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Abstract – This study investigates the application of NIR spectroscopy for real-time monitoring of process 
parameters in alcoholic fermentations. For this purpose, fermentation batches using Saccharomyces cerevisiae 
were carried out and monitored in situ by an immersed NIRS probe. Samples were collected throughout the 
fermentations, and concentrations of biomass, glucose, ethanol and glycerin were analyzed by reference methods 
and multivariate data analyses such as PCA and PLSR. PCA was used to investigate data variability and to select 
samples for calibration and for external validation sets. A PLSR model for biomass yielded R2 and RMSEP values 
of 0.99 and 0.276 g.L-1, respectively. For glucose, the carbon source, the PLSR model yielded an R2 of 0.95 and 
an RMSEP of 7.14 g.L-1. The PLSR model for ethanol was characterized by an R2 of 0.95 and an RMSEP of 0.06 
g.L-1. For glycerin, a highly accurate PLSR model with an R2 of 0.98 and an RMSEP of 0.116 g.L-1 was obtained. 
These results indicate that an in situ NIRS probe is suitable for real-time monitoring of important parameters in 
alcoholic fermentations. 
Keywords: near-infrared spectroscopy; monitoring; alcoholic fermentation.

INTRODUCTION

Efficient real time monitoring of bioprocesses allows for 
improved process modeling and control (Schügerl, 2001), 
which can lead to increased process yield, productivity 
and reproducibility (Alves-Raush et al., 2014). Therefore, 
instrumentation capable of real-time monitoring is essential 
for bioprocess optimization. 

The yeast Saccharomyces cerevisiae is the most 
frequently used microorganism for ethanol production in 
the energy and beverage industries. During fermentation, 
culture broth samples are routinely taken to monitor and 

measure specific process parameters. Physical parameters 
such as temperature, pH, dissolved oxygen, liquid level 
and foam level are commonly monitored by on-line sensors 
(Tamburini et al., 2003), but critical process parameters 
such as substrate consumption, cell concentration and final 
product concentration are typically measured with off-line 
and time-consuming methods. Off-line measurements do 
not allow process control to be implemented and reduce 
process efficiency (Blanco et al., 2005).

Analytical spectrometry-based methods have been used 
to monitor ethanol fermentations (Blanco et al., 2004; Finn 
et al., 2006; Burratti et al., 2011), as these methods are 
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fast and non-destructive. In addition, these methods allow 
simultaneous analysis of multiple parameters (Ferreira et 
al., 1999) without requiring sample pretreatment. Near-
infrared spectroscopy (NIRS) is an important technique: 
fiber optic probes connected directly to the process enable 
simultaneous real-time and in situ monitoring of several 
parameters quickly and safely. Although the NIR sensors 
are able to withstand sterilization procedures, they are 
severely disturbed by the bubbles generated in vigorously 
aerated and mixed processes (Alves-Rausch et al., 2014).

The NIR absorbance region corresponds to overtones 
and combinations of the fundamental vibrations of 
O-H, N-H and C-H bounds (Buratti et al., 2011). These 
characteristics result in spectra with broad and overlapping 
bands (Alves-Raush et al., 2014). First and second 
derivatives are used to “pretreat” NIR spectra to enhance 
spectral features and to reduce baseline offsets resulting 
from light scattering due to increases in cell concentration 
(Tamburini et al., 2003). 

NIR spectroscopy has been used to monitor microbial 
fermentations, and many studies have used NIR sensors 
to monitor off-line and at-line. For at-line monitoring, the 
sample is transported through an external line to the probe, 
where the measurement is performed at a sampling rate 
often inadequate for process control objectives (Blanco et 
al., 2004; Blanco et al., 2006; Finn et al., 2006; González-
Sáiz et al., 2008; Fernandéz-Novales et al., 2008; Xie 
et al., 2009; Burratti et al., 2001). Grassi et al. (2014) 
used NIRS in off-line mode to monitor pH, biomass and 
soluble solid content (Brix) in a wort fermentation. By 
using off-line NIRS equipment, Grassi et al. required 
the use of centrifugation prior to analyses. Liang et 
al. (2013) reported the use of at-line NIRS to monitor 
glutamate, glucose, lactate and alanine concentrations in a 
glutamate fermentation. They concluded that it is feasible 
to use NIRS to determine compound concentrations in the 
fermentation industry. Studies using NIR spectroscopy to 
monitor analyte concentrations in fermentation with other 
microorganisms can be found in the literature (Crowley et 
al., 2005; Roychoudhury et al., 2006; González-Sáiz et al., 
2008; Jiang et al., 2012; Liang et al., 2013). To date, the use 
of on-line NIR spectrophotometers to monitor alcoholic 
fermentations has been limited and has been described in 
relatively few studies, especially compared to off-line and 
at-line monitoring. 

