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Abstract - Research and development of new processes is a fundamental part of any innovative industry. For 
process engineers, finding optimal operating conditions for new processes from the early stages is a main issue, 
since it improves economic viability, helps others areas of R&D by avoiding product bottlenecks and shortens 
the time-to-market period. Model-based optimization strategies are helpful in doing so, but imperfect models 
with parametric or structural errors can lead to suboptimal operating conditions. In this work, a methodology 
that uses probabilistic tendency models that are constantly updated through experimental feedback is proposed 
in order to rapidly and efficiently find improved operating conditions. Characterization of the uncertainty is used 
to make safe predictions even with scarce data, which is typical in this early stage of process development. The 
methodology is tested with an example from the traditional innovative pharmaceutical industry.
Keywords: Process system engineering; Process development; Experimental design; Modeling for optimization.

INTRODUCTION

Development of innovative processes is a special 
area of process design that presents an unique feature: 
knowledge is scarce or inexistent. This implies that 
the experimental data and the mathematical models 
are not readily available to be used by engineers and 
scientists. Some industries require the products to be 
available as soon as possible in order to get a portion of 
an emerging market (which shortens the development 
period) but need the process to be economically viable 
(making optimization mandatory (Pisano, 1997)). In 
addition to this, experiments may be expensive to 
perform in terms of money and/or time, two resources 
that can be equally valuable. As a result of scarce 
knowledge, common engineering tasks such as design, 
control and optimization of industrial processes are 
carried out under a great deal of uncertainty. The 
combination of all these features gives rise to a key 
question to be solved: how to economically develop 

an optimal process when knowledge about its 
behavior and performance is scarce and uncertainty 
is ubiquitous.

The pharmaceutical sector is a traditional example 
of an industry that strongly relies on Research and 
Development (R&D). While historically focused 
on innovative product development, stagnation in 
drug discovery and increasing pressure from generic 
drug producers demand new ways of reducing costs 
and maximizing returns (Malhotra, 2009). Thus, 
process development may be the perfect complement 
for product development. Thousands of drugs are 
discovered each year, but after a very costly series 
of experiments (that include from laboratory tests to 
clinical trials), only a handful of them are selected 
and approved for their release to the market (Paul et 
al., 2010). Fortunately for pharmaceutical companies, 
patent legislation protects drug's inventors, giving 
them the exclusivity to sell their products (or in the 
case of novel processes, to manufacture them using 
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the technology granted in the patent). Nevertheless, 
patents have expiration dates that make it mandatory 
for companies to minimize time-to-market in order 
to maximize sales revenues while their rights are still 
valid (Minnaard et al., 2007). Also, since different 
drugs may have the same target market, a fast process 
development may be needed to increase market share. 
As a result, shorter development times are needed. On 
the other hand, as in any other chemical industry, it is 
desirable that the process behave optimally in terms 
of yield and productivity in order to meet the market 
demand at competitive prices (Rubin et al., 2006). This 
is especially true for drugs such as generics that are no 
longer protected by patents or those that must compete 
with biosimilars. More and more pharmaceutical 
industries that traditionally rely on drug innovation 
are enhancing their effort on developing more efficient 
production processes, in order to be able to compete in 
highly competitive markets with small profit margins 
(Gernaey et al., 2012).

Since the eighties, the Process System Engineering 
(PSE) community has studied the problem of 
process optimization under uncertainty with different 
approaches (Chen and Joseph, 1987; Filippi-Bossy 
et al., 1989; Halemane and Grossmann, 1983). With 
the ubiquitous presence of computers, the model-
based optimization approach has gained widespread 
acceptance. A great deal of effort is being put currently 
to apply these PSE concepts to innovative industries, 
such as the pharmaceutical industry (Gernaey and 
Gani, 2010; am Ende, 2011; Troup and Georgakis, 
2013; Royle et al., 2013; Emenike et al., 2015; Rogers 
and Ierapetritou, 2017). This was reinforced by the 
U.S. Food and Drug Administration (FDA) with 
the initiative named Quality by Design (QbD) (ICH 
Q8, 2006), in which scientific knowledge is used 
to develop processes that assure quality products. 
In process development, optimization is usually 
undertaken when process design has been finished 
(e.g., the reaction route and separation technology 
have already been chosen). The purpose of process 
optimization, then, is to find the best operating 
conditions (among all feasible ones) that maximize 
a performance index, subject to process constraints. 
Among the several PSE optimization approaches, the 
modeling for optimization approach aims to solve this 
problem by developing mathematical models that are 
used as tools to improve the performance of a process, 
while interacting with it by performing experiments 
(Bonvin, 1998; Bonvin et al., 2016). 

The combination of model-based optimization 
techniques and experimental feedback is very useful 
to overcome the aforementioned difficulties. Since 
models are constructed with scarce knowledge, their 
predictions may not be exact, especially when they are 
used to extrapolate to unexplored process conditions, 
which may lead to suboptimal results (Quelhas et al., 
2013; Mandur and Budman, 2015). To solve this model/
process mismatch, the optimal operating conditions 
proposed by the model are tested experimentally, 
and results obtained are used to update the model 
and improve the performance iteratively, in what is 
traditionally called a two-step approach. In order to 
face the problems related to scarce knowledge about 
processes, probabilistic tendency models (PTMs) are 
proposed (Martínez et al., 2013), since they take into 
account the uncertainty associated with predictions 
at the estimated optimum, which can be very useful 
to avoid risky or unsafe operating conditions. The 
tendency of the model refers to its suitability to capture, 
at least qualitatively, the response of the process to the 
chosen operating conditions. Both the model itself and 
its extrapolating capability (the operating region) are 
corrected iteratively, improving the efficiency of the 
optimization methodology (Luna and Martínez, 2014). 

