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ABSTRACT – Transitions between tasks arise in many different scheduling problems. Sometimes transitions are 
undesired because they incur costs; sometimes they are undesired because they require setup time, and sometimes both. 
In one way or the other, frequently, transitions need to be identified and penalized in order for their frequency to be 
minimized. The present work is concerned with the study of alternative optimization formulations to address transitions 
with the blending and distribution scheduling of oil derivatives. Our study starts by revisiting a model proposed in the 
literature that was built considering a very short time horizon (24 h). Next, improvements concerning the transition 
constraints are evaluated and a new approach is proposed with the purpose of extending model applicability to cases 
where longer time horizons are of interest. The new proposed mechanism of evaluating transitions relies on aggregating 
the detailed discrete time scale (hours) to a higher and less detailed level (days). Transitions are then evaluated on the 
lower level of aggregation with the benefit of reducing the number of required constraints. It must also be emphasized 
that the proposed model is built on the basis of a set of heuristics that have direct impact on solution and solution time.  
Results attained for a four-day time horizon demonstrate cost savings on the order of 32% when compared with four 
sequenced schedules of a one-day time horizon each. Savings are mainly obtained as a consequence of the reduction of 
the predicted number of transitions.

Keywords: diesel blending, distribution scheduling, refinery, discrete time representation, event points.

INTRODUCTION

In the oil industry the growing demand for petroleum 
derivatives, stringent environmental regulations 
and increased market competition have driven the 
companies to improve operations management, reduce 
cost and operate more efficiently. In such an aggressive 
environment, optimization of the plan and schedule is a 

valuable differentiator that creates nontrivial cost reduction 
opportunities. Historically, oil industry scheduling 
has normally been considered for subsystems of the 
refinery due to the high degree of complexity involved in 
addressing the problem globally, although efforts treating 
more than one subsystem of the refinery simultaneously 
can be identified (Gothe-Lundgren et al., 2002, Simão 
et al., 2007; Luo and Rong, 2007; Shah et al., 2009, 
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Harjunkoski et al., 2014, Sha and Ierapetritou, 2015; Gao 
et al., 2015). Jia and Ierapetritou (2004) decompose the 
refinery scheduling problem into three subsystems: (i) 
crude oil unloading, mixing and inventory control; (ii) 
production unit scheduling, and (iii) product blending and 
distribution. In the last two decades, a lot of attention has 
been devoted to studying the crude oil supply operation 
since it is an important activity that can affect directly 
the entire refinery operation. The reported literature has 
comprised a gamut of subjects, covering aspects related to 
problem features (different topologies, restrictive operating 
rules, and volume decisions), time representation, model 
tightness and solution strategies (Shah, 1996; Pinto et al., 
2000; Jia et al., 2003; Moro and Pinto, 2004; Furman et al. 
2007; Saharidis and Ierapetritou, 2009; Mouret et al. 2011; 
Chen et al. 2012).

On the distribution side, the main concern is how to 
distribute large volumes of products with the most cost 
effective schedule. The most common and reliable mode 
of transportation used in the oil industry is the pipeline. 
According to Rejowski and Pinto (2003), pipelines are also 
used to distribute oil derivatives due to their capability to 
transport several products for long distances with lower 
cost. Rejowski and Pinto (2003) proposed an optimization 
model for a system composed of one refinery, a single 
pipeline and five depots disposed along the pipeline, 
whose objective was to minimize the distribution cost 
composed of inventory, pumping and transition costs. The 
model was based on disjunctive programming and discrete 
time formulation. In a subsequent work, Rejowski and 
Pinto (2004), introduced a set of integer cuts and special 
interface constraints to their previous model resulting in 
better solutions. Cafaro and Cerdá (2004) considered the 
same problem, proposing a model that did not rely on 
the discretization of both time and volume. In another 
vein, Relvas et al. (2007) addressed the integration of 
pipeline and distribution  depot  through  an  MILP  
model  combining  inventory  management  and  pipeline 
sequencing operation, which was applied to a real-world 
case comprising a Portuguese company. Cafaro and Cerdá 
(2009) addressed a problem comprised of a pipeline 
network with multiple sources and destinations. The 
proposed MILP continuous model was able to determine 
the pipeline input streams considering different sources, 
batch size and pumping timing. Boschetto et al. (2010) 
developed a model for a Brazilian system composed of four 
refineries, two harbors, two market clients, six depots and 
thirty bidirectional pipelines. They proposed a hierarchical 
decomposition strategy integrating heuristics and the 
MILP model to solve the resulting complex problem. 
MirHassani and BeheshtiAsl (2013) also used heuristics to 
solve a MILP problem that involved a refinery, a pipeline 
and a distribution center. Recently, Ghaffari-Hadigheh 
and Mostafaei (2014) developed a mathematical model 
considering simultaneous deliveries to multiple terminals 

combining continuous representation for both volume 
and time. Similarly, Cafaro et al. (2015) introduced an 
MINLP continuous model for single source pipeline with 
simultaneous deliveries in several terminals in which 
friction loss related with the pumping cost was included.

The blending problem, also known as pooling, has 
been the focus of many contributions published in the 
scientific literature. Rigby et al. (1995) solved offline-
blending problems with nonlinear recipe optimization 
for the Texaco Company using the GAMS system. 
Glismann and Gruhn (2001) did a study based on the RNT 
(Resource task network) representation that integrated 
the product scheduling and blending recipe optimization. 
A decomposition procedure was proposed that solves 
first a nonlinear problem to determine the product recipe 
and volumes, after which an MILP problem determines 
the best sequence operation. Jia and Ierapetritou (2003) 
proposed a simultaneous scheduling of gasoline blending 
and distribution based on continuous time where constant 
recipe has been considered to maintain the model linearity. 
Mendez et al. (2006) developed an MINLP model for 
optimizing simultaneously blending recipes and the short 
term scheduling considering identical blenders. Li et al. 
(2010) proposed a continuous time model for scheduling 
gasoline blending and integrating several operations. The 
model considers a set of features such as parallel non-
identical blenders, multiple demands, blending and storage 
transitions among other practical rules. Later, Li and Karimi 
(2011) improved that work by considering setup time for 
blenders and using the unit slot representation, which 
enabled them to achieve better solutions. More recently, 
Shah and Ierapetritou (2015) proposed a Lagrangian 
decomposition algorithm for integrating production unit 
scheduling with product blending and distribution. A 
canonical piecewise linear model (CPWL) was developed 
by Gao et al (2015) to approximate nonlinearities into linear 
pieces, which transforms the MINLP model into an MILP. 
The proposed model was applied to a real-world problem 
involving the scheduling of diesel and gasoline blender’s 
operation from a Chinese refinery. Castillo-Castillo and 
Mahalec (2016) addressed a continuous time formulation 
for the gasoline blending scheduling based on the work by 
Li and Karimi (2011). They have significantly improved 
the former work by adding operational constraints, a 
procedure to reduce the number of binary variables and a 
way to set a lower bound to the objective function.

The present work focuses on the diesel blending 
and distribution scheduling problem. Pinto et al. (2000) 
introduced a formulation addressing this problem. 
However, the proposed formulation was built relying on 
a very short term horizon (24 h). In this work, extensions 
to the formulation proposed by Pinto and coworkers are 
proposed in the form of different approaches. The main 
target of the present work is to discuss different forms of 
identifying transitions in the distribution of oil products for 
extending the scheduling horizon.
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Figure 1. Schematic of blending and distribution infrastructure for diesel production.

The text is organized as follows: in section 2 a 
description of the problem addressed in this work is 
detailed. In section 3 the base model is presented. In section 
4 three approaches are presented for addressing short term 
horizons and another approach is proposed for addressing 
long term horizons. Results and discussions are presented 
in section 5. Finally, the concluding remarks are brought 
up in section 6.

PROBLEM STATEMENT

The target problem involves a set of distillation units, 
which provide intermediate streams that are stored in 
dedicated storage tanks (Figure 1). Only cuts related to 
diesel production are in scope for the present problem. 
Taking into consideration that each distillation unit 
operates continuously and tanks cannot load and unload 
simultaneously, two run-down tanks are required for 
each distillation unit so that their cuts are available for 
composing the fi nal products at any time along the entire 
scheduling horizon.   The quality of the content in each of the 
two rundown tanks is the same as that of the cut provided 
by its corresponding feeding unit and considered constant 
for the duration of the scheduling horizon as if the refi nery 
was developing a campaign imposed by planning, which 
is a reasonable assumption for short scheduling cycles. It 
is also assumed that the quality of the initial inventory in 
each of the intermediate tanks coincides with that of the 
underlying campaign, so that no mixing occurs at the run-
down tanks. 

F   inished products are obtained by mixing the cuts 
produced by the distillation units, which are then sent 
through unidirectional pipelines to local markets. Each 
diesel grade is diff erentiated by two quality indicators; 
sulfur content and cetane number, which for simplicity 
are assumed to be determined as the weighted average of 
the volumes used of each cut. The blended products are 
pumped to the fi nal destinations without going through 
intermediate storage tanks, i.e., blending is done in-line 
prior to feeding pipelines. Full connectivity between tanks 
and pipelines is assumed. Pipelines operate independently 
and under unique demand requirements. Diesel parcels 
with diff erent grades are pumped contiguously, in which 
case an interface between two adjacent parcels establishes 
an undesirable interface containing off -spec material that 
demands appropriate handling.

The problem scope is as follows, given:

 • The diesel related cuts produced by distillation 
units and their qualities;

 • Initial intermediate material inventory;
 • Tank capacity;
 • Pumping capacity;
 • Product demand and specifi cations;
 • Time horizon.

Determine:
 • Tank operations management and inventory 

profi le;
 • Consumption of intermediate streams for each 



Brazilian Journal of Chemical Engineering

D. Dimas, V. V. Murata and S. M. S. Neiro1086

blended product for fulfilling demand and quality 
specifications;

•• Pipeline operations schedule.