Other spectroscopic techniques have also been used 
to monitor bioprocesses. Fayolle et al. (2000) used mid-
infrared spectroscopy (mid-IR) to monitor sugars, ethanol 
and organic acids concentrations on-line in alcoholic and 
lactic acid fermentations. They measured the contents of 
glucose, fructose, galactose, lactose, ethanol and lactic 
acid but reported that predictions of concentrations were 
not accurate enough to guarantee good on-line monitoring. 
Cozzolino et al. (2006) found that NIRS and visible 
spectroscopy, along with chemometrics, can be used 

to monitor the progress of red wine fermentations. The 
authors concluded that visible and NIR spectroscopies 
provide good solutions to accurately monitor the progress 
of red wine fermentations without requiring any chemical 
analyses. NIRS and MIRS were used by Egidio et al. 
(2010) to monitor the main chemical parameters in red wine 
fermentations. The monitoring of the bioprocess was off-
line, and the authors concluded that NIRS and MIRS were 
able to measure the concentrations of red wine analytes 
such as glucose, fructose, ethanol, glycerol, total phenolics, 
total anthocyanins and total flavonoids. Hakemeyer et al. 
(2013) used NIRS and 2-D fluorescence spectroscopy to 
monitor the chemical composition of culture media during 
storage, concluding that both spectroscopic methods were 
able to predict chemical composition changes over time 
with good accuracy. 

Multivariate techniques allow the use of spectral 
information both qualitatively and quantitatively (Alves-
Raush et al., 2014). Quantitative multivariate analysis uses 
multilinear regression methods to relate a matrix X of NIRS 
data with a matrix Y of reference concentration data (Naes 
et al., 2002). Partial least squares regression (PLSR) is a 
multilinear regression method that may be used to obtain 
quantitative calibration models from matrices X and Y. 
The models created by PLSR can be used to predict analyte 
concentrations in systems at lab or industrial scales.

The aim of the present study is to evaluate in situ NIRS 
monitoring of an alcoholic fermentation process using S. 
cerevisae. This study is also intended to develop predictive 
PLSR models for the quantitative prediction of glucose, 
biomass, ethanol and glycerine concentrations. The 
regression models developed here may be used for real-
time bioprocess monitoring and control.

MATERIALS AND METHODS

Yeast and cultivation conditions

The Saccharomyces cerevisiae CAT-1 fermentec strain 
was obtained from an Estivas® industrial plant located 
in the Arês municipality in the state of Rio Grande do 
Norte, Brazil. The strain was maintained on Petri dishes 
containing YEPD medium at 4 °C with the following 
nutrient concentrations: 10 g/L of yeast extract, 20 g/L of 
peptone, 20 g/L of glucose and 15 g/L of agar.

Pre-inoculum: Pre-cultures of yeast cells were grown 
in two 250-mL Erlenmeyer flasks containing 150 mL of 
cultivation medium (in g L-1: glucose 30; yeast extract 5; 
(NH4)2SO4 10; KH2PO4 4.5; MgSO4.7H2O 1; ZnSO4. 7H2O 
0.65 and pH adjusted to 5.0). Each Erlenmeyer flask was 
inoculated with Saccharomyces cerevisiae and incubated 
in a rotary incubator at 30ºC, 150 rpm for 20 h. After 20 h 
of cultivation, the contents of the Erlenmeyer flasks were 
transferred to three 50 mL centrifuge tubes and centrifuged 
at 3000 rpm for 10 min. The supernatant was discarded, and 



Brazilian Journal of Chemical Engineering Vol 34, No 02, pp. 459 - 468, April - June, 2017

Real Time and In Situ Near-Infrared Spectroscopy (Nirs) for Quantitative Monitoring of Biomass, Glucose, 
Ethanol and Glycerine Concentrations in an Alcoholic Fermentation

461

the cells in each of the three flasks were resuspended in 50 
mL of fresh, sterile medium. The resuspended cells (total 
volume of 150 mL) were transferred to a sterile inoculator 
flask, forming the initial biomass used for fermentation 
tests.