In this work, a methodology to develop novel 
processes in the face of uncertainty is proposed. 
In the next section, the modeling for optimization 
framework is explained and the probabilistic 
tendency models are presented. In the third section, 
the proposed methodology is described and some 
aspects of its convergence to the process optimum are 
analyzed. In the fourth section, a typical problem in 
the pharmaceutical industry (synthesis of an active 
pharmaceutical ingredient) is addressed. Convergence 
of the proposed approach is analyzed to highlight its 
distinctive capability to combine imperfect models 
with data. Concluding remarks are presented in the 
last section.

THEORETICAL FRAMEWORK

Modeling for Optimization

As was stated before, some industries rely 
on innovation of both products and processes. 
Development of innovative processes is a special 
area of process design that presents a unique feature: 
knowledge is scarce or nonexistent. In process 
optimization, the objective is to find the combination 
of process parameters (operating conditions) that 
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maximize a performance index or that minimize a 
cost, while fulfilling some constraints. The process 
parameters are the variables of the process that can 
be specified by the designer, and are confined to the 
operating region (e.g., reaction temperature, catalyst 
load, etc.). The process outputs (e.g., reaction yield, 
production, impurity contents, etc.) are consequences 
of these parameters. In this work, no process variability 
is considered in the experiments, i.e., the same process 
variables give the same outputs in two different 
experiments (though there may be measurement 
errors). The traditional formulation of the problem is:

							       (1)

where JR is the objective function, CR(u) are the 
inequality constraints, DR(u) are the equality constraints 
and LB and UB are the lower and upper bounds for 
the vector of process parameters u. The real optimal 
operating conditions that solve this problem are denoted 
u*

R $. There are several methodologies to optimize a 
process and they can be grouped in different ways. 
Here, optimization approaches are grouped in model-
based and model-free methodologies, depending 
on whether they resort to a mathematical model to 
represent the process or not. The latter is based mostly 
on experimentation and a trial & error mechanism 
(Lundstedt et al., 1998). On the other hand, model-based 
methodologies use mathematical models as guidelines 
to find the optimal operating conditions. This group 
can be divided as well into two sub-groups. One type 
is the traditional one-shot optimization methodology, 
in which all the experimental effort is put into the 
development of a detailed model, and only after this 
model is available, is it used to solve the mathematical 
problem that leads to the optimal operating condition 
(Franceschini and Macchietto, 2008). The other sub-
group of methodologies belongs to the run-to-run 
(RTR) approach, where the model is developed using 
a small experimental data set and immediately used to 
optimize the process (Jang et al., 1987; Chachuat et al., 
2009). Since the model could be inaccurate because of 
the lack of information, the predicted optimum may 
be suboptimal, so a new experiment is made using the 
proposed process parameters. Data gathered in the next 
experiment is then used to update the model, which 
now will be able to predict better in the neighborhood 
of the predicted optimum operating conditions. The 
recursive application of this scheme quickly leads 

the process to the high performance area of the 
design space, avoiding the area of low productivity 
and reducing experimental costs. The experimental 
feedback corrects the process/model mismatch and, in 
so doing, provides convergence to improved operating 
conditions.

Model-based methodologies rely on the capability 
of the models to approximate the actual process, at least 
locally. There are several kinds of process models, but 
in general, all of them have the form:

							       (2)

where y is the process output vector, θ is the model 
parameter vector (the variables that describes the 
process but cannot be manipulated by the designer) and 
u is the vector of parameters that defines the process 
operating condition (i. e., the decision variables that the 
designer can manipulate to optimize the process). The 
function f is the model, which can be a single equation 
or a system of equations (algebraic and/or differential) 
involving even thousands of them. The structure of 
the model can be based on first principles or entirely 
based on data, i.e. inductive modeling (Georgakis, 
1995). The former uses well-known principles as an 
efficient way to increase the accuracy of the prediction 
when extrapolating away from the available data 
point. The latter use simple mathematical structures to 
represent the data gathered and are easy to construct, 
but may fail when extrapolating. Generally, both types 
of models require a regression of experimental data 
to find the unknown model parameters (though some 
processes can be represented by models based solely 
on constitutive laws). 

Using a process model, the real optimization 
problem can be approximated by:

							       (3)

where J, C and D are now the model predictions for 
the objective function, the inequality and equality 
constraints, respectively. An additional equality 
constraint on f must be fulfilled, i.e., all variables are 
described using the outcomes of y calculated in eq (2), 
namely the process model. The principal hypothesis is 
that the predicted optimal vector u* found in problem 
(3) maximizes both the predicted performance J and 
the real performance JR. This may not always be 
the case, due to the process/model mismatch. Since 
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experimentation could be very expensive in terms of 
money and time in the development of innovative 
processes, enough experimental data are rarely 
available and a comprehensive model validation over 
the entire operating region is usually impossible to 
perform. Thus, models used for optimization usually 
have a great deal of uncertainty in their predictions. 
The information about this uncertainty can be 
expressed quantitatively using probabilistic tendency 
models (PTMs): simplified nonlinear models based on 
first principles which use distributions of parameters 
(instead of fixed values) that are updated with process 
feedback (Martínez et al., 2013). In this work, a 
methodology to optimize an innovative process using 
PTMs in a RTR scheme is proposed. As is shown 
below in this work, the speed of the model-based 
method to find the near-optimal condition, combined 
with the robustness of the experimental feedback, is 
instrumental to develop innovative processes.