The objective function is to minimize costs, which 
include raw material, pumping, inventory costs as well 
as costs resulting from off-spec material generated at the 
interface in between blended diesel parcels transported 
through pipelines. The problem is subjected to the operating 
rules previously postulated.

MATHEMATICAL FORMULATION

Pinto et al. (2000) addressed the problem described in 
the problem statement and the complete model is presented 
next in detail with minor corrections. The mathematical 
model was built based on discrete time representation, 
which relies on a number of equally spaced time points 
resulting in an MILP model. The following nomenclature 
is used in the formulation presented in this section and in 
the studied approaches in the next section:

Indices and Sets
D set of days (d = {1, 2,…, D})
E set of events (e = {1, 2,…, E})
Ed set of events e that belong to each day d
EL

d set of events e that belong to each day d with the exception of the last event of each day
Ij subset of tanks i that can be aligned to pipeline j
Iu subset of tanks i that can be loaded by distillation unit u
J set of pipelines (j = {1, 2,…, J})
Ji subset of pipelines j that are allowed to connect to tank i
K set of qualities (k = {1, 2,…, K})
P set of products (n,p = {1, 2,…, P})
T set of time intervals (t = {1, 2,…, T})
Td set of time periods t that belong to each day d
U set of distillation units(u = {1, 2,…, DU})
Parameters
Cii inventory cost for tank i ($/m3)
Cpi cost associated with pumping intermediate material from tank i to pipeline ($/m3)
Crmi raw material cost associated with using intermediate material stored in tank i ($/m3)
Ctp,n cost associated with the interface established between products p and n ($)
Dj,p demand of end product p incurred at pipeline j (m3)
Dj,p,t

demand of product p incurred at pipeline j at time period t (m3) (usually incurred at the last time period 
of each day)

Fmax
i maximum flowrate between distillation column and tank i (m3/h)

Fmax
ij maximum pumping flowrate between tank i and pipeline j (m3/h)

Fmax
j maximum pumping flowrate for pipeline j (m3/h)

Fmin
i minimum flowrate between distillation column and tank i (m3/h)

Fmin
ij minimum pumping flowrate between tank i and pipeline j (m3/h)

Fmin
j minimum pumping flowrate for pipeline j (m3/h)

H number of time periods (H = │T│)
NCi maximum number of connections between tank i and pipelines
NTj maximum number of transitions allowed at pipeline j
T total length of time horizon (h)
V0

i initial inventory in tank i (m3)
Vi

max maximum inventory allowed in tank i (m3)
Vi

min minimum inventory allowed in tank i (m3)
static value of quality k of the intermediate material stored in tank i
spec-value of quality k of end product p 
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ZDj,p 0-1 parameter that indicates if there is demand incidence for end product p at pipeline j
ZDj,p,t 0-1 parameter that indicates if there is demand incidence for end product p at pipeline j at time period t
Continuous Variables
Fi,t inlet flowrate of tank i at time period t (m3/h)
Fj,p,t inlet flowrate of end product p to pipeline j at time period t (m3/h)
Fi,j,t flowrate between tank i and pipeline j at time period t (m3/h)
TE

j,p end time of loading end product p to pipeline j
TE

j,p,d end time of loading end product p to pipeline j within day d
Tj,e instant of time in which event e occurs in pipeline j
TS

j,p start time of loading end product p to pipeline j
TS

j,p,d start time of loading end product p to pipeline j within day d
Vi,t inventory level at tank i in time period t (m3)
Binary Variables
Ej,p,e denotes if product p starts being pumped at event point e in pipeline j
Pj,p,n indicates potential transition between product p and n on pipeline j

Sj,p,t
denotes if operation of pipeline j is interrupted at time period t and the last product loaded to the 
pipeline was p

Sj,p,e
denotes that no pumping operation is allocated to event point e in pipeline j and the last product loaded 
to the pipeline was p

Wj,p,n denotes if product n is pumped right after product p in pipeline j
Wj,p,n,e denotes if product n is pumped right after product pin pipeline j at event point e
Xi,t denotes if tank i is being loaded at time period t
Yi,j,t denotes if tank i is loading pipeline j at time period t
ZE

j,p,t denotes if end product p ends being loaded to pipeline j at time period t
ZE

,j,p,t,d denotes if product p ends being loaded to pipeline j at time period t within day d
Zj,p,t denotes if pumping of end product p to pipeline j is active at time period t
ZS

j,p,t denotes if end product p starts being loaded to pipeline j at time period t
ZS

j,p,t,d denotes if product p starts being loaded to pipeline j at time period t within day d

As already mentioned, the objective function is to 
minimize costs, which include raw material, pumping, 
inventory as well as transition costs resulting from the 

interface generated between blended diesel parcels 
transported through pipelines, which is mathematically 
stated in Equation 1.

The objective function is subject to the following 
constraints:

a) Material balance constraints

The total amount of material in each tank at each time 

period is given by the initial inventory plus the amounts 
in and out of the tank accounted since the beginning of 
the time horizon, as given by Equation 2. In addition, 
constraint 3 sets upper and lower bounds to the inventory 
level.

( ) , , , , , ,min
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

+ + +∑∑∑ ∑∑ ∑∑∑i i i j t i i t p n j p n
i I j J t T i I t T j J p Pn P

Crm Cp F CiV Ct W (1)

, , ' , , '
'

   , 
≤ ∈

 
= + − ∀ ∈ ∈  

 
∑ ∑

i

o
i t i i t i j t

t t j J

V V F F i I t T (2)
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Equation 4 establishes the material balance between 
tanks and pipelines, which sets the amount of product p 
pumped through pipeline j equal to the consumed amount 

of raw materials. Since at a given time t only one product 
p can be loaded to the pipeline j, the left hand side of 
Equation 4 has all terms null except for one.

Every product pumped through pipelines must satisfy 
quality requirements, which are guaranteed through 
constraints 5a and 5b. In these constraints, 0

,  i kx is a static 
parameter that represents the quality k of the raw material 
stored in storage tank i, whereas ,

spc
i kx  is the specification 

value that the corresponding product must meet. Note 
that the quality calculation is a volume weighted average 
relationship, which can be assumed so because properties 
of raw materials are assumed to be constant for the duration 
of the scheduling horizon, which in turn means that density 
is also constant and thus cancelles out when put on both 

sides of the equations. It must also be borne in mind that 
the relationship between , ,j p tF  and , ,i j tF  is established 
through Equation 4. If the assumption of a single campaign 
was not assumed, Equations 5 would assume a nonlinear 
form, making the problem more difficult to solve. This 
assumption is somewhat limiting but valid for short 
scheduling horizons. The sign on the inequality depends on 
the property under consideration. Sometimes a greater than 
or equal sign is used and sometimes the opposite is desired. 
In this paper, constraint 5a imposes a maximum amount on 
the sulfur content, while constraint 5b is used for imposing 
a minimum on the cetane number.

0
, , , , , ,   , 1, 

∈ ∈

≥ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T (5a)

0
, , , , , ,   , 2, 

∈ ∈

≤ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T (5b)

b) Demand constraint
Besides satisfying quality specifications, the total 

product volume produced must meet the demand, Equation 
6. Although Equation 6 imposes the condition that demand 

must be satisfied exactly, in the present work it will 
sometimes be allowed to dispatch an amount that is greater 
than the minimum required volume. 

, , ,  ,
∈

= ∀ ∈ ∈∑ j p t j p
t T

F D j J p P (6)

c) Operating rules and logic constraints

Since distillation columns operate continuously, 
intermediate products are continuously transferred to either 

of the available rundown tanks depending only on which 
tank is feeding a pipeline. At any time, however, only one 
rundown tank can receive the intermediate product from 
the distillation unit, as stated by Equation 7.

,     , ≤ ≤ ∀ ∈ ∈min max
i i t iV V V i I t T (3)

, , , ,   , 
∈ ∈

= ∀ ∈ ∈∑ ∑
j

j p t i j t
p P i I

F F j J t T (4)

, 1 ,
∈

= ∀ ∈ ∈∑
u

i t
i I

X u DU t T (7)
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In addition, it is forbidden for a tank to load and unload 
simultaneously. Therefore, at any time a tank is loading, 
unloading or settling. If a tank i is not being loaded (Xi,t 
= 0), then the maximum number of connections between 
tank i and pipelines  ∈ ij J  is given by NCi. On the other 

hand, if a tank i is being loaded (Xi,t = 1), constraint 8 
forbids unloading to any pipeline by setting all Yi,j,t = 
0. Therefore, constraint 8 serves two purposes: it forbids 
simultaneous loading and unloading and at the same time 
limits the maximum number of connections between tanks 
and pipelines.

, , ,  ,
∈

+ ≤ ∀ ∈ ∈∑
i

i i t i j t i
j J

NC X Y NC i I t T (8)

Pinto et al. (2000) addressed a problem involving a 
very short time horizon. In that case, the heuristic that each 
product be shipped only once along the entire scheduling 

horizon is operationally convenient. For that reason, 
constraint 9 limits the number of times each product is 
loaded to pipelines along the scheduling horizon. 

, , 1  , 
∈

≤ ∀ ∈ ∈∑ S
j p t

t T

Z j J p P (9)

Once a pumping operation is started it must also be finished within the time horizon as given by Equation 10.

( ), , , , 0  , 
∈

− = ∀ ∈ ∈∑ S E
j p t j p t

t T

Z Z j J p P (10)

Moreover, the time periods in which pumping has 
started and finished are identified by equations 11 and 12, 
respectively. It should be noted that, because of constraints 
9 and 10, only one of the ZSj,p,t in the summation on the 
right hand side of equation 11 will be nonzero. Likewise, 

only one of the ZEj,p,t in the summation on the right hand 
side of equation 12 will be nonzero. The inequality 13 
ensures that the start of pumping will be no later than its 
end.

