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Abstract - The hydrodealkylation process of toluene (HDA) has been used as a case study in a large number 
of control studies. However, in terms of industrial application, this process has become obsolete and is 
nowadays superseded by new technologies capable of processing heavy aromatic compounds, which increase 
the added value of the raw materials, such as the process of transalkylation and disproportionation of toluene 
(TADP). TADP also presents more complex feed and product streams and challenging operational 
characteristics both in the reactor and separator sections than in HDA. This work is aimed at proposing the 
TADP process as a new benchmark for plantwide control studies in lieu of the HAD process. For this purpose, 
a nonlinear dynamic rigorous model for the TADP process was developed using Aspen Plus™ and Aspen 
Dynamics™ and industrial conditions. Plantwide control structures (oriented to control and to the process) 
were adapted and applied for the first time for this process. The results show that, even though both strategies 
are similar in terms of control performance, the optimization of economic factors must still be sought. 
Keywords: Plantwide control; Aromatic complex; TADP process; Dynamic simulation.  

 
 
 

INTRODUCTION 
 

The use of recycles and heat integration in the 
transformation processes is a consolidated solution to 
increase yields and to reduce operational costs. 
These factors tend to increase the process complex-
ity, demanding a control perspective not limited to 
the analysis of the individual units.  

Many authors point out that the need for a plant-
wide perspective on control arises mainly due to 
these changes in the way plants are designed. Indeed, 
these factors lead to more interactions and therefore 
the need for a perspective beyond individual units, as 
pointed out by Stephanopulos (1984) and earlier by 
Buckley (1964). Larsson & Skogestad (2000) clari-

fied that the term plantwide control does not mean 
the tuning and analysis of the behavior of each con-
trol loop, but rather the control philosophy of the 
overall plant with emphasis on structural decisions 
(Morari, 1982), such as selection of manipulated 
(“inputs”), controlled (“outputs”) and measured vari-
ables (“extra-outputs”); design of control configura-
tion (a structure interconnecting outputs, setpoints 
and manipulated variables) and selection of control-
ler type. These decisions are all taken during the 
basic design conception, unfortunately before the 
complex control studies that in general are not per-
formed by process engineers.  

Myers (1997) defined the aromatic complex as a 
combination of process units that can be used to 
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convert petroleum naphtha and pyrolysis gasoline 
(pygas) into the basic petrochemical intermediates: 
benzene, toluene, and xylenes know as BTX.  

Benzene, toluene and xylenes are produced 
through the catalytic reforming of naphta, but the 
thermodynamic proportion obtained in this process 
(32:36:32) is different from the market demand 
(55:11:34). Toluene has the lower demand and sev-
eral processes are used to convert toluene and to 
produce, preferentially, benzene and xylenes (Serra 
et al., 2004).  

This work focuses on the plantwide control of an 
aromatic complex, more precisely the Transalkyla-
tion and Disproportionation Unit (TADP), whose 
function is the increase of xylenes and benzene pro-
duction in the aromatic complex from surplus tolu-
ene. This process is considered to be a technological 
improvement of the HDA process because, besides 
benzene, the TADP process also produces xylenes 
and generates fewer by-products with low commer-
cial value. 

For this purpose, a nonlinear dynamic rigorous 
model for the TADP process was developed using 
Aspen Plus™ and Aspen Dynamics™ and techniques 
previously employed in the HDA process were in-
vestigated and compared in order to create an effec-
tive control structure for the TADP process. To the 
knowledge of the authors, this is the first study of 
plantwide control applied to the TADP process. 
 
 

PLANTWIDE CONTROL 
 

According to Qiu et al. (2003), a major problem 
in controlling a plant is to develop effective control 
structures for the entire complex. For Larsson & 
Skogestad (2000), the design of a control structure is 
difficult to define mathematically, especially because 
of the size and cost involved for the precise formula-
tion of the problem. This is the mathematically-ori-
ented approach (or design of the control structure), 
i.e, the systematic approach for solving the plantwide 
control problem. An alternative is the development 
of heuristics based on experience and understanding 
of the process and is referred to as the process-ori-
ented approach (Luyben, 2002; Luyben et al., 1998).  