Probabilistic tendency models

As was stated before, a well-known difficulty in 
process developments is the lack of experimental 
data, in quantity (number of experiments) and quality 
(relevance of the variables measured). Also, the inner 
mechanism of the process may not be fully known (e.g., 
the reaction mechanism or the transport phenomena 
involved in a chemical synthesis). This usually causes 
a process/model mismatch that may lead to suboptimal 
operating conditions. The RTR approach may help to 
overcome this issue, but to do so, some requirements 
have to be fulfilled. One of these requirements is that the 
model predicts the tendency of the process. This means 
that the performance of given (unexplored) operating 
conditions relative to the performance of known 
operating conditions (already tried experimentally) 
is well captured by the model, at least qualitatively. 
The combination of this concept with the use of well-
known first principles and evaluative feedback lead to 
the development of tendency models. Thus, a tendency 
model is able to capture the tendency of the process 
performance, and it is formulated with the objective of 
optimization (instead of studying the process nature) by 
successively updating the model parameters.

The PTMs use the bootstrapping method in order to 
take into account the uncertainty in the prediction due 
to the scarcity of experimental data. Instead of working 
with fixed values, the probability distributions of the 
model parameters are used to characterize the process 
behavior. The output of the model is not a single value 
but a distribution, which helps measure the uncertainty 
of the prediction due to incomplete information.

Before bootstrapping is introduced, a procedure to 
obtain a parameterization of the model from a single 
data set is presented. The traditional formulation for 
model fitting is an inverse problem:

							       (4)

where E is a function that measures the difference 
between the model outputs and experimental data 
X. Cθ and Dθ are inequality and equality constraints 
that can be added to the fitting problem (e.g. to force 
the solution to accurately predict a specific data 
point). The experimental data can be taken from one 
or more experiments, and a single experiment may 
consist of many data points. The experimental data 
set X is a subset of all data generated during process 
development. For the least squares approach, the 
function E is as follow:

							       (5)

where the subindex i stands for each element of the 
data set, ui is the vector of operating conditions that 
gives rise to it, yi is the corresponding model prediction 
and w is a weighting factor. As can be seen, for given 
data sets and operating conditions, the solution to 
the problem is the vector θ of model parameters that 
minimizes the error function E.

Bootstrapping is a method that generates new 
artificial data from the original dataset, using re-
sampling with replacements (Efron and Tibshirani, 
1994; Joshi et al., 2006). Since the model has structural 
mismatch and measurements have errors, the vector 
of model parameters that solve problem (4) using the 
new artificial data set may be different from the one 
that solves it for the original data set. This process 
can be repeated until many solutions for problem (4) 
are obtained. As a result, for each model parameter, 
there exist different realizations that are considered 
samples from a distribution (or a histogram), which 
can then be collected in a stochastic vector ,Jiu r, in which 
every element of the vector is a statistical variable 
with a distribution. Sampling from these distributions 
provides a realization of the vector θi, which can be 
used in the tendency model to evaluate a given vector 
u, which produces the output y. The procedure can be 
repeated and the outputs are collected in the stochastic 
vector yu. For example, let's assume that a process 
model output is as follows:

. .:s t

Max E

C

D

LB u UB

0

0

( , )

( , , )

( , , )

,u X

u X

u X

#

# #

=

i i

i i

i i

i i

( )E w y X( , , ) ( , )u X i i u i
i

2

i= -i i/



Brazilian Journal of Chemical Engineering Vol. 35,  No. 03,  pp. 1063-1080, July - September, 2018

1067Model-based run-to-run optimization for process development

							       (6)

The stochastic vector iu  is known and has a normal 
distribution with mean 4 and standard deviation 0.5. 
The output y for each realization θ is calculated at 
different values of u, and is presented in Figure 1a 
along with the mean value of y. The scaled probability 
distribution functions (pdf) are shown for u=0.5 and 
u=1 in Figure 1b. Wider distributions imply that the 
predictions for such values are less accurate.

Since the performance index and the constraints 
are calculated using y, the following outputs for the 
probabilistic tendency model can be defined:

							       (7)

For given vectors of operating conditions u and 
probability distributions of the model parameters ,Jiu r  
is the expected value of the performance index and 
pcj and pdj are the probabilities that a given inequality 
or equality constraints are fulfilled (the subindices j 
stands for each one of the multiple constraints). Since 
the uncertainty about the process is represented by the 
probabilistic distributions of model parameters, these 
outputs are giving information not just about the process, 
but also about how reliable these predictions are. For 
example, a high value of Jr  associated with a low value 
of pcj (or pdj) can be considered not very reliable; thus, 
a lower value of Jr  but with a higher value of pcj may be 
preferable. Of course, this reliability is based solely on 
the experimental data gathered and how they are used 
to obtain the probabilistic vector iu . The real process 
is assumed to be deterministic and the probabilities pcj 

and pdj do not reflect any perturbations to the process: 
experiments are considered are assumed reproducible, 
though there may exist random measurement errors. 
The probabilities pcj and pdj reflect the remaining 
uncertainty about the predictions due to the lack of 
knowledge about the process.

