2, 
0.4743, 0.4411) with TPD = -0.1609, while this root 
is not reported in the literature. Also, for the global 
composition z = (0.05, 0.10, 0.85) the SubDivNL 
and SA algorithms found an unstable composition, 
not reported in the literature. It can also be verified 

from Table 4 that for the last third overall 
composition, a second root, found in the literature, 
was not found by the SA and SubDivNL 
algorithms. 

Another discrepancy was verified for the two 
overall compositions: a) z = (0.25, 0.05, 0.70) and b) 
z = (0.30, 0.05, 0.65) that correspond to mass 
fractions of a) z = (0.0682, 0.1456, 0.7862) and b) z 
= (0.0855, 0.1520, 0.7625), respectively. While 
unstable roots from the phase stability test are 
presented in the literature, indicating the formation 
of two liquid phases, application of the SA and 
SubDivNL algorithms did not result in the 
occurrence of separate liquid phases (see Table 4). In 
order to elucidate these results, the ternary 
experimental diagram for this system is presented in 
Figure 5. The experimental data were obtained from 
the literature (Lintomen et al., 2001), and as one can 
see, the two feed points (a) and (b) lie in a 
homogeneous region, which is in complete 
agreement with the results found in this work. 
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Table 4: Results of phase stability analysis for the water (1) + citric acid (2) + 2-butanol (3) system at 45ºC. 
 

SubDivNL Simulated Annealing Interval Newton* 
(z1, z2, z3) Stationary points  

(x1, x2, x3) 
TPD 
(x) 

CPU  
(s) 

Global minimum  
(x1, x2, x3) 

TPD 
(x) 

CPU  
(s) 

Stationary points  
(x1, x2, x3) 

TPD 
(x) 

(6.9754×10−2, 1.0768×10−2, 
0.9195) 

–4.4700×10–3 

(8.4640×10−2, 0.4743, 0.4411) –0.1609 
(0.10, 0.05, 
0.85) 

(0.1000, 0.0500, 0.8500) 1.00×10–8 

0.91 (8.4640×10−2, 0.4743, 0.4411) –0.1609 1.30 

(6.9754×10−2, 1.0768×10−2, 
0.9195) 

 
(0.1000, 0.0500, 0.8500) 

–4.4700×10–3 
 
 

0.0000 

(0.20, 0.05, 
0.75) 

(0.1752, 2.7558×10−2, 0.7972) 
(0.2000, 0.0500, 0.7500) 
(0.2530, 0.1748, 0.5722) 

–2.3698×10–4 
1.0000×10–8 

–5.9447×10–3 
1.03 (0.2530, 0.1748, 0.5722) –5.9447 × 10–3 1.86 

(0.1752, 2.7558×10−2, 0.7972)
(0.2000, 0.0500, 0.7500) 
(0.2530, 0.1748, 0.5722) 

–2.3698×10–4 
0.0000 

–5.9447×10–3 

(0.25, 0.05, 
0.70) (0.2500, 0.0500, 0.7000) 1.0000×10–8 1.05 (0.2500, 0.0500, 0.7000) 0.0000 2.59 (0.2500, 0.0500, 0.7000) 

(0.2657, 5.5224×10−2, 0.6790)
0.0000 

–3.1317×10–4 

(0.30, 0.05, 
0.65) (0.3000, 0.0500, 0.6500) 1.0000×10–8 1.11 (0.3000, 0.0500, 0.6500) 0.0000 2.61 

(0.3000, 0.0500, 0.6500) 
(0.3048, 2.4285 × 10−2, 

0.6709) 

0.0000 
-4.9534×10–3 

(2.1910×10−2, 3.3676×10−3, 
0.9747) 

–4.7349×10–2 

(2.9763×10−2, 0.4964, 0.4738) –0.1409 
(0.05, 0.10, 
0.85) 

(0.0500, 0.1000, 0.8500) 1.0000×10–8 

1.27 (2.9763×10−2, 0.4964, 0.4738) –0.1409 1.66 

(2.1910×10−2, 3.3676×10−3, 
0.9747) 

 
(0.0500, 0.1000, 0.8500) 

–4.7349×10–2 
 
 