The implementation of the methodology from 
Luyben et al. (1998), using the process-oriented ap-
proach, is composed of nine steps: i. establish control 
objectives; ii. determine the control degrees of free-
dom; iii. establish energy inventory control; iv. set 
production rate; v. define product quality and safety 
control; vi. define inventory control; vii. check com-
ponent balances; viii. control unit operations indi-

vidually and ix. use remaining control degrees of 
freedom to optimize economics or improve dynamic 
controllability.  

Morari (1982) stated that "in search of a control 
structure considered optimizing, the main objective 
is to incorporate the economic objectives to the pro-
cess control objectives”. In other words, "the goal is 
to find a function c(u,d) of process variables, that, 
when held constant, leads the manipulated variables 
automatically to their optimal working values, and 
with it, to the optimal operating conditions [... ]." 
This means that, keeping c(u,d) in their reference 
values cs, through the manipulated variables u, and 
under several disturbances d, the process is operating 
at its optimal steady-state.  

Larsson & Skogestad (2000) introduced the con-
cept of a "self-optimizing" control system, which 
consists of determining the best set of controlled 
variables in a manner that results in an economic 
performance of the overall process closest to the 
optimal value of the economic objective function. 
They evaluated the effects of a loss function (depar-
ture from optimum) in the implementation of the 
reference value of the controlled variable.  

The authors presented a design procedure based 
on a mathematically-oriented approach, but with 
some elements of the process-oriented approach. The 
procedure starts with a top-down analysis to select 
the controlled variables, based on ideas of self-opti-
mization. At this stage, a rigorous steady-state model 
is needed and the operational objectives (economic 
steady-states) have to be defined. The result consists 
of one or more alternative sets of controlled variables.  

This top-down analysis is followed by a bottom-
up analysis, starting with the regulatory control layer. 
After this stage, the setpoints of the regulatory layer 
and some unused manipulated variables are the re-
maining degrees of freedom, which can be used to 
control the primary controlled variables. This control 
layer is called the supervisory layer. Two main ap-
proaches are possible for this layer: single-loops (de-
centralized) controllers with feedforward connec-
tions, or multivariable control. According to the au-
thors, appropriately designed multivariable control-
lers will have better performance, but this must be 
negotiated against the cost of obtaining and main-
taining the models used in the controllers. In the 
sequence, an optimization layer is applied with the 
purpose to identify active constraints and compute 
optimal set-points cs for the controlled variables. 
Finally, nonlinear dynamic simulations should be 
performed to validate the proposed control structure.  

As pointed out by Qiu et al. (2003), the HDA pro-
cess has all the characteristics for plantwide control 
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Table 2: Equipment dimensions and specifications. 
  

Reactor Length 8 m 
Diameter 5.3 m 

FEHE (Feed Effluent Heat Exchanger) UA 2823.5 kJ/(s°C) 
Separator Length 10 m 

Diameter 3 m 
 
 
Steady-State Analysis for Plantwide Control 
 
Degrees of Freedom Analysis 
 

The number of steady-state degrees of freedom 
determines the number of steady-state controlled 
variables that can be chosen. In complex processes, it 
is useful to sum the number of degrees of freedom of 
the individual units, as given in Table 3. From these 
rules, the degrees of freedom are calculated according 
to Table 4. This analysis can be verified by a balance 
of the 22 manipulated variables considered in this 

process (see Table 5). However, 7 of the original de-
grees of freedom are flowrates used to stabilize liquid 
levels with no steady-state effect. Thus, there are 
22−7 = 15 degrees of freedom, as shown in Table 4. 

For this process 49 variables were considered as 
controlled variables. This selection is presented in 
Table 6. With 15 degrees of freedom and 49 candi-
dates for controlled variables, an analysis of all pos-
sible structures is impractical. To avoid this combi-
natorial explosion, the active constraints are first de-
termined and then an optimization analysis can be 
applied to define the remaining set. 