OPTIMIZATION METHODOLOGIES 
USING PTMS FOR PROCESS 

DEVELOPMENT

Process development methodology

The capability of the PTMs to measure the 
uncertainty of its own predictions is very useful in the 
development of new processes. Since it is known that 
there may be a mismatch between the model and the 
real process, it is expected that several runs will be 
needed to achieve near optimal operating conditions. 
Ideally, the development of a new process should be 
fast, and most of the runs must be done nearby the 
optimum, where the cost of sub-optimality is lower. 
Also, some of the experiments may not fulfill the 
constraints, making them extremely expensive if the 
outcomes of a run cannot be exploited economically. 
We can formulate the minimization problem for the 
total experimental cost as follows:

							       (8)

( )expy u1 i= - -

Pr

Pr

J

pc C

pd D

0

0

( , )u

J J

J J

( , ) ( , )

( , ) ( , )

u u

u u

#=

= =

i

i i

i i

r r

r r

r r

r r

r r

Q
Q

V
V

. . , , ..., :

min

argmax

s t i i n

JU

C

D

LB U UB

1

0

0

( )

( )

( )

( )

U U

i R U

R Ui

R U

i

i

i

6

#

# #

{

=

=

=
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where U is a matrix in which each row is the vector of 
process parameters tried in the i-th experiment and φ is 
the total experimental cost. The latter can be defined in 
different ways, depending on the characteristics of the 
process. For example, if the product of the experimental 
runs can be used or sold, a good definition can be the 
cumulative difference between the maximum possible 
benefit and the benefit from each run:

							       (9)

This is the total performance loss during process 
development due to suboptimal runs. In other 
cases, the actual cost of each experiment should be 
considered (e.g., if the product from each run cannot 
be used or sold, only costs of experimentation should 
be accounted for).

As can be expected, the best solution is to achieve 
the optimal operating conditions in just one iteration, 
but the required knowledge about the real process 
behavior to solve problem (1) is not readily available. 
Thus, problem (1) has to be approximated by a model-
based formulation. In this work, an iterative RTR 
methodology is proposed, but the same formulation 
for the development problem stands for a one-shot 
optimization methodology. The main difference is 
that, for one-shot optimization, some experiments 
should be performed first to obtain the model and 
then use it to solve the problem (3), whereas in the 
RTR approach the model-fitting problem and the 
optimization problem are simultaneously solved over 
a number of iterations. As a result, the run-to-run 
methodology tends to perform most of the experiments 
in profitable operating conditions, avoiding the low 
performance areas that may be needed to fit and 
validate comprehensively the more detailed models 
used in one-shot optimization. Also, the latter approach 
relies solely on the model and has no feedback from 
the real plant once the optimization problem is solved. 
This may lead to suboptimal operating conditions 
when there is mismatch between the model and the 
real process. 

There are several RTR methodologies that can 
be applied to solve the development problem. The 
traditional approach is to perform an experiment, solve 
problem (4) to update the model, and solve problem 
(3) using it. The optimal operating conditions obtained 
are tested experimentally, and a new iteration begins. 
This procedure can be repeated until convergence. 
This is known as the two-phase approach.

In this work, the two-phase approach is combined 
with a probabilistic formulation that uses PTMs to take 

into account the information about the uncertainty of 
the process. The model-based optimization problem is 
reformulated as follows:

							       (10)

where Jr , pcj and pdj are calculated with eq (7). 
This formulation is equivalent to the probabilistic 
programming formulation, which is well known in the 
fields of stochastic programming (Sahinidis, 2004). 
One of the main advantages of this formulation is that, 
by adjusting the parameters αj and βj, the user tunes 
the methodology in accordance with how risky he/
she wants it to be. Higher values of these parameters 
make the procedure more conservative, as the obtained 
solution minimizes the probabilities of not fulfilling 
the constraints. If the true optimum is near or on one 
(or more) of the constraints, the methodology will 
slowly move towards it, thus requiring more runs. 
Lower values, on the other hand, could lead to faster 
convergence, but at the risk of some unprofitable runs.

This formulation is implemented in a two-step 
methodology (Figure 2), where the model acquisition 
step is performed via regression and bootstrapping 
and the optimization step is replaced by problem 
(10). Data from all or some previous experiments can 
be employed to fit the PTMs, but in this work only 
data from the last successful experiment are used. 
Thus, the model is not required to fit data with lower 
performances that may hamper its predictions in the 
high-performance region. This is especially true for 
imperfect models. For complex models, data from 
other experiments may be included in order to give 
some information of regions with low performance.

The solution of the optimization problem is the 
proposed optimal vector u* that has to be tested 
experimentally. A run is performed using these 
operating conditions, and if the performance improves, 
a new iteration begins. If the proposed operating 
conditions from the new iteration are nearly equal 
to the one from the last iteration, the development 
procedure stops and they are considered optimal. A 
performance increase in the experimental run involves 
an improved value of JR while fulfilling CR and DR, 
according to problem (1).