, , ,.  , 
∈

= ∀ ∈ ∈∑S S
j p j p t

t T

T t Z j J p P (11)

, , ,.  , 
∈

= ∀ ∈ ∈∑E E
j p j p t

t T

T t Z j J p P (12)

, ,   , ≤ ∀ ∈ ∈S E
j p j pT T j J p P (13)

Equation 14 sets the time interval in which product p is 
being pumped. Zj,p,t= 1 means that pumping of product p 
is active in time period t on pipeline j. Equation 14 sets the 
time-period interval in which product p is being blended 

and shipped. Equation (10) together with equation (14) 
prevents the situation where a product would start shipment 
and, before its completion, another product would start 
being shipped to the same pipeline.

, , , , ' , , '
'

, ,
≤ <′

= − ∀ ∈ ∈ ∈∑ ∑S E
j p t j p t j p t

t t t t

Z Z Z j J p P t T (14)

If a tank is loading to a pipeline, then one of the products 
p is being pumped, as stated by constraint 15. In addition, 
for a given pipeline and a given time period at most one of 

the products is being blended and loaded to the pipeline, 
constraint 16.
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, , , , , , 
∈

≤ ∀ ∈ ∈ ∈∑i j t j p t
p P

Y Z i I j J t T (15)

, , 1 , 
∈

≤ ∀ ∈ ∈∑ j p t
p P

Z j J t T (16)

d) Flowrate constraints 

Constraints 17, 18 and 19 impose limits to flowrate 

between column and tanks, between tanks and pipelines 
and through pipelines, respectively.

, , ,   ,≤ ≤ ∀ ∈ ∈min max
i i t i t i i tF X F F X i I t T (17)

, , , , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
i j i j t i j t i j i j tF Y F F Y i I j J t T (18)

, , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
j j p t j p t j j p tF Z F F Z i I p P t T (19)

e) Transition constraints

Transitions are known as the interfaces created between 
parcels of different products pumped consecutively through 

the same pipeline. Constraints 20 and 21 are complementary 
to each other and are used to identify potential transitions, 
given that each product is allowed to be pumped only once 
throughout the entire scheduling horizon. 

, ,
, ,    ,   , ,   

−
≥ ∀ ∈ ∈ ≠

S S
j n j p

j p n

T T
P j J p n P p n

T
(20)

( ), , , ,1    ,   , ,   − − ≤ − ∀ ∈ ∈ ≠S S
j p n j n j pT P T T j J p n P p n (21)

A sample schedule is used to illustrate the application 
of the constraints 20 and 21. Three products, p1, p2 and 
p3 are pumped through pipeline j along a time horizon 
composed of 8 discrete time-periods as given by Figure 2. 
Pumping of product p1 starts at time-period 1 and finishes 
at time-period 3, pumping of product p2 starts at time 
period 4 and finishes at time-period 6, whereas pumping 

of product p3 starts at time-period 7 and finishes at time-

period 8. Therefore, , 1 1=S
j pT

, , 1 3=E
j pT

, , 2 4=S
j pT

, 

, 2 6=E
j pT

, , 3 7=S
j pT

 and , 3 8=E
j pT

. It should be noted 
that transitions are established between products p1 and 
p2 and between p2 and p3. However, there is no transition 
between p1 and p3, p2 and p1, p3 and p1 and p3 and p2. 

Figure 2. Schedule involving pumping of three products (p1, p2 and p3) through a pipeline along a time horizon comprised of eight discrete 
time periods.

 

1 2 3 4 5 6 7 8 
p1 p1 p1 p2 p2 p2 p3 p3 
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Table 1. onstraints 20 and 21 reflecting the sample schedule of Figure 2.

Constraint 20 Constraint 21 Pj,p,n

p1, p2 ( ), 1, 2 4 1 / 8 3 / 8≥ − =jP p p ( ) ( ), 1, 28 1  4 1 3− − ≤ − =jP p p 1

p1, p3 ( ), 1, 3 7 1 / 8 6 / 8≥ − =jP p p ( ) ( ), 1, 38 1  7 1 6− − ≤ − =jP p p 1

p2, p1 ( ), 2, 1 1 4 / 8 3 / 8≥ − = −jP p p ( ) ( ), 2, 18 1  1 4 3− − ≤ − = −jP p p 0

p2, p3 ( ), 2, 3 7 4 / 8 3 / 8≥ − =jP p p ( ) ( ), 2, 38 1  7 4 3− − ≤ − =jP p p 1

p3, p1 ( ), 3, 1 1 7 / 8 6 / 8≥ − = −jP p p ( ) ( ), 3, 18 1  1 7 6− − ≤ − = −jP p p 0

p3, p2 ( ), 3, 2 4 7 / 8 3 / 8≥ − = −jP p p ( ) ( ), 3, 28 1  4 7 3− − ≤ − = −jP p p 0

Constraints 20 and 21 are created for all combinations 
of p1, p2 and p3 as presented in Table 1. Note that the last 
column in the Table refers to the resulting values assumed 
by the variable Pj,p,n when constraints 20 and 21 are 
simultaneously satisfied. The purpose of those constraints 
is to indicate potential transitions. For this reason, besides 
indicating the actual transitions between products p1 and 

p2 and between products p2 and p3, transition between 
products p1and p3 is also indicated as a potential one. 
Consequently, additional constraints must be introduced in 
order to screen out transitions that are not actual. However, 
before presenting the additional constraints, it must be 
emphasized that there is no transition when product n 
equals product p, as postulated by Equation 22. 

, , 0   ,   , ,   = ∀ ∈ ∈ =j p nP j J p n P p n (22)

Since each product can be handled only once along the 
entire time horizon and knowing that products for which 
there is no demand will not be shipped through pipelines 
(equation 6), it is possible to predict the total number of 
transitions at each pipeline. The total number of transitions 

will be equal to the total number of products for which there 
is demand diminished by 1 or null if demand is incurred for 
only one product, Equation 23. Note that Equation 23 is 
not part of the model but just the way parameter NTj is 
calculated and used as an input parameter to the model. 

, 1, 0   
∈

 
= − ∀ ∈  

 
∑j j p
p P

NT max ZD j J (23)

where, ,j pZD  indicates if there is demand incidence for 
product p at pipeline j. The input parameter NTj is used to 

define the actual total number of transitions allowed to be 
identified by the model, as given by Equation 24. 

, ,  
∈ ∈

= ∀ ∈∑∑ j p n j
p Pn P

W NT j J (24)

Variable Wj,p,n assumes 1 if the actual transition is 
identified and 0 otherwise and it is upper bounded by Pj,p,n 
determined by constraints 20 and 21. If there is no potential 
feasibility for the occurrence of a transition between 

products p and n (Pj,p,n = 0), then the actual transition will 
not be established between products p and n (Wj,p,n = 0), 
as guaranteed by constraint 25.
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, , , ,   ,   ,≤ ∀ ∈ ∈j p n j p tW P j J p n P (25)

As discussed before, constraints 20 and 21 usually 
indicate a number of potential transitions that is greater 
than or equal to the total number of the actual transitions. 

Therefore, constraints 26 and 27 are added to screen 
out invalid transitions and to allow transitions between 
products p and n (or n and p) to occur only once.

, , ,   ,   
∈

≤ ∀ ∈ ∈∑ j p n j p
n P

W ZD j J p P (26)

, , ,   ,   
∈

≤ ∀ ∈ ∈∑ j p n j n
p P

W ZD j J n P (27)

Constraints 26 and 27 only allow transitions involving 
product p or n if there is demand incidence for them. In 
the model proposed by Pinto et al. (2000), the right hand 
side of constraints 26 and 27 was set to 1 instead of ZDj,p/
ZDj,n. That modification was necessary because, if there 
was no demand for a product, a value 1 on the right hand 
side of constraints 26 and 27, instead of ZDj,p/ZDj,n, 
could produce an erroneous transition identification, as we 
indeed found out.

In order to demonstrate the idea on how the set of 

constraints 26 and 27 work, we take again the example of 
Figure 2 and the potential candidates indicated in Table 
1: [(p1, p2), (p1, p3), (p2, p3)]. The total number of 
transitions calculated by equation 23 is 2, which is used in 
constraint 24. Now, writing constraints 26 and 27 explicitly 
for all combinations of p and n we get Equations 26a-c 
and 27a-c shown in Table 2 as the individual constraints 
generated from constraint 26 and 27 defined over their 
domain, respectively. 

Table2. Constraints 26 and 27 reflecting the sample schedule of Figure 2.

Constraint 26 Constraint

p1 , 1, 1 , 1, 2 , 1, 3 1+ + ≤j j jW W Wp p p p p p (26a)

p2 , 2, 1 , 2, 2 , 2, 3 1+ + ≤j j jW W Wp p p p p p (26b)

p3 , 3, 1 , 3, 2 , 3, 3 1+ + ≤j j jW W Wp p p p p p (26c)

Constraint 27

p1 , 1, 1 , 2, 1 , 3, 1 1+ + ≤j j jW W Wp p p p p p (27a)

p2 , 1, 2 , 2, 2 , 3, 2 1+ + ≤j j jW W Wp p p p p p (27b)

p3 , 1, 3 , 2, 3 , 3, 3 1+ + ≤j j jW W Wp p p p p p (27c)

From 26a, either transition [(p1,p2), (p1,p3)] is 
feasible. From 26b only transition (p2,p3) is possible, 
whereas 27b allows only (p1,p2) and by 27c either of the 
transitions [(p1,p3), (p2,p3)] is allowed. Therefore, the 
only solution that satisfies simultaneously 20-22 and 24-27 
is the pair [(p1,p2), (p2,p3)], having in mind that the total 
number of transitions that must be identified is 2.