Bioreactor: Cultivations for ethanol production 
were performed in a BIOSTAT B® (B. Braun Biotech 
International) reactor with a volumetric capacity of 2 L 
and a working volume of 1.65 L. The composition of the 
cultivation medium used was the same as the medium used 
for the pre-inoculum. The temperature was maintained 
at 30 °C. The pH setpoint was set at 5.0, and cultivation 
conditions were established to maintain an environment 
of restricted aerobiosis without aeration. Agitation was 
performed at 150 rpm.

Sampling

The samples used to build the calibration model were 
obtained from five different fermentations. Samples were 
taken with a 10 mL plastic syringe connected to the 
bioreactor collection tube. Batch 1 was sampled every 
hour; the other batches were sampled every half hour. 
Each sample was divided into two aliquots. One aliquot 
was used to determine cell concentrations, and the second 
aliquot was divided into 2 mL Eppendorf® microcentrifuge 
tubes. These microcentrifuge tubes were centrifuged for 
15 min at 14,000 rcf in an Eppendorf centrifuge (model 
5415 D). The supernatant was filtered through a 0.22 µm 
PES membrane and frozen for later reference analysis of 
glucose, glycerine and ethanol concentrations by HPLC.

Reference Methods

HPLC - the levels of glucose, ethanol and glycerine 
were determined by HPLC (Shimadzu LC-10A series). 
Analyses were performed at 65 °C on a Shimadzu SCR-
101H column with a refractive index detector (RID-10A). 
A 5 mmol.L-1 sulfuric acid solution was used as the mobile 
phase with a flow rate of 0.6 mL.min-1. 

UV Absorption - The absorbances of aliquots intended 
for cell concentration measurements were determined at 
600 nm in a 10 UV Genesys spectrophotometer. Sample 
cell concentrations were determined from the absorbance 
data using a previously obtained linear regression equation.

NIR spectral measurements

NIR spectra of cultivation samples were acquired using 
a Thermo-Nicolet Antaris II FT-NIR spectrophotometer 
equipped with a probe connected with optical fiber cables. 
The transflectance adapter is attached to the sensor, 
enabling the optical path to be adjusted from 1.5 mm to 10 
mm. In this study, the smallest optical path (1.5 mm) was 
used. The blank spectrum, which was used as a reference 
during calculation of sample absorbance values, was 
measured automatically using an internal white standard as 
the background spectrum. Spectral scans were performed 
over the entire NIR range (10000 to 4000 cm-1) with an 
optical resolution of 8 cm-1. Each recorded spectrum was 
the average of 64 scans, and each spectrum was stored 
and processed with TQ ANALYST 8 (Thermo Scientific). 
Chemometric analysis was performed using the same 
software package. In cultivations for ethanol production, 
the sensor was directly attached to the bioreactor, and 
spectra were acquired in real time. Figure 1 shows a 
schematic diagram of the bioreactor used in this study.

Figure 1. Schematic diagram of the experimental system. Sensors*- pH sensor, dissolved oxygen sensor, level sensor and foam sensor
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Data analysis

In highly aerated processes, air bubbles passing in 
front of the NIR probe take the place of the liquid sample, 
reducing the measured absorbance (Alves-Raush et al., 
2014). Because alcoholic fermentations do not require 
aeration, the use of spectral filters to reduce the effect of air 
bubbles was not necessary.  

Five batches were monitored in situ, and samples 
were taken for off-line reference analysis. Table 1 shows 
the number of samples used to generate each calibration 
model as well as the respective concentration range of each 
model.

Principal Component Analysis (PCA) was used to 
investigate the total variability of samples and to select 
data for calibration and external validation sets. PCA is 
a multivariate analysis technique that aims to minimize 

the original data dimensionality into a small number of 
variables called principal components. In the PCA score 
plot, observations that are closer to one another have 
similar characteristics (Cordella, 2012). Therefore, PCA is 
a useful tool for extracting information from data sets.