0.0000 

(8.3523×10−2, 7.0909×10−3, 
0.9094) 

–2.1738×10–2 

(0.1500, 0.1000, 0.7500) 1.0000×10–9 
(0.15, 0.10, 
0.75) 

(0.1544, 0.2908, 0.5548) –1.7323×10–2 

0.91 (8.3523×10−2, 7.0909×10−3, 
0.9094) –2.1738×10–2 1.80 

(8.3523×10−2, 7.0909×10−3, 
0.9094) 

(0.1500, 0.1000, 0.7500) 
(0.1544, 0.2908, 0.5548) 

–2.1739 × 10–2 
 

0.0000 

–1.7323 × 10–2 

(0.20, 0.10, 
0.70) 

(0.1257, 1.1877×10−2, 0.8624) 
(0.2000, 0.1000, 0.7000) 
(0.2177, 0.1838, 0.5985) 

–1.0321×10–2 
1.0000×10–9 

–1.8376×10–3 
0.98 (0.1257, 1.1877×10−2, 0.8624) –1.0321×10–2 1.80 

(0.1257, 1.1877×10−2, 0.8624)
(0.2000, 0.1000, 0.7000) 
(0.2177, 0.1838, 0.5985) 

–1.0321×10–2 
0.0000 

–1.8376×10–3 

(0.05, 0.15, 
0.80) 

(1.8972×10−2, 2.1628×10−3, 
0.9789) 

(3.6280×10−2, 0.3989, 0.5649) 
(0.0500, 0.1500, 0.8000) 

–9.0052×10–2 
–3.6271×10–2 
1.0000×10–9 

1.27 (1.8972×10−2, 2.1628×10−3, 
0.9789) –9.0052×10–2 1.67 

(1.8972×10−2, 2.1628×10−3, 
0.9789) 

(3.6280×10−2, 0.3989, 0.5649)
(0.0500, 0.1500, 0.8000) 

–9.0052×10–2 
 

–3.6271×10–2 
0.0000 

(0.10, 0.15, 
0.75) 

(4.3189×10−2, 3.2072×10−3, 
0.9536) 

(8.9494×10−2, 0.3230, 0.5875) 
(0.1000, 0.1500, 0.7500) 

–6.5345×10–2 
 

–1.1929×10–2 
1.0000×10–9 

0.84 (4.3189×10−2, 3.2072×10−3, 
0.9536) –6.5345×10–2 1.73 

(4.3189×10−2, 3.2072×10−3, 
0.9536) 

(8.9494×10−2, 0.3230, 0.5875)
(0.1000, 0.1500, 0.7500) 

–6.5345×10–2 
 

–1.1929×10–2 
0.0000 

(0.15, 0.15, 
0.70) 

(7.3257×10−2, 5.1272×10−3, 
0.9216) 

(0.1500, 0.1500, 0.7000) 
(0.1506, 0.2353, 0.6141) 

–4.1534×10–2 
 

1.0000×10–9 
–1.5662×10–3 

0.89 (7.3257×10−2, 5.1272×10−3, 
0.9216) –4.1534×10–2 1.72 

(7.3257×10−2, 5.1272×10−3, 
0.9216) 

(0.1500, 0.1500, 0.7000) 
(0.1506, 0.2353, 0.6141) 

–4.1534×10–2 
 

0.0000 
–1.5662×10–3 

(0.05, 0.20, 
0.75) 

(1.8393×10−2, 1.7717×10−3, 
0.9798) 

(4.2907×10−2, 0.3218, 0.6353) 
(0.0500, 0.2000, 0.7500) 

–0.1192 
 

–4.3405×10–3 
1.0000×10–8 

1.06 (1.8393×10−2, 1.7717×10−3, 
0.9798) –0.1192 1.64 

(1.8393×10−2, 1.7717×10−3, 
0.9798) 

(4.2907×10−2, 0.3218, 0.6353)
(0.0500, 0.2000, 0.7500) 

–0.1192 
 

–4.3405×10–3 
0.0000 

(0.10, 0.20, 
0.70) 

(4.1828×10−2, 2.8004×10−3, 
0.9554) 