 
 
Table 3: Typical number of steady-state degrees of freedom for process units, based on Araújo et al. 
(2007b). 
 

Process Unit Degrees of Freedom 
Each external feed stream 1 (feedrate) 
Splitter n-1 split fractions (n is the number of exit streams) 
Mixer 0 
Compressor, turbine, and pump 1 (work) 
Adiabatic flash tank 0* 
Liquid phase reactor 1 (holdup) 
Gas phase reactor 0* 
Heat Exchanger 1 (duty or net area) 
Columns (e.g. distillation) excluding heat exchangers 0* + number of side streams 

*Add 1 degree of freedom if pressure is set (need an extra valve, compressor, or pump). 
 
 

Table 4: Number of steady-state degrees of freedom analysis. 
 

Process Unit Degrees of Freedom 
External feed streams 4 × 1 = 4 
Splitters (purge) 1 × 1 = 1 
Compressor(*) 1 × 0 = 0 
Adiabatic flash(**) (separator) 1 × 0 = 0 
Gas phase reactor (**) 1 × 0 = 0 
Heat exchangers in recycle section (***) (furnace and cooler) 2 × 1 = 2 
Heat exchangers in three distillation columns 3 × 2 = 6 
Three distillation columns, two of it with one sidestream each 0 + 2 × 1 = 2 
Total 15 

* Considering fixed power in the compressor. 
** Assuming no adjustable valves for pressure control (fully open valve ahead of the separator). 
*** The FEHE duty is not a degree of freedom because there is no adjustable bypass. 
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Table 5: List of manipulated variables. 
 

  Manipulated Variable State 
U1 A9/A10 feed flow rate Steady State 
U2 Fresh gas feed flow rate Steady-state 
U3 Fresh toluene flow rate Steady-state 
U4 Bentol flow rate Steady-state 
U5 Furnace heat duty Steady-state 
U6 Cooler heat duty Steady-state 
U7 Purge flow rate Steady-state 
U8 Liquid flow to stabilizer Dynamic only (level control) 
U9 Stabilizer reflux flow rate Steady-state 
U10 Stabilizer condenser duty Dynamic only (level control) 
U11 Stabilizer distillate flow rate Steady-state 
U12 Stabilizer reboiler duty Steady-state 
U13 Stabilizer bottoms flow rate Dynamic only (level control) 
U14 Benzene column reflux flow rate Steady-state 
U15 Benzene column distillate flow rate Dynamic only (level control) 
U16 Benzene column reboiler duty Steady-state 
U17 Benzene column bottoms flow rate Dynamic only (level control) 
U18 Toluene column reflux flow rate Steady-state 
U19 Toluene column condenser duty Steady-state 
U20 Toluene column distillate flow rate Dynamic only (level control) 
U21 Toluene column reboiler duty Steady-state 
U22 Toluene column bottoms flow rate Dynamic only (level control) 

 
 

Table 6: Selected candidate controlled variables for the HDA process (excluding levels). 
 