A quick analysis of the just presented model lead us to 
conclude that this model, as is, cannot be readily applied 
to represent real-world problems encompassing a few days 

due to the fact that each product must be pumped at most 
once along the entire time horizon, which is reasonable 
for very short time horizons. If one aims at addressing 
longer time horizons, the whole portion of the model 
that represents the transition identification logic must be 
modified. In the present work, we aim at investigating 
alternative approaches for dealing with the pipeline 
schedule that will enable addressing problems with longer-
term schedule horizons.
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STUDIED APPROACHES

Transitions arise naturally in scheduling problems and 
have been modeled and discussed in a number of PSE papers 
(Karamarkar and Schrage, 1985; Sahinidis and Grossmann, 
1991; Kondili et al., 1993; Lee at al., 1996; Wolsey, 1997; 
Mendez et al., 2006; Kelly and Zyngier, 2007; Liu et al, 
2010; Harjunkoski et al., 2014). Two contributions are 
worth bringing up in more details; Kondili et al. (1993), 
using the discrete time representation, introduced a 
mechanism for identifying transitions that relies on the 
evaluation of any two time-periods, as opposed to the 
traditional form in which only consecutive time-periods 
are evaluated (Lee at al., 1996). Kelly and Zienger (2007) 
proposed an alternative approach that uses auxiliary non-
integer variables capable of producing tighter relaxation 
problems and thus resulting in a much more efficient 
approach than that of Kondili and coworkers. 

In this section, two formulations are derived from 
the base model, which result from replacing the set of 
constraints that are used for identifying transitions by the 
two most common forms found in the literature, which 

consider evaluation of any two time-periods and evaluation 
of consecutive time-periods. The resulting formulations 
encompass very short time horizons in the same fashion as 
the base model. In that case, the adopted heuristic which 
dictates that products are handled only once at each pipeline 
is kept in the formulations without any hurdle. A new 
approach is then introduced that takes into consideration 
characteristics of the two classic forms of identifying 
transitions. Results obtained with the three formulations 
are compared and discussed in the results section. Next, 
attention is turned in the direction of problems addressing 
longer time horizons. In this case, improvements for the 
introduced approach are proposed that rely on use of two 
time scales, in which one can be derived as the aggregation 
of the other. The following sections are organized so that 
the discussion is concentrated in two different fronts; 
formulations for short-term time horizons and formulation 
for long-term time horizons. The complete set of equations 
that compose each optimization problem presented in the 
following sections are summarized in Appendix A1-A4. In 
all problems that follow, the objective function is given by 
Equation 28.

( ) , , , , , , ,
, 

min
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ≠ ∈

+ + +∑∑∑ ∑∑ ∑∑ ∑ ∑i i i j t i i t p n j p n e
i I j J t T i I t T j J p Pn P p ne E

Crm Cp F CiV Ct W (28)

Short-Term Time Horizon

Model 1
In the first approach, the variable Pj,p,n together with 

constraints 20-22 and 25-27 are dropped from the base 

model, which are replaced by constraint 29. This constraint 
has been extensively used in optimization formulations 
for identifying transitions between tasks occurring in 
consecutive time-periods (see for example Lee at al., 1996).

, , , , , , 1 1  ,   , , , +≥ + − ∀ ∈ ∈ ∈ ≠j p n j p t j n tW Z Z j J p n P t T p n (29)

The reader should notice that 29 causes an expressive 
increase in the number of constrains, since an equation 
is created for every (p,n) combination between two time 
periods, t and t+1, with  ≠p n . On the other hand, there is 
also a reduction in the number of constraints and variables 
by dropping constraints 20-22 and 25-27 and variables 
Pj,p,n.

There is an evident flaw in this approach in that 
constraint 29 is only capable of identifying transitions 
in cases where different tasks are allocated to adjacent 
time-periods. Therefore, it is not of practical use unless 
allocation is enforced for every time-period or if idle time 
periods are not intermediary ones. In spite of that, this 
approach is kept in our studies for sake of comparison with 
other approaches.
Model 2

By the discussion of the last section, it can be concluded 
that constraint 29 cannot be used as a mechanism to 
identify transitions for the pipeline-scheduling problem, 
given that there might well be time-periods for which there 
will be no allocation. The beauty of constraint 29, though, 
is that it is simple and it can be modified to tackle situations 
where tasks are allocated to time-periods that are far apart 
and no tasks are scheduled in between. As already cited, 
Kondili et al. (1993) have proposed a different form of 29, 
constraint 30. The first modification one can see is related 
to the time-periods involved in the evaluation. Instead of 
considering only adjacent time periods t and t +1, any two 
time periods t and t’ are taking into account, requiring only 
that t’>t. Another modification is also made to guarantee 
that the new constraint is always satisfied. The third term 
on the right hand side of 30 is null in case no tasks are 
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scheduled in between the time-periods under evaluation 
and thus Wj,p,n = 1 will be enforced given that p is allocated 
to t and n is allocated to t’. If, on the other hand, at least 
one task is scheduled in between t and t’, the third term on 

the right hand side of 30 will result in an integer number, 
leading to the relaxation of the constraint, regardless of the 
allocations in t and t’.  

1

, , , , , , , ,
1

 1 , , , ,
′

′ ′ ′′
′ ′∈ = +′

−

≥ + − − ∀ ∈ ∈ ∈ ≠∑ ∑
t

j p n j p t j n t j p t
p Pt t

W Z Z Z j J p n P t T p n (30)

An apparent drawback of constraint 30 in comparison 
to 29 is the total number of constraints necessary for 
creating all combinations of (t, t´) and (p,n). Note that for 
each t, t’ will be varied from t + 1 to the last time-period of 
the scheduling horizon and hence creating a huge number 
of constraints.

Figure 3 illustrates the use of constraint 30 in one such 
example where the pumping operation for product p1 is 
scheduled to start in the first time-period and to end in the 
fourth time period. Pipeline operation is then temporarily 
interrupted for the next two time-periods. Pumping of 
product p2 is initiated in the seventh time-period and 

continues until the end of the schedule horizon. In Table 
3, constraint 30 is illustrated for t = 4, with t’ varying from 
5 to 8, p = p1 and n = p2. It should be noted that, for t’ 
= t + 1 (adjacent time periods), 30 assumes the form of 
constraint 29. It is also demonstrated that 30 is able to 
handle pumping interruption and still identify transitions 
correctly. It must be borne in mind that constraint 30 works 
in synchronization with the objective function in that Wj,p,n 
= 1 incurs transition costs. Therefore, Wj,p,n will be pushed 
down to zero by the objective function in case constraint 
30 does not impose that Wj,p,n =0.

Figure 3. Schedule involving pumping of two products (p1 and p2) through a pipeline along a time horizon comprised of ten discrete time 
periods.

Table 3. Constraints 30 reflecting the sample schedule of Figure 3.

Constraint 30 Wj,p1,p2 Constraint

, 1, 2 , 1,4 , 2,5 1≥ + −j j jW Z Zp p p p 0 (30a)

( ) ( ), 1, 2 , 1,4 , 2,6 , 1,5 , 2,5 1≥ + − − −j j j j jW Z Z Z Zp p p p p p 0 (30b)

( ) ( ), 1, 2 , 1,4 , 2,7 , 1,5 , 1,6 , 2,5 , 2,6 1≥ + − + − + −j j j j j j jW Z Z Z Z Z Zp p p p p p p p 1 (30c)

( ) ( ), 1, 2 , 1,4 , 2,8 , 1,5 , 1,6 , 1,7 , 2,5 , 2,6 , 2,7 1≥ + − + + − + + −j j j j j j j j jW Z Z Z Z Z Z Z Zp p p p p p p p p p 0 (30d)

Table 4. Constraints 32 and 33 reflecting the sample schedule of Figure 3.

Constraint (32) Constraint (32) excluded null terms

, ,5 , 1,5 , 1,4 , 1,4
∈

+ ≥ +∑ j n j j j
n P

Z S Z Sp p p , 1,5 , 1,4≥j jS Zp p

, ,6 , 1,6 , 1,5 , 1,5
∈

+ ≥ +∑ j n j j j
n P

Z S Z Sp p p , 1,6 , 1,5≥j jS Sp p

, ,7 , 1,7 , 1,6 , 1,6
∈

+ ≥ +∑ j n j j j
n P

Z S Z Sp p p , ,7 , 1,6
∈

≥∑ j n j
n P

Z S p

 

1 2 3 4 5 6 7 8 9 10 
p1 p1 p1 p1   p2 p2 p2 p2 
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Constraint (33) Constraint (33) excluded null terms Wj,p1,p2

, 1, 2 , 1,4 , 1,4 , 2,5 1≥ + + −j j j jW Z S Zp p p p p , 1, 2 , 1,4 1≥ −j jW Zp p p 0

, 1, 2 , 1,5 , 1,5 , 2,6 1≥ + + −j j j jW Z S Zp p p p p , 1, 2 , 1,5 1≥ −j jW Sp p p 0

, 1, 2 , 1,6 , 1,6 , 2,7 1≥ + + −j j j jW Z S Zp p p p p , 1, 2 , 1,6 , 2,7 1≥ + −j j jW S Zp p p p 1

Model 3
If on the one hand constraint 29 is simple and easy to 

apply, on the other hand it is not able to identify transitions 
if allocation of intermediary time-periods is vacant. 
Constraint 30 is able to circumvent the downside of 
constraint 29 but at the expense of an increase in the number 
of constraints, which affect computational performance. 
We propose a third approach that is conceptually similar to 
the first approach in that only consecutive time-periods are 
evaluated but some kind of mechanism needs to be added 
to address the case of idle time-periods. The solution found 
was to keep track of the history on the last product loaded 
to the pipeline, in case the pipeline operation is interrupted 
temporarily. That information is then used to correctly 

identify transitions under any circumstances. This idea of 
using memory variables has been used by other researchers 
in the past (Kelly and Zyngier, 2007), but our formulation 
is completely different. 