If the performance does not improve, several 
approaches can be followed. Here, it is proposed that 
the optimization problem is performed once again using 
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the proximity of the conditions where it was obtained 
and becomes worse as it is used to extrapolate far 
away from that point. If the model successively fails 
to propose better operating conditions, the region 
shrinking will eventually force the optimization 
problem to choose the same (or sufficiently similar) 
operating conditions, thus converging. If improved 
operating conditions are found, the region is reset to 
the original values and a new iteration begins from the 
new conditions. The reset of the bounds may lead to 
a higher number of experiments until convergence is 
achieved, but it is done in order to prevent excluding 
an operating region where the actual optimum may 
be found. The assumption made is that the newly 
parameterized model would circumvent the region of 
low performance without resorting to more restrictive 
bounds. 

An iteration (labeled n) in Figure 2 is defined as 
the complete cycle of model fitting along with one or 
more optimization steps with shrinking. Each iteration 
may involve several experiments (using m to count the 
number of experiments in a given iteration). Since it 
could be very expensive to perform many experiments, 
a maximum number of experiments per iteration 
(mMAX) can be specified as an alternative stopping 
criterion. In this case, the best operating conditions 
among all tested are chosen as the optimal. A simple 
algorithm to shrink the operating region is proposed in 
Figure 3, where sf is the shrinking factor and u0 is the 
operating point where the model was fitted: the best 
run from the last iteration (or the exploratory run); it 
is up to the user what value of sf to choose. The lower 
its value, the smaller the operating region, hence the 
methodology will be more conservative, meaning the 
optimization problem is solved in a smaller region.

Figure 2. Block diagram for the optimization scheme proposed in 
this paper.

the same PTM but in a smaller region, excluding the 
tested operating conditions u*. As a result, the search 
region is shrunk around the operating conditions where 
the model was last fitted. This is in accordance with 
the belief that the model provides a good tendency in 

Figure 3. An algorithm to shrink the operating region.
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The procedure is depicted in Figure 4. For a process 
with two variables, the contours of the performance 
index JR for the real process are shown with black lines. 
The predictions of the tendency model Jr  fitted with 
data from u0 are presented with dotted lines. The initial 
optimization region is the whole domain presented 
in Figure 4a. As can be seen, the performance of the 
optimum predicted by the model, u*

1 , is lower than the 
one from u0. The shrinking of the optimization region, 
which is delimited by the dashed lines in Figure 4b, 
excludes u*

1  such that the new model-optimized 
process parameter vector u*

2  leads to an improvement.

Convergence Analysis

To analyze the convergence of the proposed 
methodology, let's consider the operating point u0 
where the model was last fitted. Let's denote by Nu0 
the neighborhood of u0 defined as follows:

							       (11)

where δ is a real number greater than 0 and sufficiently 
small. The model fits well the process if its predictions 
and the real process responses are approximately 
equal, so that: 

							       (12)

It is intuitive that, if the model fits well in the 
neighborhood of u0 for a constrained optimization 
problem which boundaries are within Nu0, the 

optimum predicted by the model and the real one 
nearly coincide:

							       (13)

such that their performance indices verify JR(u*) 
≥ JR(u0). Since the shrinking methodology reduces 
the optimization region around u0, after performing 
some experiments with a JR(u) lower than JR(u0), the 
optimization region is included within the neighborhood 
of u0. Then, the model-based optimization problem will 
find a solution u* with a better performance than u0 (or 
a comparable performance in the case of convergence). 
However, it is worth noting that u* is an optimum 
for the "shrunk" problem, but not necessarily for the 
real problem. With this operating point as the new 
model-optimized process parameter vector u0, a new 
iteration may be undertaken. As process performance 
is improved in each one of the iterations, eventually an 
optimum will be reached for the real problem (there is 
no guarantee that this is the global optimum, though, 
as expected in any optimization method that deals with 
process-model mismatch).

Asking a model to predict correctly all the outcomes 
of a process for any operating condition could be very 
challenging. To relax somehow the requirement for a 
model used for process optimization, the following 
sub-domain is defined as the "region of improvement" 
of u0:

							       (14)

Figure 4. Contour levels for the real performance (black lines), the prediction of the tendency models (doted lines) 
and the operating conditions (a) for the first run of an iteration and (b) for the second run, after the region is shrunk.
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A model has good tendency if it can predict, for a 
given u0, whether or not an operating condition vector 
u fulfills:

							       (15)

If a model has good tendency, then the predicted 
optimum u* will have a better performance than u0, 
i.e. JR(u*) > JR(u0). However, this does not imply 
that the performance of the predicted optimum 
corresponds to the performance J* of the real optimal 
operating conditions, i.e., not necessarily JR(u*) = J*. 
If the model has a good tendency nearby u0 and the 
optimization region is shrunk enough, then eventually 
the boundaries of the optimization problem must be 
within the region of improvement and JR(u*) > JR(u0). 
Tus, if the model has a good tendency in the proximity 
of any operating condition used such as u0, then each 
iteration of the methodology will find an operating 
condition vector with a better performance. This is 
important because it is easier for a model to have a 
good tendency than to fit well.