Calibration models were generated for glucose, 
ethanol, glycerin and cell density in TQ ANALYST 8 by 
applying PLSR to the spectral data and analyte reference 
concentrations. The PLS algorithm has been described in 
the literature (Geladi and Kowalsky, 1986; Svante, 1995; 
Naes et al., 2002) and determines the relationship between 
the X matrix (spectral data) and the Y matrix (reference 
analyte concentration). For model validation, a batch was 
chosen by PCA and kept out of the calibration process to 
be used as an external validation set. Table 1 shows the 
number of samples and the sample ranges used in the 
calibration models.

Table 1. Concentration range (g.L-1) and number of samples included in the calibration and external validation sets.
Experimental data - number of points

Biomass Glucose Ethanol Glycerine
Calibration 58 53 45 48
Validation 17 17 16 12

Concentration range 
(g.L-1) 0.56 – 5.85 0.30 – 39.61 0.30 – 14.80 0.00 – 1.16

Calibration models were constructed using the “leave-
one-out” cross-validation procedure. The optimal number 
of latent (factors) variables was determined by minimizing 
the sum of residual squared errors of prediction (PRESS), 
Eq. 1 (Randall, 1999; Blanco et al., 2004; Coffey and 
Cooley, 1999) and minimizing the root mean squared 
errors of prediction (Eq. 2) obtained by external validation.

Where m is the number of samples, yREF is the value of 
the reference concentration, and yNIR is the concentration 
calculated by the NIRS calibration model.

The accuracies of the calibration models are expressed 
as the average root mean square error detailed in Eq. 2. 
These accuracies are referred to as RMSEC for calibration, 
RMSECV for cross-validation (internal validation) and 
RMSEP for external validation.

RESULTS AND DISCUSSION

Quantitative calibration models were generated for 
glucose, ethanol, glycerine and cell concentrations. On-
line monitoring of these parameters provides valuable 
information, allowing the evolution of fermentations in 
industrial environments to be followed. The calibration 
models provide predicted values of parameters and may 
be used to implement control loops capable of reducing 
substrate feeds and increasing end-product quality and 
process yield.

To obtain robust models and to implement a real-time 
monitoring system for alcoholic fermentations, calibration 
and validation procedures were performed to identify 
the model that allows for the best quantitative analysis 
of biomass, substrate and product concentration. The 
chemometric approach was applied by using near-infrared 
spectroscopy and reference analytical techniques. The 
calibration procedure must guarantee that all variability 
in the process is captured, so the calibration set should 
include several batches to introduce inter-batch variability 
into the model. The external validation procedure consists 
of using a set of validation samples that do not belong to 
the calibration set. This method facilitates the evaluation 
of model robustness for predicting analyte concentrations 
in future fermentation batches. New spectra will be in the 
design space covered by the calibration procedure.

(1)

(2)
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Sample spectra acquired with the NIR sensor are 
shown in Figure 2. It is noted that the spectra do not 
provide information in a clear manner, as NIR spectra 
are characterized by overlapping absorption bands and 
light scattering differences caused by increases in cell 
concentration (Hall et al., 1996, Nishii et al., 2012). To 
enhance spectral features and to compensate for baseline 
shifts and light scattering differences, the original spectra 

need to be subjected to pretreatments before being used to 
construct calibration models (Finn et al., 2006). The first 
and the second derivatives are used to solve the problem 
of overlapping peaks and to eliminate the baseline shift 
associated with increasing biomass concentration (Petersen 
et al., 2009). The Savitzky-Golay smoothing filter allows 
the random noise to be reduced. Figure 3 illustrates the 
spectra after pretreatment with first and second derivatives.

Figure 2. NIRS acquired spectra for samples of all fermentations.

Figure 3. (a) NIR spectra of samples using first derivative and Savitzky-Golay smoothing filter; (b) NIR spectra of 
samples using second derivative and Savitzky-Golay smoothing filter.