(9.6537×10−2, 0.2567, 0.6467) 
(0.1000, 0.2000, 0.7000) 

–8.2501×10–2 
 

–4.2772×10–4 
1.0000×10–8 

0.80 (4.1828×10−2, 2.8004×10−3, 
0.9554) –8.2501×10–2 1.64 

(4.1828×10−2, 2.8004×10−3, 
0.9554) 

(9.6537×10−2, 0.2567, 0.6467)
(0.1000, 0.2000, 0.7000) 

–8.2501×10–2 
 

–4.2773×10–4 
0.0000 

(0.20, 0.20, 
0.60) 

(0.1095, 9.3104×10−3, 0.8812) 
(0.1878, 0.1126, 0.6996) 
(0.2000, 0.2000, 0.6000) 

–1.4729×10–2 
1.9549×10–3 
1.0000×10–8 

0.97 (0.1095, 9.3104×10−3, 0.8812) –1.4729×10–2 1.72 
(0.1095, 9.3104×10−3, 0.8812)

(0.1878, 0.1126, 0.6996) 
(0.2000, 0.2000, 0.6000) 

–1.4729×10–2 
1.9549×10–3 

0.0000 

(0.10, 0.30, 
0.60) 

(4.7113×10−2, 3.3396×10−3, 
0.9495) 

(0.1080, 0.1568, 0.7352) 
(0.1000, 0.3000, 0.6000) 

–5.7713×10–2 
 

6.8336×10–3 
1.0000×10–8 

0.89 (4.7113×10−2, 3.3396×10−3, 
0.9495) –5.7713×10–2 1.66 

(4.7113×10−2, 3.3396×10−3, 
0.9495) 

(0.1080, 0.1568, 0.7352) 
(0.1000, 0.3000, 0.6000) 

–5.7713×10–2 
 

6.8336×10–3 
0.0000 

(0.10, 0.50, 
0.40) (0.1000, 0.5000, 0.4000) 1.0000×10–8 1.01 (0.1000, 0.5500, 0.3500) 0.0000 2.59 (0.1000, 0.5000, 0.4000) 

(0.1006, 1.6405×10−2, 0.8830)
0.0000 
0.2374 

(0.10, 0.55, 
0.35) (0.1000, 0.5500, 0.3500) 1.0000×10–8 0.97 (0.1000, 0.5500, 0.3500) 0.0000 2.59 (0.1000, 0.5500, 0.3500) 

(0.1085, 3.7935×10−3, 0.8877)
0.0000 
0.3639 

(0.05, 0.60, 
0.35) (0.0500, 0.6000, 0.3500) 1.0000×10–8 0.67 (0.0500, 0.6000, 0.3500) 0.0000 2.61 

(0.0500, 0.6000, 0.3500) 
(7.0593×10−2, 1.6098×10−2, 

0.9133) 

0.0000 
0.3981 

*Results obtained from Gecegormez and Demirel (2005) 
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Figure 5: Experimental diagram of the water (1) + citric acid (2) + 2-butanol (3) ternary system at 25 oC. 

 
Case 5: acetonitrile (1) + benzene (2) + n-heptane 
(3) system 

 
Table 5 contains the results of phase stability 

analysis for this ternary system at 45ºC and different 
overall compositions. Solutions found in this work 
are compared with the roots presented by 
Gecegormez and Demirel (2005). As shown in this 
table, application of the subdivision algorithm 
indicated the existence of a third root for all 
compositions analyzed. This additional root however 
is not presented in the work of Gecegormez and 
Demirel (2005). For this problem, the Simulated 
Annealing algorithm had a better performance in 
terms of CPU time than the subdivision method. 
 
Case 6: n-propanol (1) + n-butanol (2) + benzene 
(3) + water (4) system 

 
Solutions of the phase stability test for this 

system are presented in Table 6. The binary 
interaction parameters for the NRTL model were 
taken from Tessier et al. (2000). Aiming at reducing 

the computational effort, the maximum number of 
subdivisions was set to four. It can be verified that 
both algorithms employed in this work were able to 
find the same solutions as those presented in the 
literature (Tessier et al., 2000). The CPU time values 
listed in this table confirm the advantageous 
performance of the Simulated Annealing algorithm 
for systems with larger number of components.  
 