For the conceptual example presented in this 
section, the real ROI and the one predicted by the model 
are shown in Figure 5a and Figure 5b, respectively. In 
the region where both ROI don't overlap, the model 
doesn't have a good tendency. As can be seen in Figure 
5c, the first proposed optimum u*

1  is in this region; 
thus, the performance of the process decreases. After 
the operating region is shrunk, the new optimum u*

2  
is predicted in a region where the model has good 
tendency and the performance improves. Then, u*

2  
becomes the new u0 and a new iteration begins. Even 
when the methodology doesn't need to shrink the 
operating region to the neighborhood of u0 to achieve 
better performance, the model has a good tendency in 
that region as is shown in Figure 5d, which ensures 
performance improvement.

CASE STUDY

Problem statement

The proposed methodology for the development 
of a new process will be tested via simulation of 
the chemical synthesis of an active pharmaceutical 
ingredient (API). This is a typical problem in the 
pharmaceutical industry, where a significant number 
of new drugs are discovered every year but only a few 
make it to the clinical trials. 

The example is rather simple to be easily 
understood and analyzed, but interesting enough to 

highlight the capabilities of the proposed approach. 
The reaction scheme is presented in Figure 6. An API 
(labeled as P) must be synthesized from two reagents 
(A and B) in a tank reactor. The reaction takes place in 
the presence of a catalyst and a solvent. The reaction 
system is complex: after the reaction of A and B and 
the formation of P, the reaction of P and B can take 
place leading to the destruction of the product and thus 
reducing the desired product yield. Also, A and B can 
follow a parallel reaction path to form an impurity 
I. This impurity is very undesirable because at a 
certain concentration it becomes unstable in solution, 
precipitates and spoils the batch.

Yield and the impurity issues are both believed 
to be caused by resorting to an excess of B, thus, a 
fed-batch operation mode where a solution of B is fed 
to the solution of A charged initially in the reactor, 
is selected (Figure 7 describes the setup). After a 
given time, the reaction is stopped, and the mixture is 
discharged to the purification step, where the product 
can be separated. Some assays on laboratory scales are 
used to define the bounds for the operating conditions. 
The feeding profile of B should be optimized, leaving 
all other process variables (temperature, initial volume 
and reactant concentrations, etc.) at their nominal 
values. Here the profile is arbitrarily chosen to be a 
single step described by two parameters:

							       (16)

where F(t) is volumetric flow and t is time. This is 
done for the sake of simplicity, because in this way 
the results obtained with the methodology are easier 
to analyze (other process variables or more complex 
feeding profiles may be proposed, if the tendency 
model is able to represent appropriately the influence 
of each variable on the process performance). Model 
simulations are performed using this reaction scheme 
and reactor setup. The complete set of differential 
equations used for data generation of the API process 
can be found in the Appendix. It is worth noting that 
this complete model and its parameters are unknown 
to the user.

An intermediate species M is formed, but it cannot 
be measured experimentally. Actually, the only 
species that are measured along a production run 
are P and I. Two constraints need to be fulfilled: the 
concentration of I must be less than the maximum 
allowable concentration of 0.01 mol/L (so as to prevent 
precipitation) whereas the final volume of the reactor 
cannot exceed the maximum capacity of the vessel, 
which is 2.25 L. These constraints are named C1 and 
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Figure 5. (a) Actual region for process improvement; (b) model predictions for performance improvement; (c) Region 
where the model doesn't have a good tendency; (d) Zoom of the region around operating conditions used for model 
fitting.

Figure 6. Reaction scheme for the case study.

C2, respectively. The exact results of the simulation 
are perturbed with a 5% Gaussian white noise for data 
sampled during the experiment, but are considered 
exact for values at the final time (the measurement at 
the final time are done offline, with a more accurate 

analytical method). The performance index to be 
optimized is the profit of the run, measured relative to 
the price of one mol of A:

						                 (17.a)

If the constraint C1 is not fulfilled, the value of JR is 
given by:

						                 (17.b)

because the spoiled product has no value and has to 
be disposed. The coefficients 4 and 0.3 stand for the 
relative prices of P and B; Bin is the concentration of B 
in the feed stream and V stands for the reactor volume. 
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Figure 7. Reactor setup for the case study.

Both A(0) and Bin are set to 1 mol/L, and V(0) is 1l. The 
duration of the experiment tf is fixed to180 min.

The contour lines of the response surface of the 
process performance using simulations are presented 
in Figure 8. Dashed lines describe the constraints. 
As can be seen, the behavior is highly nonlinear, 
and the optimum lies on the constraint for I. Also, 
the feasible region is non-convex, which makes the 
problem more difficult to solve. The true optimum is 
located at u*

R $  = [8.59E-03 L/min, 128.69 min], and 
its performance is J* = 1.4250.

Based on available knowledge about the reaction 
mechanism, the reaction scheme presented in Figure 9 
and the corresponding tendency model presented in eq 
(18) and eq (19) are proposed (one of the stoichiometric 
factors should be adjusted experimentally). 

							       (18)

							       (19)

The parameters to be fitted are the three kinetic 
constants (k1, k2 and k3) and the coefficients ν and γ. 

Figure 8. Contour lines of the performance index and its restrictions 
for the example presented in this section.
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The performance index and constraint C1 must be 
obtained using the tendency model, while constraint 
C2 can be exactly predicted a priori since the initial 
volume is known and the total volume fed is easily 
calculated from the process parameters vector. The 
performance index to be optimized in the model-based 
problem is equal to the one from eq (17.a), because the 
disposal of the product due to an excess in the impurity 
concentration is enforced by constraint C1.