In order to be able to track history, a new variable is 
introduced, Sj,p,t, which assumes 1 if operation of pipeline j 
is interrupted at time period t and the last product loaded to 
the pipeline was p. In the context of the pipeline operation 
schedule, at any point in time a pipeline might be either 
pumping a single product or idle, as stated in Equation 31. 
The second summation on the left hand side of the equation 
will be nonzero if the pipeline operation was interrupted in 
time-period t and one of the products p was the last product 
injected into the pipeline sometime in the past.

, , , , 1 , 
∈ ∈

+ = ∀ ∈ ∈∑ ∑j p t j p t
p P p P

Z S j J t T (31)

Constraint 32 identifies the exact time-period in which 
the last injection was done. If product p is shipped in time-
period t, Zj,p,t = 1 and Sj,p,t = 0 by 31. If operation is 

interrupted in the following time period , , 1 0+
∈

=∑ j n t
n P

Z
 in 

constraint 32, which then enforces Sj,p,t+1 = 1, meaning 
that the information on p as the last loaded product will be 
carried over. If the pipeline remains static for more than 

one time-period Sj,p,t will repeatedly pass the information 
on to Sj,p,t+1 until pipeline operation is recovered or the 
end of the scheduling horizon is reached. Transition is 
then easily identified by evaluating adjacent time-periods 
according to constraint 33. Note that the only difference 
between constraints 29 and 33 is the introduction of Sj,p,t 
on the right hand side. However, this constraint works in 
coordination with constraints 31 and 32.

{ }, , 1 , , 1 , , , ,  , , T+ +
∈

+ ≥ + ∀ ∈ ∈ ∈ −∑ j n t j p t j p t j p t
n P

Z S Z S j J p P t T (32)

{ }, , , , , , , , 1 1  ,   , , T , +≥ + + − ∀ ∈ ∈ ∈ − ≠j p n j p t j p t j n tW Z S Z j J p n P t T p n (33)

Constraints 31 and 32 are illustrated with the 
example of Figure 3 (Table 4) along time-periods 4, 5 
and 6 comprising the time interval in which the pipeline 
operation is interrupted. Constraint 32 is written only 
for product p1, whereas constraint 33 is written for the 
transition identification between products p1 and p2, 
which is effectively done even with the pipeline remaining 
without operation for two consecutive time-periods.

Long-Term Time Horizon

The base model was built based on three fundamental 
heuristics: 1) products are shipped only once at each pipeline 
along the entire scheduling horizon; 2) the total number of 
transitions is known beforehand through constraint 23 and 
used in constraint 24; and 3) only products with nonzero 
demand are accounted for in constraints 26 and 27, which 

Table 4. Cont.
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are used to screen out non-existing transitions potentially 
identified by constraints 20 and 21.

In principle, for long time horizons, the idea that 
products are shipped only once along the entire time 
horizon cannot be sustained since multiple shipments are 
unavoidable because demand is distributed along the time 
horizon and pipelines are capacitated. In other words, there 
may be multiple due dates for the same product and, most 
likely, it will not always be possible to lump parcels so as 
to fulfill multiple demand incidences because of pumping 
capacity. On the other hand, enforcing a maximum number 
of shipments for each product establishes the maximum 
number of events or shipments that may happen within a 
time interval, which sets an upper bound on the number 
of transitions. In order to take advantage of this fact, the 
idea was to create two levels of granularity for time, e.g., 
the scheduling horizon could be subdivided in days within 
which products could be allowed to be shipped only once, 
which in turn could be subdivided in hours to accommodate 
allocation of multiple time periods. Bottom line, with the 
two levels of aggregation, transitions would be managed 
on a higher level of detail and hence a few constraints 
would be required to create all combinations of product 
interfaces and product allocation would be managed on the 
lower level of aggregation.

As to the second heuristic in which the total number 
of transitions is known beforehand, under no conditions 
could it be sustained in longer scheduling horizons because 
shipment of products could be anticipated, including 
products for which there was no demand in previous days. 
As long as there was available free capacity, anticipation 
would be possible. Shipment of products with zero demand 
could be convenient in cases of pipelines that transport 
multiple products and require more flexibility in terms 
of product sequencing. In that case, a small volume of 
a product with no demand could be injected in between 
products that would otherwise not be allowed to be put in 
contact with each other, which is sometimes a common 

practice. 
In the previous section three different approaches were 

considered, all of which involve replacement of constraints 
20-22 and 25-27 by other forms of transition identification. 
As already stated and, as will be demonstrated by the 
results presented below, the first approach is not robust 
enough to address scenarios where interruptions are 
scheduled between shipments. The second approach 
produces models with dimensions that grow very quickly 
with the scheduling horizon. The third approach was then 
readjusted to incorporate the time aggregation scheme 
mentioned previously so that that approach can be extended 
to cases where longer time horizons are considered.

Model 4
In this approach, the fundamental premise that each 

product can be shipped only once at each pipeline is 
retained in the model, not for the entire scheduling horizon 
but for a predefined set of time-periods. The scheduling 
horizon is subdivided into two levels of granularity. In 
the lowest level, the scheduling horizon is split in time-
periods representing hour buckets. Time-periods are then 
aggregated in day buckets. There is a subset of time-periods 

that belongs to each day ( ∈ dt T ), as illustrated in Figure 
4. With this bi-level time representation, it is imposed that 
the same product cannot be shipped more than once within 
the same day. Note also, by the scheme presented in Figure 
4, that event points are created to either indicate points in 
time in which the start of new shipments is scheduled or 
the start of a new day. The number of event points within 
each day must equal the number of products and the total 
number of event points must be │E│=│P│.│D│. A 
subset of event points is allocated to each day in increasing 

order ( ∈ de E ) so that the event point subsets are mutually 
exclusive. With that framework, transitions are identified 
by comparing adjacent events e and e+1, even if they 
belong to different days.

Figure 4.  Event point - bilevel time representation.

 

 

1 2 3 4 21 22 23 24 25 26 27 28 69 70 71 72 45 46 47 48 49 50 51 52 

d1 d2 d3 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 

p1 p2 p3 p3 p2 p1 p1 p2 p3 
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Most of the constraints indexed in time remain 
unchanged. The only constraints that are impacted by the 
new time representation are those representing operating 
rules used for ensuring that there will be single movements 
for each product within the same day. Therefore, 

constraints 34-38 are the equivalent of Equations 9-12 and 
14 indexed only in time-periods, which represent hours. 
Constraint 13 is replaced by Equation 39 to ensure that the 
end of pumping will be equal to its start plus the pumping 
duration.

, , , 1  , , 
∈

≤ ∀ ∈ ∈ ∈∑
d

S
j p t d

t T

Z j J p P d D (34)

( ), , , , , , 0  , , 
∈

− = ∀ ∈ ∈ ∈∑
d

S E
j p t d j p t d

t T

Z Z j J p P d D (35)

, , , , ,.  , , 
∈

= ∀ ∈ ∈ ∈∑
d

S S
j p d j p t d

t T

T t Z j J p P d D (36)

, , , , ,.  , , 
∈

= ∀ ∈ ∈ ∈∑
d

E E
j p d j p t d

t T

T t Z j J p P d D (37)

, , , , , , , ' , , , ′
′ ′≤ <

= − ∀ ∈ ∈ ∈ ∈∑ ∑S E
j p t j p t d j p t d d

t t t t

Z Z Z j J p P t T d D (38)

, , , , , , 1 ,    , ,
∈

 
= + − ∀ ∈ ∈ ∈  

 
∑

d

E S
j p d j p d j p t

t T

T T Z j J p P d D (39)

Equation 6 must be decomposed into two equations if 
demand is to be met exactly. Equation 40a guarantees that 
demand is satisfied at due dates, whereas 40b enforces that 
the total amount of product p shipped along the scheduling 
horizon must exactly meet demand. Note that products with 

no demand are allowed to be shipped since constraint 40b 
is applied only for those products with non-zero demand. If 
the total volume transferred of each product were allowed 
to be greater than the total demand, 40b would be modified 
with a corresponding greater than or equal sign. 

, , ´ , , ´
´ ´

 , , , 1
≤ ≤

≥ ∀ ∈ ∈ ∈ >∑ ∑j p t j p t j
t t t t

F D j J p P t T NT (40a)

, , , ,  , ,= ∀ ∈ ∈ ∈∑ ∑j p t j p t
t t

F D j J p P t T (40b)

The start of a pumping operation must match an event point, which is done through Equation 41. The instant of time 
in which the event occurs must exactly match the start of the pumping operation, (constraints 42 and 43).

, , , , ,    , , 
∈ ∈

= ∀ ∈ ∈ ∈∑ ∑
d d

S
j p e j p t d

e E t T

E Z j J p P d D (41)

( ), , , , , 1      , , ,≥ − − ∀ ∈ ∈ ∈ ∈S
j e j p d d j p e dT T H E j J p P e E d D (42)

( ), , , , , 1      , , ,≤ + − ∀ ∈ ∈ ∈ ∈S
j e j p d d j p e dT T H E j J p P e E d D (43)

Event points must be monotonically non-decreasing, 
since adjacent event points are used in transition 

identification constraints, which is guaranteed by Equation 
44.
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, , 1        , −≥ ∀ ∈ ∈j e j eT T j J e E (44)

There might be event points to which no pumping operation will be allocated. With the intent of avoiding the 
occurrence of symmetric solutions, constraint 45 is added. By introducing such a constraint, pumping operations will be 
always forced to be allocated to the first events of each day, which has a direct impact on computational performance. 

, , , , 1        , ,+
∈ ∈

≥ ∀ ∈ ∈ ∈∑ ∑ L
j p e j p e d

p P p P

E E j J d D e E (45)

Transitions are identified considering only consecutive event points, instead of consecutive time-periods, which 
drastically reduces model size in comparison to the case where time-periods are used. The set of constraints involved in 
transition identification is similar to that proposed in model 3. The only difference is that, instead of time-periods, event 
points are considered (constraints 46-48).