Case 7: n-propanol (1) + n-butanol (2) + benzene 
(3) + ethanol (4) + water (5) system 

 
Table 7 depicts the results of the thermodynamic 

stability test for this multicomponent system. For this 
system the NRTL parameters were also taken from 
Tessier et al. (2000), whose results are compared in this 
work. The maximum number of subdivisions was again 
set to four. Although the Simulated Annealing 
algorithm had a better performance in terms of CPU 
time than the SubDivNL, solutions obtained with both 
mathematical methods employed in this work are in 
agreement with those reported by Tessier et al. (2000), 
who used the Interval Newton method. 

 
Table 5: Results of phase stability analysis for the acetonitrile (1) + benzene (2) + n-heptane (3) system at 45ºC. 
 

(z1, z2, z3) SubDivNL Simulated Annealing Interval Newton* 

 Stationary points  
(x1, x2, x3) 

TPD (x) CPU (s) Global minimum  
(x1, x2, x3) 

TPD (x) CPU (s) Stationary points  
(x1, x2, x3) 

TPD (x) 

(0.40, 0.05, 
0.55) 

(0.2215, 4.8013×10–2, 0.7304) 
(0.4000, 0.0500, 0.5500) 

(0.9114, 2.3584×10–2, 
6.4978×10–2) 

–5.1389×10–3 
1.0000×10–9 

–0.1085 
1.80 (0.9114, 2.3584×10–2, 

6.4978×10–2) –0.1085 1.47 (0.2215, 4.8013×10–2, 0.7304)
(0.4000, 0.0500, 0.5500) 

−5.1389×10–3 
0.0000 

(0.45, 0.05, 
0.50) 

(0.1919, 4.7275×10–2, 0.7608) 
(0.4500, 0.0500, 0.5000) 

(0.9049, 2.4775×10–2, 
7.0367×10–2) 

–1.5255×10–2 

1.0000×10–9 

–8.6610×10–2 
1.92 (0.9049, 2.4775×10–2, 

7.0367×10–2) –8.6615×10–2 1.44 (0.1919, 4.7275×10–2, 0.7608)
(0.4500, 0.0500, 0.5000) 

−1.5255×10–2 
0.0000 

(0.60, 0.05, 
0.35) 

(0.1320, 4.6723×10–2, 0.8213) 
(0.6000, 0.0500, 0.3500) 

(0.8658, 3.1860×10–2, 0.1024) 

–8.0816×10–2 

1.0000×10–8 

–2.2490×10–2 
1.81 (0.1320, 4.6723×10–2, 

0.8213) –8.0816×10–2 1.45 (0.1320, 4.6723×10–2, 0.8213)
(0.6000, 0.0500, 0.3500) 

−8.0816×10–2 
0.0000 
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Continuation Table 5 
 

(z1, z2, z3) SubDivNL Simulated Annealing Interval Newton* 

 Stationary points  
(x1, x2, x3) 

TPD (x) CPU (s) Global minimum  
(x1, x2, x3) 

TPD (x) CPU (s) Stationary points  
(x1, x2, x3) 

TPD (x) 

(0.70, 0.05, 
0.25) 

(0.1118, 4.9260×10–2, 0.8389) 
(0.7000, 0.0500, 0.2500) 

(0.8114, 4.1180×10–2, 0.1474) 

–0.1334 
1.0000×10–8 

–1.8133×10–3 
1.77 (0.1118, 4.9260×10–2, 

0.8389) –0.1334 1.48 (0.1118, 4.9260×10–2, 0.8389)
(0.7000, 0.0500, 0.2500) 

−0.1334 
0.0000 

(0.50, 0.10, 
0.40) 

(0.1720, 9.5257×10–2, 0.7327) 
(0.5000, 0.1000, 0.4000) 

(0.8526, 5.8945×10–2, 
8.8455×10–2) 

–2.8631×10–2 
1.0000×10–9 

–3.9224×10–2 
1.16 (0.8526, 5.8945×10–2, 

8.8455×10–2) –3.9224×10–2 1.56 (0.1720, 9.5257×10–2, 0.7327
(0.5000, 0.1000, 0.4000) 