 Since constraint C1 is model-based, and the success 
of the run depends heavily on its fulfillment, a special 
constraint in the model fitting problem is added:

							       (20)

By enforcing eq (20), the model is forced to fit 
accurately the final data point for the impurity 
concentration. 

Samples must be taken during the experiments 
to make room for fitting model parameters. Since 
it is a dynamic experiment, this can be done during 
the run at different times. These measurements of P 
and I at different times made up the data set X used 
to fit the tendency model, but only the final time data 

D I I, , ( ) ( )u X t t
exp

f f= -i iR W

Figure 9. Reaction scheme used to develop the tendency model.
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point (along with the process parameters and the 
initial conditions) is used to calculate the performance 
index. A common practice in the design of dynamic 
experiments is defining the sampling schedule (Asprey 
and Macchietto, 2002). This means that the most 
informative sampling times must be selected instead 
of choosing them arbitrarily. In this work, this is done 
using a global sensitivity analysis of the performance 
index with regards to the model parameters (Saltelli et 
al., 2006). For more details about these methods the 
reader is referred to the works of Rodriguez-Fernandez 
et al. (2007), Luna and Martinez (2014; 2015) and 
Martinez et al. (2013) and the references therein.

Results and analysis

The robustness of the methodology will be tested 
as the capability to achieve operating conditions with 
high performance regardless of the starting point and 
the existence of measurement errors. The following 
hyper-parameters are chosen: α1 is chosen to be 50%, 
sf is set to 0.5, and mMAX is equal to 5. The constraint 
C2 is calculated with no uncertainty, thus the value 
of α2 corresponds to 100%. Four different starting 
points are chosen to initialize the procedure. Since 
measurements have significant noise levels, the same 
operating conditions in two runs can lead to different 
parameterizations of the PTM. In order to study the 
convergence capabilities, the procedure is fully 
performed several times from different starting points. 
The parameterization problem and the performance 
optimization problem are solved using a Successive 
Quadratic Programming algorithm implemented in 
MATLAB (function fmincon).

For the starting point ua
0  =[1.20E-02 L/min, 45 min], 

data points collected along the exploratory run and the 
PTM predictions are presented in Figure 10. The pdf 
for the prediction of I at final time are presented in 
Figure 10c. The distribution of model parameters and 
the sensitivity indices for the first run can be found in 
the Appendix. The results for all the runs of the first 
implementation are presented in Table 1. 

The optimal operating conditions found 
(Run #13) have a performance only 1% lower than 
the real optimum. The methodology performed all 
the experiments in the high productivity region 
and, in this particular case, none of the runs fail to 
fulfill the imposed constraints. In Figure 11a, the 
best run from each iteration is depicted to highlight 
the performance improvement path. For the second 
iteration, intermediate runs are shown in Figure 11b, 
along with the last run from the first iteration. After 
two attempts that fail, in run #5 the performance does 

increase. The obtained operating point is chosen as the 
new optimum, and the procedure continues from there. 
The learning curve is presented in Figure 12. The total 
experimental cost is represented in this figure as the 
gray area between the learning curve (black line) and 
the real optimum performance (dashed line). 

In order to study the influence of the different 
parameterizations due to measurement errors, the 
methodology is applied several times starting from 
ua

0 . To compare the total experimental cost, the same 
number of run must be taken for each application 
of the methodology, which is chosen here to be 26. 
For implementations with less runs than the chosen 
number, the performances of the extra runs are equal 
to the best run (the optimum). A summary for the 
different applications is shown in Table 2.

The variability created by measurement errors may 
affect the efficiency of the procedure, but in all the cases 
the solution found corresponds to a high performance 
operating condition. The main difference is in the total 
experimental cost that increases significantly when a 
run does not fulfill constraint C1.

As was stated before, the same methodology is 
started five times from three other different starting 
conditions. Results obtained are listed in Table 3.

As can be seen, most of the times the methodology 
finds near optimal operating conditions. The greatest 
differences are in the number of runs required and in 
the total experimental cost. Implementations that start 
from u b

0  have bigger difficulties to achieve the high 
performance region than the others. This is due to the 
location of the starting point. This point is the furthest 
from the high performance region and it is in the 
vicinity of constraint C1. As a result, some experiments 
may be performed in the unfeasible region, increasing 
the total experimental cost. From a practical point of 
view, this starting point is not very likely to be chosen 
because it implies a fast addition of reactant B in a short 
period of time, which will cause a high concentration 
of B, which in turn is more likely to produce the 
impurity, according to the chemical reaction scheme. 
Nevertheless, it has been included in this analysis to 
show that even when starting in this type of operating 
conditions, the proposed methodology is able to 
improve the performance of the process.

One of the advantages of using PTMs is that the 
uncertainty of the model about its predictions can be 
used in order to affect the development of the process. 
Higher values of α makes the methodology more 
conservative, avoiding regions with high probabilities 
of failure. As a drawback, if the actual optimum is near 
the restriction, the methodology may be unable to find 
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Figure 10. Experimental data points (squares) and PTM 
predictions for the concentrations of (a) P and (b) I. The pdf of 
the concentration of species I predicted by the model is depicted 
in (c).

Table 1. All runs from the first implementation of the methodology.