Y1 A9/A10 flow rate Y26 Separator liquid outlet toluene mol fraction 
Y2 Fresh toluene flow rate  Y27 Separator liquid outlet xylene mol fraction 
Y3 Recycle flow rate of toluene Y28 Gas recycle ethane mol fraction 
Y4 Reactor inlet temperature Y29 Gas recycle propane mol fraction 
Y5 Reactor outlet temperature Y30 Gas recycle benzene mol fraction 
Y6 Separator temperature Y31 Total flow rate of hydrocarbons to the reaction section 
Y7 Bentol feed flow rate Y32 Hydrogen mol fraction in the reactor outlet 
Y8 Fresh gas feed flow rate Y33 Production rate (flow rate in benzene and stabilizer columns) 
Y9 FEHE hot side exit Y34 Production rate (flow rate in the toluene column) 
Y10 Steam flow rate at the separator outlet  Y35 Temperature in an intermediate stage of stabilizer column 
Y11 Liquid flow rate at the separator outlet  Y36 Temperature in an intermediate stage of benzene column 
Y12 Purge flow rate Y37 Temperature in an intermediate stage of toluene column 
Y13 Separator pressure Y38 Pressure at the top of stabilizer column 
Y14 Furnace heat duty Y39 Pressure at the top of benzene column 
Y15 Cooler heat duty Y40 Pressure at the top of toluene column 
Y16 Toluene conversion at reactor outlet Y41 Benzene mol fraction in stabilizer column sidestream 
Y17 Trimethylbenzene conversion at reactor outlet Y42 Propane mol fraction in stabilizer column sidestream 
Y18 Hydrogen / hydrocarbons ratio in the reactor inlet  Y43 Benzene mol fraction in benzene column sidestream 
Y19 Recycle gas flow rate Y44 Benzene mol fraction in benzene column sidestream 
Y20 Mixer ethane mol fraction Y45 Xylene mol fraction in toluene column bottoms 
Y21 Mixer propane mol fraction Y46 Toluene mol fraction in toluene column bottoms 
Y22 Separator overhead vapor ethane mol fraction Y47 Ethylbenzene mol fraction in toluene column bottoms 
Y23 Separator overhead vapor propane mol fraction Y48 Toluene mol fraction in toluene column overhead 
Y24 Separator overhead vapor benzene mol fraction Y49 Xylene mol fraction in benzene column overhead 
Y25 Separator liquid outlet benzene mol fraction 
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Primary Controlled Variables 
 

In this case study there are three valuable prod-
ucts of the distillation columns: the composition of 
benzene in the sidestreams of the stabilizer and ben-
zene columns and the composition of xylene in the 
bottom of the toluene column. As these are the main 
products of the unit, their specification in these 
streams must be considered as active constraints.  

The composition of toluene in the recycle stream 
to the unit is also a pre-defined variable, since an 
increased content of xylenes in the recycle stream 
demands higher energy consumption, and may also 
cause an undesired concentration of ethylbenzene in 
the process. Thus, this composition is also consid-
ered to be an active constraint. Just as considered for 
xylene, it is not interesting to recirculate back the 
benzene to the reaction section; therefore, in the 
bottom of the benzene column, benzene composition 
must be controlled. The bottom stream of the stabi-
lizer column will be manipulated in order to control 
the concentration of benzene in the bottom. These 
six specifications for the distillation columns con-
sume six steady state degrees of freedom, thus leav-
ing 15 − 6 = 9 remaining degrees of freedom.  

The following constraints were considered active 
for the reaction and separation sections: separator 
temperature, A9/A10 feed flow rate, fresh toluene flow 
rate, Bentol flow rate, separator pressure, H2/HC 
ratio and reactor inlet temperature. These constraints 
are not degrees of freedom since their values should 
be set. Consequently, the remaining number of de-
grees of freedom is: 15 − 6 − 7 = 2, which signifi-
cantly reduces the number of possible sets of con-
trolled variables.  
 
Optimization Analysis for Selection of Remaining 
Degrees of Freedom 
 

The equation that describes the profit function (J) 
[M$/year] to be maximized is described as: 
 

9 10 9 10

2 2

( ) (

)

B B X X f f Tol Tol

A A A A Bentol Bentol

H H fuel fuel CW CW

Pow Pow Vap Vap

J p F p F p F p F

p F p F

p F p Q p Q

p W p Q

= + + −

+ +

+ + +

+ +

      (1) 

 
Subject to the following constraints: 

 
Reactor inlet hydrogen/hydrocarbon ratio  
 

21 3H
HC

≤ ≤                (2) 

Feed flow rates (fresh toluene, bentol and stream 
A9/A10) 
 

1984 kg / hTolF =                 (3) 
 

9 10 67595 kg / hA AF =             (4) 
 

126443 kg / hBentolF =            (5) 
 
Reactor temperature 
 

697 KreactorT =               (6) 
 
Benzene purity in the sidestream of stabilizer and 
benzene columns 
 

, 97.00%B estabx ≥              (7) 
 

, 99.99%B benzenex ≥             (8) 
 
Xylene purity in the bottom of the toluene column  
 

68.00%Xx ≥               (9) 
 
Toluene purity in the recycle stream 
 

98.00%Tolx ≥             (10) 
 
Separator inlet temperature  
 

_ 500 Kin sepT =            (11) 
 
Separator pressure 
 

224.3 PaseparadorP =           (12) 
 

All flow rates and concentrations are non-nega-
tive variables. 