−2.8631×10–2 
0.0000 

(0.55, 0.10, 
0.35) 

(0.1536, 9.5606×10–2, 0.7508) 
(0.5500, 0.1000, 0.3500) 

(0.8341, 6.4573×10–2, 0.1014) 

–4.7718×10–2 
1.0000×10–9 

–2.2094×10–2 
1.39 (0.1536, 9.5606×10–2, 

0.7508) –4.7718×10–2 1.53 (0.1536, 9.5606×10–2, 0.7508)
(0.5500, 0.1000, 0.3500) 

−4.7718×10–2 
0.0000 

(0.65, 0.10, 
0.25) 

(0.1309, 0.1006, 0.7685) 
(0.6500, 0.1000, 0.2500) 

(0.7736, 8.2279×10–2, 0.1442) 

–8.6916×10–2 
1.0000×10–9 

–1.9712×10–3 
1.22 (0.1309, 0.1006, 0.7685) –8.6916×10–2 1.55 (0.1309, 0.1006, 0.7685) 

(0.6500, 0.1000, 0.2500) 
−8.6916×10–2 

0.0000 

(0.45, 0.15, 
0.40) 

(0.2023, 0.1460, 0.6518) 
(0.4500, 0.1500, 0.3500) 

(0.8171, 9.1858×10–2, 
9.1039×10–2) 

–1.1811×10–2 
1.0000×10–9 

–3.4601×10–2 
1.27 (0.8171, 9.1858×10–2, 

9.1039×10–2) –3.4601×10–2 1.59 (0.2023, 0.1460, 0.6518) 
(0.4500, 0.1500, 0.3500) 

−1.1811×10–2 
0.0000 

(0.50, 0.15, 
0.35) 

(0.1805, 0.1465, 0.6730) 
(0.5000, 0.1500, 0.3500) 

(0.7976, 9.9467×10–2, 0.1029) 

–2.3794×10–2 
1.0000×10–9 

–2.0075×10–2 
1.25 (0.1805, 0.1465, 0.6730) –2.3794 × 10–2 1.55 (0.1805, 0.1465, 0.6731) 

(0.5000, 0.1500, 0.3500) 
−2.3794×10–2 

0.0000 

(0.60, 0.15, 
0.25) 

(0.1548, 0.1538, 0.6914) 
(0.6000, 0.1500, 0.2500) 
(0.7311, 0.1246, 0.1443) 

–5.0477×10–2 
1.0000×10–9 

–1.8579×10–3 
1.22 (0.1548, 0.1538, 0.6914) –5.0477×10–2 1.52 (0.1548, 0.1538, 0.6914) 

(0.6000, 0.1500, 0.2500) 
−5.0477×10–2 

0.0000 

(0.45, 0.20, 
0.35) 

(0.2154, 0.1989, 0.5857) 
(0.4500, 0.2000, 0.3500) 
(0.7528, 0.1387, 0.1085) 

–8.6429×10–3 
1.0000×10–9 

–1.6034×10–2 
1.31 (0.7528, 0.1387, 0.1085) –1.6034×10–2 1.55 (0.2154, 0.1989, 0.5857) 

(0.4500, 0.2000, 0.3500) 
−8.6429×10–3 

0.0000 

(0.55, 0.20, 
0.25) 

(0.1863, 0.2086, 0.6051) 
(0.5500, 0.2000, 0.2500) 
(0.6805, 0.1700, 0.1495) 

–2.4032×10–2 
1.0000×10–9 

–1.4029×10–3 
1.20 (0.1863, 0.2086, 0.6051) –2.4032×10–2 1.55 (0.1863, 0.2085, 0.6051) 

(0.5500, 0.2000, 0.2500) 
−2.4032×10–2 

0.0000 

*Results obtained from Gecegormez and Demirel (2005) 
 

Table 6: Results of phase stability analysis for the n-propanol (1) + n-butanol (2) + benzene (3) + water(4) system. 
 