To obtain an adequate model, it is important that 
calibration data include all of the variations observed 
throughout the process. In this study, the data from all 
fermentation samples were mean centered prior PCA, and 
a score plot was built (Figure 4) to determine which data 
set was more significant for model calibration and which 
data set could be used for external validation. With PCA, 

it was possible to verify that the samples presented distinct 
characteristics throughout the bioprocess, including 
differences in changes in biomass, substrate, and product 
concentrations. In the score plot (Figure 4); experimental 
data for batches 1 and 3 were clustered together, indicating 
the similarity of these samples. The same behavior was 
observed for batches 2 and 5. Batch 4 did not cluster with 
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any of the other batches, indicating that this batch contains 
samples with features distinct from the other batches. 
Therefore, batches 1 to 4 were used for model calibration. 
This data set contains the greatest number of samples 
with different characteristics, increasing the variability 

of the model prediction. Batch 5 was chosen for external 
validation, as this experimental run was a completely 
independent data set whose features were contained within 
the calibration data set.

Table 2. Calibration and validation results of PLS models for fermentation substrate and products using different pretreatments and 
the smoothing filter of Saviztky-Golay. 

Analyte Pretreatment Filter Range
(cm-1) Factor

Calibration Cross Validation External Validation

R2 RMSEC
(g.L-1) R2 RMSECV

(g.L-1) R2 RMSEP
(g.L-1) Bias

Biomass 1ª derivative SGa 5916.54-
4389.19 7 0.992 0.230 0.978 0.376 0.983 0.276 - 0.10049

Glucose None SGa 7328.17-
4130.78 9 0.955 3.52 0.920 4.65 0.940 7.14 7.04987

Ethanol 1ª derivative SGa 8261.55-
4327.48 6 0.952 1.21 0.911 1.64 0.915 2.36 -2.70556

Glycerin 2ª derivative SGa 4454.76-
4269.63 2 0.979 0.0759 0.970 0.0902 0.937 0.116 0.08553

a Savitzky-Golay smoothing filter

Figure 4. PCA score plot of the calibration and external validation samples. The solid symbols denote calibration samples and the 
hollow symbols represent external validation samples.

TQ ANALYST 8 was used to select the regions of 
the spectra where spectral information either varied or 
correlated with changes in concentrations of the analyzed 
compounds. The NIRS wavelength range influences the 
results of the calibration model. This is because only 
spectral information that changes or correlates with 

concentration is expected to be used in model construction 
(Hongqiang and Hongzhang, 2008). PLS calibration 
models using selected NIR regions were constructed, 
and the prediction results obtained from these models are 
summarized in Table 2. 
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The fermentations were planned to be performed under 
similar conditions. However, each experimental run was 
carried out independently. Initial concentrations of biomass 
were inevitably different for each experimental run, and 
analyte concentrations evolved differently throughout each 
fermentation. These differences ensure that these data sets 
are different and independent. Furthermore, the samples 
used for external validation were within the calibration 
range, but belonged to an independent batch that was not 
included in the calibration set.

To check the predictive ability of the models, an 
external validation was performed: new samples that did 
not belong to the calibration set were used to evaluate the 
previously obtained models.

Figure 5 shows the calibration and validation results for 
biomass, glucose, ethanol and glycerine. The calibration 
and validation values remained close to the line of perfect 

correlation, indicating that analyte concentrations in the 
broth were modeled successfully. The concentrations of 
biomass, glucose, ethanol and glycerine predicted more 
accurately when the Savitzky-Golay smoothing filter was 
used, as the filter was able to reduce the random noise 
present in the spectra (Hongqiang and Hongzhang, 2008) 
and make the data easier to interpret. 

The best model for biomass was obtained using a first 
derivative pretreatment and the Saviztky-Golay smoothing 
filter, with RMSEC and RMSEP values of 0.230 g.L-1 and 
0.276 g.L-1, respectively. The RMSEP and RMSEC values 
are very close, indicating that the obtained calibration 
model retained its predictive capability for the new samples 
not belonging to the calibration set. Gonzáles-Sáiz et al. 
(2007) used NIR to monitor the alcoholic fermentation 
of onion juice, obtaining RMSEC and RMSEP values of 
0.104 g.L-1 and 0.157 g.L-1, respectively. 

Figure 5. PLS regression of predicted vs. actual concentration values of: (a.) Biomass, (b.) glucose, (c.) ethanol and (d.) 
glycerine. The results for the best models are plotted.