It is considered that all by-products (purge, distil-
late vapor of stabilizer and benzene column) are sold 
as fuel. Additionally: 

1. pB, pX, pf, pTol, pBentol, pA9A10, pH2, pfuel, pCW, pPow 
and pVap are the prices of feed of benzene, xylene, 
fuel gas, toluene, bentol, A9/A10 fraction, hydrogen, 
fuel for the furnace, cooling water, power to the 
compressor, and steam, respectively (see data in 
Table 7);  

2. FB, FX, Ff, FTol, FBentol, FA9A10 and FH2 are the 
flow rates of benzene, xylene, fuel gas, toluene, ben-
tol (mixture of benzene and toluene), A9/A10 fraction, 
and hydrogen, respectively, Qfuel, QCW and QVap are 
heat duties of fuel for the furnace, cooling water, and 
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steam, respectively, and WPow is the power to the 
compressor;  

3. QCW = QCW, cooler+ QCW, T02 + QCW, T03 + QCW, T04; 
4. QVap = QVap, T02 + QVap, T03 + QVap, T04; 
5. Ff = Fpurge + DT02 + DT03;, where Fpurge is the 

purge flow rate, DT02 is the distillate flow rate of T02 
and DT03 is the distillate flow rate of T03; 

6. Annual operation of 8150 hours.  
 
Table 7: Economic data for the process, based on 
Araújo et al. (2007b) and ICIS. 
 

pB 0.256 $/kg 
pX 0.312 $/kg 
pTol 0.145 $/kg 
PA9A10 0.072 $/kg 
pH2 1.455 $/kg 
Pf 1.000 $/kg 
pfuel 3.8x10-9 $/J 
pCW 2.22x10-10 $/J 
ppow 5.6x10-5 $/J 
pvap 2.4x10-9 $/J 

 
The constant setpoint strategy is simple, but will 

not be optimal, as a result of disturbances. The effect 
of these factors (or, more specifically the loss) de-
pends on the choice of the controlled variables, and 
the goal is to find a set of controlled variables in 
which the loss is acceptable. In order to identify the 
structure that satisfies that condition, an analysis of 
the model was carried out using the resources of op-
timization of Aspen Plus™. The objective function 
described in Equation (1) was set up with its con-
straints. Concentration variables with no active con-

straints were pre-selected, because they have a 
significant impact on the objective function. The 
optimal value of these variables was calculated and 
two disturbances were applied to the process (D1 and 
D2, +10% and -10% A9/A10 feed flow rate, re-
spectively). The decision variables were the concen-
trations (mol fractions) from Table 6.  

Variables defined as optimal from the standpoint 
of self-optimizing control were those with less de-
viation from their optimal value, which implies that 
the constant setpoint policy has the least impact on 
the profit function. Table 8 presents the results. It 
should be noted that the present approach is simpler 
than that performed by Araújo et al. (2007b) who 
calculated the loss with each variable in the assumed 
sets kept at its nominal optimal setpoint. 

From the described methodology, the selected 
variables should have been: (i) the separator liquid 
outlet toluene mol fraction and (ii) the mol fraction 
of xylene in the reactor outlet. However, as the 
TDAP process includes a disturbance of toluene 
ahead of the separator, due to a fresh stream in the 
feed of the benzene column, it was decided to change 
the first selected variable by another one. Therefore, 
comparing with the results obtained by Araújo et al. 
(2007b) for the HDA process, who considered the set 
composed of mol fraction of methane (inert) in the 
outlet of the mixer and mol fraction of toluene in the 
outlet of the quencher, the mol fraction of ethane 
(inert) at the mixer outlet was considered. With these 
changes the methodology cannot be considered rig-
orously self-optimizing. The impacts of this choice 
are evaluated in the following sections. 