, , , , 1         , 
∈ ∈

+ = ∀ ∈ ∈∑ ∑j p e j p e
p P p P

E S j J e E (46)

{ }, , 1 , , 1 , , , ,        , , E+ +
∈

+ ≥ + ∀ ∈ ∈ ∈ −∑ j n e j p e j p e j p e
n P

E S E S j J p P e E (47)

{ }, , , , , , , , , 1 1  ,   , , E , +≥ + + − ∀ ∈ ∈ ∈ − ≠j p n e j p e j p e j n eW E S E j J p n P e E p n (48)

The complete model is presented in Appendix A4.

NUMERICAL RESULTS

The problem presented in Pinto et al. (2000) was used, 
with minor changes, for illustrating the application of 
the first three approaches, which comprises a very short-
term time horizon comprised of 24 uniform time-periods 
of 1 hour. A derivation of that example was also used to 
illustrate the application of the extended approach, which 
comprises a time horizon of 4 days (96 hours). For the 
short-term schedule, the volume injected into the pipeline 
is allowed to be greater than demand, which is incurred 
only at the end of the time horizon, whereas demand is 
distributed along the time horizon for the extended one 
with incurrence at the end of each day. Demand data 
are given in Table 5. Three distillation columns produce 
intermediate products with different constant properties, 
which are stored in dedicated tanks. The input data related 
to distillation columns, rundown tanks and pumping 
capacities are given in Table 6. The intermediate products 
are blended in-line to produce diesel with three different 
specs (Table 7) and dispatched through three pipelines. 
Full connectivity is assumed. Dependent transition costs 
are given in Table 8.

All formulations resulted in MILP problems which 
were coded using the GAMS 24.4 system and solved by 

CPlex 12 on an Intel(R) Core(TM)i7, CPU3.5 GHz and 
16.0GB RAM. The relative gap was set to 0.01% as one of 
the termination criteria for the approaches involving short-
term time horizons and 0.1% or 3,600 CPU seconds for the 
approach encompassing longer time horizon.

Short-Term Time Horizon

The computational results for all approaches 
encompassing short-term time horizons are presented in 
Table 9, from which it can be noticed that the first and 
second approaches contain less binary variables than the 
base model since the variable Pj,p,n was dropped in the new 
approaches. However, the introduction of Sj,p,t variable in 
the third approach contributed to a slight increase in the 
number of binary variables. 

Constraints 20-22 and 24-27 of the base model 
were replaced by different constraints depending on the 
approach. For model 1, there was a net increase of 11% 
in the number of constraints due to the use of constraint 
29 as the mechanism for identifying transitions, whereas 
the net increase for model 3 was 20% due to the set of 
constraints 31-33. For model 2 the number of constraints 
was 2.6 times the number of constrains of the base 
model. The introduction of constraint 30 added |T|-t new 
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Table 5. Demand data (x10-3 m3)

Time horizon (24 hours)

t Pipeline 1 Pipeline 2 Pipeline 3

D1 24 4.0 2.5 1.5

D2 24 3.0 3.5 2.0

D3 24 1.0 3.0 2.0

Time horizon (96 hours)

t Pipeline 1 Pipeline 2 Pipeline 3

D1

24 1.8 2.0 0.0

48 3.5 1.8 1.2

72 0.0 3.4 1.3

96 0.0 0.0 1.2

D 2

24 2.0 2.5 2.0

48 0.0 3.2 1.6

72 3.4 0.0 2.5

96 2.6 2.8 2.2

D 3

24 1.5 2.7 1.5

48 3.0 0.0 2.3

72 3.2 3.1 1.9

96 2.4 3.2 0.0

Table 6. Parameters related to the production of distillation columns, tank capacities and flowrate bounds.

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6

Sulfur (wt. %) 0.30 0.30 0.60 0.40 1.00 1.00

Cetane number 42.0 42.0 40.3 39.0 40.0 40.0

Vi
min x103 (m3) 2 2 2 2 2 2

Vi
max x103 (m3) 30 30 30 30 30 30

V0
i x103 (m3) 10 20 8 8 15 12

Fmin
i (m

3/h) 250 250 220 220 180 180

Fmax
i (m

3/h) 300 300 250 250 200 200

Fmin
ij (m

3/h) 30 30 40 40 40 40

Fmax
ij (m

3/h) 500 500 500 500 500 500

Cii ($/m3) 0.10 0.10 0.12 0.12 0.11 0.11

Cpi ($/m3) 0.20 0.20 0.18 0.18 0.16 0.16

Crmi ($/m3) 0.60 0.60 0.40 0.40 0.05 0.05

Table 7. Diesel specs.

Diesel 
Grade

Sulfur 
(wt. %)

Cetane 
Number

D1 0.3 42

D2 0.5 40

D3 1.0 40

Table 8. Transition costs ($).

D1 D2 D3

D1 - 110 100

D2 130 - 120

D3 190 190 -
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constraints for each t causing the most significant increase 
in the number of constraints and the worst computational 
performance. Another important fact that needs to be 
brought up is about the quality of the relaxed problem 
produced by each formulation. The formulation proposed 
by Pinto et al. (2000) is able to produce good relaxation, 

whereas all other formulations produce poorly relaxed 
problems. This explains why the base model outperforms 
all other evaluated formulations in terms of required 
number of iterations, nodes and CPU time for solving the 
same problem.

Table 9. Computational statistics –Short-term time horizon

Base model Model 1 Model 2 Model 3

Equations 3,028 3,367 7,903 3,646

Binary variables 1,278 1,242 1,242 1,458

Continuous variables 2,233 2,197 2,197 2,413

Objective function ($) 880.18 421.29 880.20 880.18

Best bound 880.09 421.26 880.11 880.09

CPU (s) 10.86 13.84 163.29 34.23

Relative gap (%) 0.01 0.01 0.01 0.01

B&B root solution 879.23 189.33 176.16 189.22

Time for 1st int. sol. (gap) 0.91 (92.85) 1.23 (73.96) 2.23 (81.39) 1.12 (81.40)

Nodes 3,630 6,315 22,599 115,750

Iterations 63,955 130,825 1,105,549 799,817

Material cost ($) 9.12 9.06 9.14 9.12

Pumping cost ($) 4.44 4.27 4.44 4.44

Inventory cost ($) 176.62 177.96 176.62 176.62

Transition cost ($) 690.00 230.00 690.00 690.00

In terms of the objective function, it can be seen 
that models 2 and 3 produced the same result as the one 
obtained for the base model, which can be verified by the 
cost components. Model 2 presented little difference in 
terms of cost components. Transition cost represents, by 
far, the biggest chunk of the overall objective function. 
Models 2 and 3 produced the same total transition cost as 
that of the base model. However, the disparate transition 
cost seen in Table 9 for model 1 is not an actual value since 
not all transitions were recognized. Some of the transitions 
were not accounted for since constraint 29 only works 
when nonempty adjacent time-periods are evaluated. 
Consequently, optimization wisely allocated an empty 
time period between each transition so that no cost would 
be incurred. This fact leads us to conclude that constraint 
29 can indeed only be effective in cases where full time 
operation is enforced or non-allocated time-periods are all 
left to the beginning or the end of the scheduling horizon. 
The computational time of models 1 and 3 were in the same 
range as that of the base model. Model 2, on the other hand, 
was the less efficient approach due to the huge increase 
in model size and it is evident that this approach is not 
a feasible option for problems involving too many time-
periods. 

Figure 5 provides the Gantt chart for all approaches. 
Products are identified by different colors (D1 – blue, D2 
– green, D3 – orange) and the total transferred volumes 
are shown on top of the bars. It should be noted that, with 

exception of model 1, all approaches produced the same 
product sequence and total transferred volumes, which 
were greater than the minimal demand. From the refinery 
perspective, this strategy induces inventory reduction, 
which is the second most important cost component in 
the objective function. Moreover, it avoids interruptions 
in pipeline operation, which would otherwise promote the 
undesired mixing of the different product parcels. Although 
model 1 was able to meet demand and produce almost the 
same product sequence, transitions were only identified 
when pipelines were continuously operated (pipeline 2), 
which cannot always be guaranteed.

Figures 6-9 present flowrate profiles. These pictures 
show that pipelines are scheduled to operate at maximum 
capacity for most of the time, which is in accordance with the 
idea of pursuing minimal inventory at the refinery storage 
tanks. Once again, it should be noted that model 2, model 3 
and the base model produced exactly the same solution as 
to the pipeline operation. The differences in solution rely on 
the blending operation. Figures 10-13 comprise inventory 
profiles in storage tanks (a) and flowrates established 
from tanks and pipelines (b), respectively. Here, pipelines 
to which tanks are connected in each time-period are 
illustrated in different colors (J1 – blue, J2 – green, J3 – 
yellow). Solid colors mean even tanks whereas pattern 
filled bars mean odd tanks, having in mind that there are a 
couple of tanks available for each intermediate product. It 
is important to highlight that it makes no difference which 
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of the intermediate tanks is used in the blending operation 
since their content is essentially the same. Having said that, 
it should be noted for the same pipeline schedule there are 
many possible symmetric solutions. Therefore, it can be 
stated that the solutions produced by model 2, model 3 and 
the base model are alternative solutions. 

Given that tanks are not allowed to load and unload 
simultaneously and operation of the distillation units are 
continuous throughout the entire schedule horizon, the tank 
receiving intermediate material from the unit cannot be 
used for blending, which is indeed satisfied and observed 
by the positive or negative slopes of Figures 10-13 (a).

Figure 5. Gantt Charts obtained with the Base Model and Models 1-3 for the short-term time horizon (D1 – blue, D2 – green, D3 – orange).
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Figure 6. Pipeline flowrate profile (D1 – blue, D2 – green, D3 – 
orange) – Base Model. Figure 7. Pipeline flowrate profile (D1 – blue, D2 – green, D3 – 

orange) – Model 1.
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Figure 8. Pipeline flowrate profile (D1 – blue, D2 – green, D3 – 
orange) – Model 2.