SubDivNL Simulated Annealing Interval Newton* 
(z1, z2, z3, z4) Stationary points 

(x1, x2, x3, x4, x5) 
TPD (x) CPU (s) Global minimum 

(x1, x2, x3, x4) 
TPD (x) CPU (s) Stationary points 

(x1, x2, x3, x4) 
TPD (x) 

(1.81×10–2, 6.20×10–4, 
4.48×10–3, 0.977) 

–0.3398 (1.81×10–2, 6.20×10–4, 
4.48×10–3, 0.977) 

–0.3398 

(4.61×10–2, 1.89×10–2, 
0.916, 1.87×10–2) 

–3.3651×10–2 (4.61×10–2, 1.89×10–2, 
0.916, 1.87×10–2) 

–3.3650×10–2 (0.148, 0.052, 
0.600, 0.200) 

(0.148, 0.052, 0.600, 0.200) 1.0000×10–9 

292.8 (1.81×10–2, 6.20×10–4, 
4.48×10–3, 0.977) –0.3398 2.47 

(0.148, 0.052, 0.600, 0.200) 0.0000 
(2.41×10–2, 7.86×10–4, 

4.74×10–3, 0.970) 
–0.3110 (2.41×10–2, 7.86×10–4, 

4.74×10–3, 0.970) 
–0.3110 

(8.20×10–2, 3.07×10–2, 
0.854, 3.29×10–2) 

–3.1279×10–3 (8.20×10–2, 3.07×10–2, 
0.854, 3.29×10–2) 

–3.1279×10–3 (0.148, 0.052, 
0.700, 0.100) 

(0.148, 0.052, 0.700, 
0.1000) 

1.0000×10–8 

303.5 (2.41×10–2, 7.86×10–4, 
4.74×10–3, 0.970) –0.3110 2.58 

(0.148, 0.052, 0.700, 
0.1000) 

0.0000 

(3.32×10–2, 2.69×10–3, 
6.71×10–3, 0.957) 

–7.3626×10–2 (3.32×10–2, 2.69×10–3, 
6.71×10–3, 0.957) 

–7.3630×10–2 

(0.206, 9.47×10–2, 0.140, 
0.560) 

1.0660×10–2 (0.206, 9.47×10–2, 0.140, 
0.560) 

1.0660×10–2 (0.25, 0.15, 
0.35, 0.25) 

(0.250, 0.150, 0.350, 
0.250) 

1.0000 × 10–8 

278.2 (3.32×10–2, 2.69×10–3, 
6.71×10–3, 0.957) –7.3626×10–2 2.69 

(0.250, 0.150, 0.350, 
0.250) 

0.0000 

(3.67×10–2, 2.98×10–3, 
7.37×10–3, 0.953) 

–3.8665×10–2 (3.67×10–2, 2.98×10–3, 
7.37×10–3, 0.953) 

–3.8670×10–2 

(0.195, 7.86×10–2, 0.114, 
0.613) 

2.6680×10–2 (0.195, 7.86×10–2, 0.114, 
0.613) 

2.2680×10–2 (0.25, 0.15, 
0.40, 0.20) 

(0.250, 0.150, 0.400, 
0.200) 

1.0000×10–8 

269.6 (3.67 × 10–2, 2.98 × 10–3, 
7.37 × 10–3, 0.953) –3.8666 × 10–2 2.75 

(0.250, 0.150, 0.400, 
0.200) 

0.0000 

(3.53×10–2, 5.73×10–3, 
6.75×10–3, 0.952) 

3.0790×10–2 (3.53×10–2, 5.73×10–3, 
6.75×10–3, 0.952) 

3.0790×10–2 

(0.133, 8.02×10–2, 
5.20×10–2, 0.735) 

6.5320×10–2 (0.133, 8.02×10–2, 
5.20×10–2, 0.735) 

6.5320×10–2 (0.25, 0.25, 
0.25, 0.25) 

(0.250, 0.250, 
0.250, 0.250) 

1.0000×10–8 

271.1 (0.250, 0.250, 
0.250, 0.250) 1.0015 × 10–0 5.19 

(0.250, 0.250, 
0.250, 0.250) 

0.0000 

*Results obtained from Tessier et al. (2000) 
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Table 7: Results of phase stability analysis for the n-propanol (1) + 
n-butanol (2) + benzene (3) + ethanol (4) + water (5) system. 