The best results for glucose and ethanol prediction were 
obtained using the Savitzky-Golay smoothing filter. The 
best results for glucose prediction were obtained without 
pretreatment, while the best results for ethanol prediction 
were obtained with a first derivative pretreatment. For 
glucose, the correlation coefficient was approximately 

0.96, and RMSEP and RMSEC values were 7.14 g.L-1 and 
4.65 g.L-1, respectively. The calibration model obtained for 
glucose had high RMSEC and RMSEP values, indicating a 
model with lower predictive power and reduced ability to 
quantify residual glucose at the ends of fermentations. The 
ethanol model had an RMSEC value of 1.21 g.L-1 and an 
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RMSEP value of 2.36 g.L-1. Meng-Lin et al. (2009) used 
NIR to determine the ethanol concentration of an anaerobic 
H2-producing bioreactor effluent; RMSEC and RMSEP 
values for this model were 25.8 mg/L and 39.7 mg/L, 
respectively. These values are lower than the values for the 
model in this work, but the models generated by Meng-Lin 
et al. (2009) were obtained with a large number of factors 
and may be overfitted. The fact that glucose and ethanol 
absorb in the same region (Nishii et al., 2012) lowered the 
prediction efficiency of these two analyte concentration 
models (Arnold et al., 2003; Finn et al., 2006). Due to 
this overlap in absorption, many factors are required in the 
glucose and ethanol prediction models. This result may 
mean that the best approach for describing the dataset is 
to construct nonlinear models, as nonlinear models require 
a larger number of factors to describe the nonlinearities 
present in the dataset (Geladi and Kowalski, 1986). 

The best model for glycerine was generated using a 
second derivative pretreatment and the Savitzky-Golay 
smoothing filter, with RMSEC and RMSEP values of 0.0759 
g.L-1 and 0.116 g.L-1, respectively. The determination of 
glycerol in fermentation broth has also been attempted by 
Hall et al. (1996), who reported a correlation coefficient 
and standard error of prediction (SEP) of 0.996 and 2.1, 
respectively. Although Hall et al. (1996) reported a higher 
coefficient of regression than this study, the authors also 

reported a higher standard error of prediction.

Prediction

The calibration models were developed using data from 
batches 1 to 4 and batch 5 was used for external validation. 
Figure 6 shows the evolution of the fermentation batch 
used to validate the proposed models.

The fermentation process was monitored for 8 h. 
The graph shows the temporal evolution of glucose, 
ethanol, glycerine and biomass concentrations. Glucose 
concentration decreased throughout the process, as 
the microorganisms consume the sugars to produce 
ethanol, glycerine and additional biomass. Near infrared 
spectroscopy was able to monitor the fermentation 
process in real-time and in situ, but glucose and ethanol 
concentrations were poorly predicted at the end of the 
fermentation run, likely due to the fact that glucose and 
ethanol absorb in the same NIR region. This overlap in 
absorption lowers the model predictability. Despite this 
limitation, the glucose and ethanol models were able to 
follow analyte trajectories throughout the fermentation 
process. The models obtained for glycerin and biomass 
were adequate: for these two components; the predicted 
values were very close to those obtained via the reference 
method. 

Figure 6. Kinetic curves (Batch 5) obtained by the best NIRS model. The hollow symbols denote reference concentration 
values and the solid lines represent predicted concentration values
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CONCLUSION

In alcoholic fermentation processes, the analyses 
required to monitor glucose, ethanol, glycerine and biomass 
concentrations are time-consuming and are performed 
off-line in laboratories. In addition to requiring laborious 
tasks, these methods are expensive and use reagents that 
can be detrimental to the environment. The objective of 
this study was to evaluate the real-time monitoring of 
important parameters in alcoholic fermentations using a 
near-infrared spectroscopy (NIRS) probe. Multivariate 
data analyses allowed spectra collected in real-time to 
be correlated with analyte concentrations obtained from 
reference methods. PCA allowed data to be selected for 
the calibration and external validation sets, and PLS 
regression ensured appropriate model fitting. In general, 
the results demonstrated that an in situ NIRS probe is 
suitable for monitoring important parameters of alcoholic 
fermentations. Analysis time was reduced drastically, as an 
NIR spectrum can be acquired in less than 1 min. This fact 
supports the idea of real-time monitoring. It is important to 
highlight that a similar monitoring system may be scaled 
up for industrial bioreactors, and control strategies may be 
implemented to improve process conditions.
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