Figure 9. Pipeline flowrate profile (D1 – blue, D2 – green, D3 – 
orange) – Model 3.
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Figure 10. (a) Inventory profile and (b) Flowrate between tanks and pipelines (J1 – blue, J2 – green, J3 – yellow) – Base model.
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Figure 11. (a) Inventory profile and (b) Flowrate between tanks and pipelines (J1 – blue, J2 – green, J3 – yellow) - Model 1.
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Figure 12. (a) Inventory profile and (b) Flowrate between tanks and pipelines (J1 – blue, J2 – green, J3 – yellow) - Model 2.
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Figure 13. (a) Inventory profile and (b) Flowrate between tanks and pipelines (J1 – blue, J2 – green, J3 – yellow) - Model 3.
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Long-Term Time Horizon

Table 10 shows statistical data for the solution of model 
4 for a time horizon comprising four days for two distinct 
scenarios: 1-) demand is exactly satisfied, and 2-) demand 
is to be over satisfied. For sake of comparison, the base 
model was also solved for each day sequentially, which 
means that the second day was optimized after decisions 

of the first day had been made (frozen); the third day was 
optimized after decisions of the first two days had been 
made, and so forth. The inventory of one day was taken 
as the starting inventory of the next one. Likewise, the 
first shipment allocated in a day took into consideration 
the last product dispatched in the previous day, so that the 
transition cost between different days would be properly 
accounted for. 

Table 10. Computational statistics –Long-term time horizon.

Model 4 Sequential Base Model

Demand 
exactly 

satisfied

Demand 
over 

satisfied

Demand 
exactly 

satisfied

Demand 
over 

satisfied

Equations 12,392 12,392 12,560 12,560

Binary variables 5,328 5,328 5,112 5,112

Continuous variables 9,181 9,181 9,020 9,020

Objective function ($) 2,350.70 2,318.56 3,487.53 2,746.88

Best bound 2348.37 2,316.99 3,487.34 2,746.65

CPU time (s) 314,86 516.83 77.14 102.80

Relative gap (%) 0.09 0.06 0.009 0.01

B&B root solution 637.10 579.73 --* --*

Time for 1st int. sol. (gap) 112.49 (44.47) 16.24 (64.76) --* --*

Nodes 11,276 14,565 3,059 5,205

Iterations 2,193,536 2,368,720 167,781 176,072

Material cost ($) 21.57 22.87 21.63 21.63

Pumping cost ($) 11.78 13.40 11.78 16.08

Inventory cost ($) 627.35 592.29 714.12 582.43

Transition cost ($) 1,690.00 1,690.00 2,740.00 2,120.00

* Since the sequential base model comprises the solution of the base model sequentially, there is not a unique value that represents this infor-
mation.

It should be noted that the total number of constraints 
generated by model 4 is less than the total number of 
constraints generated by the sequential base model. On the 
other hand, the number of continuous and binary variables 
was higher for model 4 in comparison to the sequential 
base model. At first glance, one might think that the total 
number of variables and constraints of model 4 should be 
four times the total number of variables and constraints 
of model 3 plus the added constraints to deal with event 
points, since model 4 (solved for 4 days) derives from 
model 3 (solved for 1 day) and, therefore, the number of 
variables and constraints of model 4 should be greater 
than the sequential base model. However, it should be 
borne in mind that the transition constraints in model 4 are 
created only for event points (12 for each pipeline), not 
for time periods (96 for each pipeline) as is the case of the 
sequential base model. 

A comparison of the two approaches in terms of 
the objective function and cost components reveals a 
substantial difference caused by transition cost followed by 
inventory cost, proving that it is very beneficial to produce 

a schedule looking far into the future. On the other hand, 
a price has to be paid. Model 4 spent much more time to 
find the optimal solution in both scenarios, which again 
can be attributed to the poor relaxation produced by the 
proposed approach. Note also that the problems can be 
solved in little less computational time when demand is 
exactly satisfied due to better relaxation. On the other hand, 
when demand is over satisfied there is an opportunity for 
reducing the number of transitions by pumping more of a 
product and thus reducing transition costs, which translates 
into savings. In fact, comparison of the results produced 
by model 4 and the sequential base model for scenario 2 
accounts for savings on the order of 32%.

Figures 14 and 15 present Gantt charts for model 
4 and the sequential base model for scenarios 1 and 2, 
respectively. Comparing solutions produced by model 4 in 
the two pictures it can be observed that the same sequence 
was obtained with the two cases. The only difference is the 
amount of each product sent in each parcel. In contrast, 
solutions obtained with the sequential base model for the 
two cases differ in both sequence and shipped volumes. 
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CONCLUSIONS

In this work, the blending and distribution problem in 
the context of the oil industry has been taken as the object 
of study to address different ways of treating transition 
identification in pipelines. The discrete time formulation 
originally proposed by Pinto et al. (2000) was taken 
as a starting point, which was originally developed for 
addressing short-term blending and distribution schedules. 
Alternative approaches were studied and a new approach 
was proposed to address transition identification with the 
intent of enabling addressing problems with longer time 
horizons. The proposed approach was considered the most 
promising, which was embodied in a fourth approach 
considering two levels of granularity for time periods. 
Event points were postulated so as to reduce the number 
of transition constraints, since model size increases very 
quickly with time horizon. Results demonstrated that the 
final proposed formulation offers real saving opportunities, 
although solution time might be a problem depending on 
the length of the time horizon considered. The assumption 
that the quality of the intermediate streams produced 
by distillation units is static is somewhat limiting in 
representing real world scenarios. Likewise, normally, 
blended materials are accumulated and kept in storage 
tanks for certification purposes. A research program 
considering continuous time formulation and the facts just 
described is underway and, hopefully, the results will be 
published in the near future.
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APPENDIX
A.1 - Complete Model 1
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i i t iV V V i I t T (A1.2)

, , , ,   , 
∈ ∈

= ∀ ∈ ∈∑ ∑
j

j p t i j t
p P i I

F F j J t T
(A1.3)

0
, , , , , ,   , 1, 

∈ ∈

≥ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T
(A1.4)

0
, , , , , ,   , 2, 

∈ ∈

≤ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T . 
(A1.5)

Demand constraint

, , ,  ,
∈

≥ ∀ ∈ ∈∑ j p t j p
t T

F D j J p P
(A1.6)

Operating rules and logic constraints

, 1 ,
∈

= ∀ ∈ ∈∑
u

i t
i I

X u DU t T
(A1.7)

, , 1  , 
∈

≤ ∀ ∈ ∈∑ S
j p t

t T

Z j J p P
(A1.8)

( ), , , , 0  , 
∈

− = ∀ ∈ ∈∑ S E
j p t j p t

t T

Z Z j J p P
(A1.9)

, , ,.  , 
∈

= ∀ ∈ ∈∑S S
j p j p t

t T

T t Z j J p P
(A1.10)

, , ,.  , 
∈

= ∀ ∈ ∈∑E E
j p j p t

t T

T t Z j J p P
(A1.11)

, ,   , ≤ ∀ ∈ ∈S E
j p j pT T j J p P (A1.12)

, , , , ' , , '
'

, ,
≤ <′

= − ∀ ∈ ∈ ∈∑ ∑S E
j p t j p t j p t

t t t t

Z Z Z j J p P t T (A1.13)
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, , ,  ,
∈

+ ≤ ∀ ∈ ∈∑
i

i i t i j t i
j J

NC X Y NC i I t T (A1.14)

, , , ,  , ,
∈

≤ ∀ ∈ ∈ ∈∑i j t j p t
p P

Y Z i I j J t T (A1.15)

, , 1  , 
∈

≤ ∀ ∈ ∈∑ j p t
p P

Z j J t T (A1.16)

Flowrate constraints

, , ,   ,≤ ≤ ∀ ∈ ∈min max
i i t i t i i tF X F F X i I t T (A1.17)

, , , , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
i j i j t i j t i j i j tF Y F F Y i I j J t T (A1.18)

, , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
j j p t j p t j j p tF Z F F Z i I p P t T (A1.19)

Transition constraints

, , , , , , 1 1  ,   , , , +≥ + − ∀ ∈ ∈ ∈ ≠j p n j p t j n tW Z Z j J p n P t T p n (A1.20)

A.2 - Complete Model 2

Objective function

( ) , , , , , ,
, 

min
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ≠

+ + +∑∑∑ ∑∑ ∑∑ ∑i i i j t i i t p n j p n
i I j J t T i I t T j J p Pn P p n

Crm Cp F CiV Ct W
(A2.0)

Material balance constraints

0
, , , ,        , 

≤ ∈′

 
= + − ∀ ∈ ∈  

 
∑ ∑

i

i t i i t i j t
t t j J

V V F F i I t T
(A2.1)

,         , ≤ ≤ ∀ ∈ ∈min max
i i t iV V V i I t T (A2.2)

, , , ,       , 
∈ ∈

= ∀ ∈ ∈∑ ∑
j

j p t i j t
p P i I

F F j J t T
(A2.3)

0
, , , , , ,      , 1, 

∈ ∈

≥ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T
(A2.4)

0
, , , , , ,      , 2, 

∈ ∈

≤ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T
(A2.5)
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Demand constraint

, , ,      ,
∈

≥ ∀ ∈ ∈∑ j p t j p
t T

F D j J p P
(A2.6)

Operating rules and logic constraints

, 1     ,
∈

= ∀ ∈ ∈∑
u

i t
i I

X u DU t T
(A2.7)

, , 1      , 
∈

≤ ∀ ∈ ∈∑ S
j p t

t T

Z j J p P
(A2.8)

( ), , , , 0     , 
∈

− = ∀ ∈ ∈∑ S E
j p t j p t

t T

Z Z j J p P
(A2.9)

, , ,.      , 
∈

= ∀ ∈ ∈∑S S
j p j p t

t T

T t Z j J p P
(A2.10)

, , ,.      , 
∈

= ∀ ∈ ∈∑E E
j p j p t

t T

T t Z j J p P
(A2.11)