 
 (z1, z2, z3,  
z4, z5) 

SubDivNL Simulated Annealing Interval Newton* 

 Stationary points 
(x1, x2, x3, x4, x5) 

TPD (x) CPU (s) Global minimum 
(x1, x2, x3, x4, x5) 

TPD (x) CPU (s) Stationary points 
(x1, x2, x3, x4, x5) 

TPD (x) 

(2.43×10–2, 5.45×10–4, 
1.73×10–3, 

3.55×10–2, 0.938) 

–0.1043 (2.43×10–2, 5.45×10–4, 
1.73×10–3,

3.55×10–2, 0.938)

–0.1043 

(6.98×10–2, 2.26×10–2, 0.811, 
5.15×10–2, 4.52×10–2) 

–4.2107×10–3 (6.98×10–2, 2.26×10–2, 0.811,
5.15×10–2, 4.52×10–2)

–4.2107×10–3 
(0.148, 0.052, 
0.500, 
0.100, 0.200) 

(0.148, 0.052, 0.500, 0.100, 
0.200) 

1.00×10–8 

1314.2 
(2.43×10–2, 5.45×10–4, 

1.73×10–3, 
3.55×10–2, 0.938) 

–0.1043 4.14 

(0.148, 0.052, 0.500, 0.100, 
0.200)

0.0000 

(2.31×10–2, 4.81×10–4, 
1.42×10–3, 

2.89×10–2, 0.946) 

–0.1284 (2.31×10–2, 4.81×10–4, 
1.42×10–3,

2.89×10–2, 0.946)

–0.1284 

(6.90×10–2, 2.26×10–2, 0.822, 
4.30×10–2, 4.32×10–2) 

–4.4793×10–3 (6.90×10–2, 2.62×10–2, 0.822,
4.30 × 10–2, 4.33×10–2)

–4.4793×10–3 
(0.148, 0.052, 
0.540, 
0.080, 0.180) 

(0.148, 0.052, 0.540, 0.080, 
0.180) 

1.00×10–8 

1269.3 
(2.31×10–2, 4.81×10–4, 

1.42×10–3, 
2.89×10–2, 0.946) 

–0.1284 7.98 

(0.148, 0.052, 0.540, 0.080, 
0.180)

0.0000 

(2.49×10–2, 5.52×10–4, 
1.59×10–3, 

3.14×10–2, 0.942) 

–0.1086 (2.49×10–2, 5.52×10–4, 
1.59×10–3,

3.14×10–2, 0.942)

–0.1068 

(7.99×10–2, 2.68×10–2, 0.794,  
4.85×10–2, 5.04×10–2) 

–1.9581×10–3 (7.99×10–2, 2.68×10–2, 0.794,
4.85×10–2, 5.04×10–2)

–1.9581×10–3 
(0.148, 0.052, 
0.560, 
0.080, 0.160) 

(0.148, 0.052, 0.560, 0.080, 
0.160) 

1.00×10–8 

1296.7 
(2.45×10–2, 5.83×10–4, 

1.63×10–3, 
3.13×10–2, 0.942) 

–0.1068 8.23 

(0.148, 0.052, 0.560, 0.080, 
0.160)

0.0000 

(2.95×10–2, 8.25×10–4, 
2.71×10–3, 

4.93×10–2, 0.918) 

–4.7479×10–2 (2.95×10–2, 8.25×10–4, 
2.71×10–3,

4.93×10–2, 0.918)

–4.7480×10–2 

(0.108, 3.68×10–2, 0.684,  
8.60×10–2, 8.60 × 10–2) 

1.0397×10–4 (0.108, 3.68×10–2, 0.684, 
8.60×10–2, 8.60×10–2)

1.0396×10–4 

(0.119, 4.13×10–2, 0.639,  
9.46×10–2, 0.105) 

1.1076×10–4 (0.119, 4.13×10–2, 0.639, 
9.46×10–2, 0.105)

1.1075×10–4 

(0.136, 3.92×10–2, 0.152,  
0.156, 0.518) 

6.2085×10–3 (0.136, 3.92×10–2, 0.152, 
0.156, 0.518)