 
 

Table 8: Effect of disturbances on optimal values of the selected variables. 
 

Candidate Controlled Variable Nominal Value Absolute Variation  
of Nominal Value  

with D1 

Absolute Variation  
of Nominal Value  

with D2 
Mixer outlet ethane mol fraction 1.004x10-6 4.48x10-7 -4.87x10-7 
Mixer outlet propane mol fraction 5.134x10-8 2.33x10-8 -2.59x10-8 
Separator overhead vapor ethane mol fraction 8.54x10-3 -2.16x10-4 3.30x10-4 
Separator overhead vapor propane mol fraction 4.37x10-4 -5.15x10-6 1.10x10-5 
Separator overhead vapor benzene mol fraction 1.02x10-4 1.29x10-5 -1.47x10-5 
Separator liquid outlet benzene mol fraction 0.0702032 0.0030892 -0.0035004 
Separator liquid outlet toluene mol fraction 0.254397 -0.0017485 0.0023585 
Separator liquid outlet xylene mol fraction 0.200455 -0.0099576 0.0101899 
Gas recycle benzene mol fraction 1.20x10-8 2.33x10-8 -2.59x10-8 
Reactor outlet xylene mol fraction 0.2004806 9.96x10-7 1.02x10-7 
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late section, its temperature should be controlled. 
The manipulated variable chosen in this case is the 
heat duty of the condenser.  

The composition control of distillation columns 
in general is slow due to liquid and gas transport 
delays as well as large liquid holdup along the col-
umn, and the measurement is time consuming and 
more expensive than temperature control. Therefore, 
the temperatures are also controlled in the distillation 
columns in order to avoid fluctuations on a short 
time scale. The Slope Criterion method (Luyben, 
2006) was used. The procedure for selecting the 
control tray in this method consists of analyzing the 
temperature profile at the steady state and finding the 
location in the column that exhibits the largest 
change in temperature from one stage to another. It 
was applied and the selected tray for temperature 
control of T-02 was number 4; number 36 for T-03, 
and number 46 for control of T-04. 
 
Design of Supervisory Control Structure 
 

The purpose of the supervisory layer is to keep 
the primary controlled variables in their optimal 
setpoints. The supervisory layer was adapted from 

Araújo et al. (2007b). In addition to the previously 
established composition controllers, an anticipatory 
control to calculate the ratio H2/HC is also needed, 
since this is an active constraint. In the steady-state 
analysis, the control of the composition of xylene at 
the outlet of the reactor (by manipulating the setpoint 
of reactor inlet temperature controller) and the con-
trol of ethane in the mixer output by manipulating 
the flow of recycle gas were defined. Table 9 sum-
marizes all the control loops defined in Strategy 1. 
The supervisory control structure − composed of the 
primary xylene composition controller (R-01_CC 
cascaded with the temperature controller R-01_TC); 
the ethane composition controller V-01_CC, and the 
feedforward controller − is shown in Figure 4 that 
presents the control structure for this strategy. 
 
Tuning of the Controllers 
 

Only P (proportional) control was adopted for liq-
uid levels; for other control loops, PIs (proportional-
integral) controllers were employed. The conserva-
tive Tyréus-Luyben (Luyben et al., 1998, 1997) tun-
ing rules (Kc = Ku/2.2; τI = 2.2 Pu; Ku and Pu are re-
spectively the critical gain and period) were used.  

 
 

Table 9: Summary of the control loops of Strategy 1. 
 