, ,       , ≤ ∀ ∈ ∈S E
j p j pT T j J p P (A2.12)

, , , , ' , , '
'

   , ,
′≤ <

= − ∀ ∈ ∈ ∈∑ ∑S E
j p t j p t j p t

t t t t

Z Z Z j J p P t T
(A2.13)

, , ,     ,
∈

+ ≤ ∀ ∈ ∈∑
i

i i t i j t i
j J

NC X Y NC i I t T
(A2.14)

, , , ,      , ,
∈

≤ ∀ ∈ ∈ ∈∑i j t j p t
p P

Y Z i I j J t T
(A2.15)

, , 1      , 
∈

≤ ∀ ∈ ∈∑ j p t
p P

Z j J t T
(A2.16)

Flowrate constraints 

, , ,   ,≤ ≤ ∀ ∈ ∈min max
i i t i t i i tF X F F X i I t T (A2.17)

, , , , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
i j i j t i j t i j i j tF Y F F Y i I j J t T (A2.18)

, , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
j j p t j p t j j p tF Z F F Z i I p P t T (A2.19)

Transition constraints

1

, , , , , , , , ,
1

 1 , , , ,
′−

∈ = +
′ ′ ′′

′ ′′

≥ + − − ∀ ∈ ∈ ∈ ≠∑ ∑
t

j p n t j p t j n t j p t
p Pt t

W Z Z Z j J p n P t T p n
(A2.20)
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A.3 - Complete Model 3

Objective function

( ) , , , , , ,
, 

min
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ≠

+ + +∑∑∑ ∑∑ ∑∑ ∑i i i j t i i t p n j p n
i I j J t T i I t T j J p Pn P p n

Crm Cp F CiV Ct W
(A3.0)

Material balance constraints

0
, , , ,

'

   , 
≤ ∈

 
= + − ∀ ∈ ∈  

 
∑ ∑

i

i t i i t i j t
t t j J

V V F F i I t T
(A3.1)

,     , ≤ ≤ ∀ ∈ ∈min max
i i t iV V V i I t T (A3.2)

, , , ,   , 
∈ ∈

= ∀ ∈ ∈∑ ∑
j

j p t i j t
p P i I

F F j J t T
(A3.3)

0
, , , , , ,   , 1, 

∈ ∈

≥ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T
(A3.4)

0
, , , , , ,   , 2, 

∈ ∈

≤ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T
(A3.5)

Demand constraint

, , ,  ,
∈

≥ ∀ ∈ ∈∑ j p t j p
t T

F D j J p P
(A3.6)

Operating rules and logic constraints

, 1 ,
∈

= ∀ ∈ ∈∑
u

i t
i I

X u DU t T
(A3.7)

, , 1  , 
∈

≤ ∀ ∈ ∈∑ S
j p t

t T

Z j J p P
(A3.8)

( ), , , , 0  , 
∈

− = ∀ ∈ ∈∑ S E
j p t j p t

t T

Z Z j J p P
(A3.9)

, , ,.  , 
∈

= ∀ ∈ ∈∑S S
j p j p t

t T

T t Z j J p P
(A3.10)

, , ,.  , 
∈

= ∀ ∈ ∈∑E E
j p j p t

t T

T t Z j J p P
(A3.11)

, ,   , ≤ ∀ ∈ ∈S E
j p j pT T j J p P (A3.12)

, , , , ' , , '
'

, ,
≤ <′

= − ∀ ∈ ∈ ∈∑ ∑S E
j p t j p t j p t

t t t t

Z Z Z j J p P t T
(A3.13)
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, , ,  ,
∈

+ ≤ ∀ ∈ ∈∑
i

i i t i j t i
j J

NC X Y NC i I t T
(A3.14)

, , , ,  , ,
∈

≤ ∀ ∈ ∈ ∈∑i j t j p t
p P

Y Z i I j J t T
(A3.15)

, , 1  , 
∈

≤ ∀ ∈ ∈∑ j p t
p P

Z j J t T
(A3.16)

Flowrate constraints 

, , ,   ,≤ ≤ ∀ ∈ ∈min max
i i t i t i i tF X F F X i I t T (A3.17)

, , , , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
i j i j t i j t i j i j tF Y F F Y i I j J t T (A3.18)

, , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
j j p t j p t j j p tF Z F F Z i I p P t T (A3.19)

Transition constraints

, , , , 1 , 
∈ ∈

+ = ∀ ∈ ∈∑ ∑j p t j p t
p P p P

Z S j J t T
(A3.20)

{ }, , 1 , , 1 , , , ,  , , T+ +
∈

+ ≥ + ∀ ∈ ∈ ∈ −∑ j n t j p t j p t j p t
n P

Z S Z S j J p P t T
(A3.21)

{ }, , , , , , , , 1 1  ,   , , T , +≥ + + − ∀ ∈ ∈ ∈ − ≠j p n j p t j p t j n tW Z S Z j J p n P t T p n (A3.22)

A.4 - Complete Model 4

Objective function

( ) , , , , , , ,
, 

min
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ≠ ∈

+ + +∑∑∑ ∑∑ ∑∑ ∑ ∑i i i j t i i t p n j p n e
i I j J t T i I t T j J p Pn P p ne E

Crm Cp F CiV Ct W
(A4.0)

Material balance constraints

0
, , ' , , '

'

   , 
≤ ∈

 
= + − ∀ ∈ ∈  

 
∑ ∑

i

i t i i t i j t
t t j J

V V F F i I t T
(A4.1)

,     , ≤ ≤ ∀ ∈ ∈min max
i i t iV V V i I t T (A4.2)

, , , ,   , 
∈ ∈

= ∀ ∈ ∈∑ ∑
j

j p t i j t
p P i I

F F j J t T
(A4.3)
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0
, , , , , ,   , 1, 

∈ ∈

≥ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T
(A4.4)

0
, , , , , ,   , 2, 

∈ ∈

≤ ∀ ∈ = ∈∑ ∑spc
p k j p t i k i j t

p P i I

x F x F j J k t T
(A4.5)

Demand constraint

, , ´ , , "
´ "

 , , , , " , 1
≤ ≤

≥ ∀ ∈ ∈ ′ ∈ >∑ ∑j p t j p t j
t t t t

F D j J p P t t t T NT
(A4.6)

, , , ,  , ,≥ ∀ ∈ ∈ ∈∑ ∑j p t j p t
t t

F D j J p P t T
(A4.7)

Operating rules and logic constraints

, 1 ,
∈

= ∀ ∈ ∈∑
u

i t
i I

X u DU t T
(A4.8)

, , , 1  , , 
∈

≤ ∀ ∈ ∈ ∈∑
d

S
j p t d

t T

Z j J p P d D
(A4.9)

( ), , , , , , 0  , , 
∈

− = ∀ ∈ ∈ ∈∑
d

S E
j p t d j p t d

t T

Z Z j J p P d D
(A4.10)

, , , , ,.  , , 
∈

= ∀ ∈ ∈ ∈∑
d

S S
j p d j p t d

t T

T t Z j J p P d D
(A4.11)

, , , , ,.  , , 
∈

= ∀ ∈ ∈ ∈∑
d

E E
j p d j p t d

t T

T t Z j J p P d D
(A4.12)

, , , , , , , ' , , , ′
′ ′≤ <

= − ∀ ∈ ∈ ∈ ∈∑ ∑S E
j p t j p t d j p t d d

t t t t

Z Z Z j J p P t T d D
(A4.13)

, , ,  ,
∈

+ ≤ ∀ ∈ ∈∑
i

i i t i j t i
j J

NC X Y NC i I t T
(A4.14)

, , , ,  , ,
∈

≤ ∀ ∈ ∈ ∈∑i j t j p t
p P

Y Z i I j J t T
(A4.15)

, , 1  , 
∈

≤ ∀ ∈ ∈∑ j p t
p P

Z j J t T
(A4.16)

Flowrate constraints

, , ,   ,≤ ≤ ∀ ∈ ∈min max
i i t i t i i tF X F F X i I t T (A4.17)

, , , , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
i j i j t i j t i j i j tF Y F F Y i I j J t T (A4.18)
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, , , , , ,   , ,≤ ≤ ∀ ∈ ∈ ∈min max
j j p t j p t j j p tF Z F F Z i I p P t T (A4.19)

Event point constraints

( ), , , , , 1      , , ,≥ − − ∀ ∈ ∈ ∈ ∈S
j e j p d d j p e dT T H E j J p P e E d D (A4.20)

( ), , , , , 1      , , ,≤ + − ∀ ∈ ∈ ∈ ∈S
j e j p d d j p e dT T H E j J p P e E d D (A4.21)

, , , , ,    , , 
∈ ∈

= ∀ ∈ ∈ ∈∑ ∑
d d

S
j p e j p t d

e E t T

E Z j J p P d D (A4.22)

, , 1        , −≥ ∀ ∈ ∈j e j eT T j J e E (A4.23)

, , , , 1        , ,+
∈ ∈

≥ ∀ ∈ ∈ ∈∑ ∑ L
j p e j p e d

p P p P

E E j J d D e E (A4.24)

Transition constraints

, , , , 1         , 
∈ ∈

+ = ∀ ∈ ∈∑ ∑j p e j p e
p P p P

E S j J e E
(A4.25)

{ }, , 1 , , 1 , , , ,        , , E+ +
∈

+ ≥ + ∀ ∈ ∈ ∈ −∑ j n e j p e j p e j p e
n P

E S E S j J p P e E
(A4.26)

{ }, , , , , , , , , 1 1  ,   , , E , +≥ + + − ∀ ∈ ∈ ∈ − ≠j p n e j p e j p e j n eW E S E j J p n P e E p n (A4.27)

, , , , , , 1 ,    , ,
∈

 
= + − ∀ ∈ ∈ ∈  

 
∑

d

E S
j p d j p d j p t

t T

T T Z j J p P d D (A4.28)
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