6.2085×10–3 

(0.148, 0.052, 
0.500, 
0.120, 0.180) 

(0.148, 0.052, 0.500, 0.120, 
0.180) 

1.0000×10–8 

915.0 
(2.79×10–2, 8.95×10–4, 

3.11×10–3, 
4.99×10–2, 0.918) 

–4.7402×10–2 4.30 

(0.148, 0.052, 0.500, 0.120, 
0.180)

0.0000 

(2.60×10–2, 6.18×10–4, 
1.93×10–3, 

3.83×10–2, 0.933) 

–8.6575×10–2 (2.60×10–2, 6.18×10–4, 
1.93×10–3,

3.83×10–2, 0.933)

–8.6580×10–2 

(7.96×10–2, 2.63×10–2, 0.784. 
5.77×10–2, 5.24×10–2) 

–1.9019×10–3 (7.96×10–2, 2.63×10–2, 0.784,
5.77×10–2, 5.24×10–2)

–1.9019×10–3 

(0.148, 0.052, 0.520, 0.100, 
0.180) 

1.00×10–9 (0.148, 0.052, 0.520, 0.100, 
0.180)

0.0000 

(0.162, 5.32 × 10–2, 0.271,  
0.128, 0.385) 

8.2383×10–5 (0.162, 5.32×10–2, 0.271, 
0.128, 0.385)

8.2373×10–5 

(0.148, 0.052, 
0.520, 
0.100, 0.180) 

(0.163, 5.64 × 10–2, 0.397, 
 0.116, 0.267) 

–1.012×10–4 

1074.6 
(2.55×10–2, 6.09×10–4, 

1.86×10–3, 
3.81×10–2, 0.934) 

–8.6572×10–2 4.25 

(0.163, 5.64×10–2, 0.397, 
0.116, 0.267)

–1.0107×10–4 

*Results obtained from Tessier et al. (2000). 
 
 

CONCLUSIONS 
 

In this work thermodynamic phase stability with 
two stochastic global algorithms was examined for 
binary, ternary and multicomponent liquid mixtures 
using the NRTL activity coefficient model. Results 
of application of the subdivision algorithm to liquid-
liquid equilibrium calculations show that it was able 
to find all roots of phase stability tests for the 
systems investigated with relatively short CPU times 
for binary and ternary systems. Simulated Annealing 
was shown to be reliable and robust for systems with 

larger numbers of components. In a general sense, 
the two algorithms are relatively simple, provide 
reliable solutions for phase stability analysis, are 
easy to implement and require relatively low 
computational effort. 
 
 

NOMENCLATURE 
 
d  problem dimension (-)
f(x) nonlinear equation  (-)
F(x) system of nonlinear (-)
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equations  
R  multidimensional rectangle (-)

ka  lower coordinate of the 
“child” rectangles at “k” 
dimension  

(-)

kb   upper coordinate of the 
“child” rectangles at “k” 
dimension  

(-)

Ak lower coordinate of the 
“parent” rectangles at “k” 
dimension 

(-)

Bk  upper coordinate of the 
“parent” rectangles at “k” 
dimension 

(-)

NRTL nonrandom two liquid (-)
i subdivision level (-)
y vector of random point in Rij 

and vapor phase mole 
fraction 

(-)

xij  middle point of the rectangle 
“j” at the subdivision level 
“i”’ 

(-)

x  vector of liquid phase mole 
fraction 

(-)

z vector of global mole 
composition 

(-)

T temperature (-)
T0 initial annealing temperature (-)
iRan  sample number in Rij  (-)
iMax  maximum subdivision 

number 
(-)

iCov  maximum coverage number (-)
TPD tangent plane distance (-)
 
Greek Letters 
 

kν  coordinate of the middle 
point of “parent” rectangle 
at “k” dimension 

(-)

iγ  activity coefficient of 
component “i” 

(-)

ijτ   subdivision parameter of the 
rectangle “j” at the 
subdivision level “i” 

(-)

αm,n matrix of zero and one 
elements 

(-)

 
Subscripts 
 
0 pure component (-)
n  number of components in 

the mixture and nth 
components of the system 

(-)
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