Tag Manipulated variable Controlled variable Kc (%/%) τI (min) 
R-01_TC F-01 heat duty R-01 inlet temperature 17.15 3.96 
V-01_TC PREAC cooler heat duty V-01 temperature 1 20 
V-01_PC V-01 purge flow rate V-01 pressure 20 12 
V-01_LC  V-01 output flow rate V-01 level 10 - 
V-01_CC Recycle gas flow rate M-01 output ethane concentration 1 20 
R-01_CC Reactor temperature R-01 output xylene concentration 1 20 
T02_CondPC T-02 sidestream flow rate T-02 pressure 44.19 85.8 
T02_DrumLC T-02 condenser heat duty T-02 reflux drum level 2 - 
T02_CC01 T-02 reflux flow rate T-02 sidestream toluene concentration 0.42 11.88 
T02_TC T-02 reboiler heat duty T-02 temperature control tray 26.21 19.8 
T02_CC02 T-02 temperature control tray T-02 bottom benzene concentration 0.11 11 
T02_SumpLC T-02 bottom flow rate T-02 reboiler level 2 - 
T03_CondPC T-03 condenser heat duty T-03 pressure 98.99 2.64 
T03_DrumLC T-03 sidestream flow rate T-03 reflux drum level 2 - 
T03_CC01 T-03 reflux flow rate T-03 sidestream benzene concentration 1 20 
T03_TC T-03 reboiler heat duty T-03 temperature control tray 57.4 6.6 
T03_CC02 T-03 temperature control tray T-03 bottom benzene concentration 0.21 2.59 
T03_SumpLC T-03 bottom flow rate T-03 reboiler level 20 - 
T04_CondPC T-04 condenser heat duty T-04 pressure 52.88 5.28 
T04_DrumLC T-04 distillate flow rate T-04 reflux drum level 20 - 
T04_CC01 T-04 temperature control tray T-04 distillate xylene concentration 2.16 5.28 
T04_TC T-04 reflux flow rate T-04 temperature control tray 0.73 4.92 
T04_CC02 T-04 reboiler heat duty T-04 bottom toluene concentration 860.6 2.64 
T04_SumpLC T-04 bottom flow rate T-04 reboiler level 2 - 
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APPENDIX  
 
Kinetics of Reactions of the TADP Process 
 

The kinetic model (Ouguan et al., 2007) is pre-
sented below. In this model, r is the reaction rate, a is 
the mass fraction (%), φ is the function of catalyst 
deactivation which is assumed as uniform for all 
reactions and equal to 1 in this work, k is the kinetic 
constant of reaction and K is the chemical equi-
librium constant. The components involved are: tolu-
ene (Tol), benzene (B), xylenes (X), methylbenzene 
(MB), ethylbenzene (EB), propilbenzene (PB), tri-
methylbenzene (TMB), and C10A.  

Disproportionation of Toluene (Reversible) 
 

 
 

2
1 1

1

.. B x
Tol

a ar k a
K
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2 2
2

2 .. B EB
Tol

a ar k a
K

φ ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
        (A2) 

 
Transalkylation of Toluene with Trimethylbenzene 
(Reversible) 
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Dealkylation (Irreversible) 
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Disproportionation of Trimethylbenzene (Rever-
sible) 
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. X C A
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The kinetic constant of the ith reaction is defined 

by the Arrhenius equation: 
 

0 .exp , ( 1 7)ai
i i

Ek k i
RT

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

     (A8) 

 
The chemical equilibrium constants are calculated 

as follows, for reactions 1 to 4 and 7, where Mc is  
the molecular weight of the component C. The ther-
modynamic constant Kepi is given by Equation (A14).  
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The kinetic parameters are presented in Table A1.  

 
Table A1: Kinetics parameters of the model, based 
on Ouguan et al. (2007). 
 

Direct reaction Reverse reaction 
Reaction k0i, s-1 Eai,  

kJ mol-1 
k0i/K, s-1 (Eai)inv = 

Eai - ΔG, 
kJ mol-1 

1 9.106 x 1010 102 3.269 x 1011 94.8 
2 9.534 x 1013 150 1.567 x 1015 134.1 
3 5.712 x 1010 96.77 1.273 x 1011 92.07 
4 6.001 x 1013 150 2.804 x 1015 127.8 
5 6.126 x 1010 101.8 - - 
6 3.263 x 1010 95.8 - - 
7 3.213 x 109 106 1.338 x 1011 84.7 
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