ITER # RUN # u*
1

[L/min]
u*

2

[min]
JR(u*)

0 1 1.20E-02 45.00 0.6942

1 2 8.73E-03 116.01 1.4055

2

3 6.98E-03 159.46 1.3781

4 7.99E-03 110.05 1.3090

5 8.40E-03 128.96 1.4184

3

6 7.12E-03 165.78 1.3826

7 8.01E-03 132.29 1.4066

8 8.35E-03 117.35 1.3870

9 8.45E-03 128.46 1.4205

4

10 7.06E-03 166.88 1.3809

11 8.57E-03 110.34 1.3691

12 7.95E-03 133.42 1.4062

13 8.44E-03 130.28 1.4220

5

14 7.10E-03 166.12 1.3829

15 7.99E-03 133.05 1.4067

16 8.34E-03 117.87 1.3876

17 8.43E-03 130.55 1.4190

18 8.45E-03 129.71 1.4175

an operating condition cannot be chosen. In order to 
show the effect of α1, the methodology is implemented 
five times, always starting from ua

0  again, setting α1 at 
90%, which is considered a conservative value (while 
sf and mMAX remain unchanged). Then, for the sake of 
comparison, the same procedure is repeated using the 
optimization methodology without resorting to PTMs 
(i.e., by solving problem (3) with a single set of model 
parameters but using the shrinking methodology 
proposed). Results obtained are presented in Table 4.

As can be expected, the set of implementations 
with α1 equal to 90% has lower experimental 
costs and slightly lower performance indices. The 
implementations using a non-probabilistic tendency 
model perform similarly to the case of α1 equal to 50%, 
except in the last implementation, where it has some 
poor results. It can be shown that if model parameter 
distributions are symmetrical or nearly symmetrical, 
then the results using α1 equal to 50% will be similar to 
those ones obtained by implementing the methodology 
without using PTMs. However, if the distributions are 
asymmetrical, the non-probabilistic tendency models 
may give rise to exceedingly optimistic predictions 
and, accordingly, it is more likely to perform some 
experiments outside the feasible region. A comparison 
of these two alternatives with the base case is shown 
in Table 5, featuring the mean values of the total 
experimental cost and the performance index for all 
the implementations for each case. An additional index 

it and the improvement of the performance may be 
lower. On the other hand, a lower value of α may be 
able to find the actual optimum, but at the expense of 
some off-specification runs. For example, a value of α 
of 90% implies that, unless the PTM predicts with a 
probability of 90% that the constraint will be fulfilled, 
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Figure 11. (a) Best run from each iteration for the first implementation of the methodology. (b) The last run from 
iteration #1 and all runs from iteration #2.

Figure 12. Learning curve for the first implementation of the 
methodology.

Table 2. Summary of the implementations starting from operating point ua
0 . 

# Number 
of Runs

u*
1

[L/min]
u*

2

[min]
φ JR(u*)

1 18 8.44E-03 130.28 1.2207 1.4220

2 12 7.40E-03 154.22 9.8826 1.3972

3 17 8.28E-03 142.50 12.6217 1.4179

4 25 8.40E-03 134.25 15.8048 1.4227

5 12 8.35E-03 140.41 0.9878 1.4168

is presented: the number of runs that fail to fulfill C1 
so that product obtained has to be discarded. Again, 
the case of α1 equal to 90% only fails twice to fulfill 
C1, while the other two cases have a higher number of 
failures.

CONCLUDING REMARKS

A model-based approach for run-to-run 
optimization of operating conditions in innovative 

Table 3. Summary of the implementations for the starting points b, c and d.

# Number 
of Runs

u*
1

[L/min]
u*

2

[min]
φ JR(u*)

u b
0  = [ 1,8E-02 L/min; 30 min ]

1 26 8.04E-03 142.64 12.7983 1.4152
2 15 1.29E-02 66.64 24.9766 1.3086
3 14 8.21E-03 149.94 15.3505 1.4084
4 21 7.45E-03 152.47 18.2435 1.4000
5 26 8.10E-03 143.29 21.1343 1.4166

u c
0  = [ 3E-03 L/min; 180 min ]

1 14 8.00E-03 141.40 1.6593 1.4157
2 18 8.03E-03 149.61 4.7823 1.4109
3 11 8.06E-03 146.66 1.2879 1.4150
4 16 7.50E-03 158.91 1.6744 1.3989
5 15 7.09E-03 165.13 2.5106 1.3832

u d
0  = [ 7.5E-03 L/min; 70 min ]

1 24 8.21E-03 139.96 4.2448 1.4188
2 10 8.01E-03 147.11 1.1983 1.4107
3 7 8.32E-03 137.67 0.9730 1.4197
4 9 8.23E-03 145.83 3.9470 1.4140
5 10 7.92E-03 144.53 4.3775 1.4136

Table 4. Summary of the implementations for α1=90% and without using PTMs.

# Number 
of Runs

u*
1

[L/min]
u*

2

[min]
φ JR(u*)

α1=90%
1 5 9.48E-03 104.16 1.3542 1.4011
2 5 8.29E-03 135.84 0.9026 1.4208
3 5 7.33E-03 142.42 1.6989 1.3873
4 5 8.30E-03 137.74 1.2697 1.4187
5 7 8.41E-03 136.64 6.4228 1.4217

With a non-probabilistic tendency model
1 17 8.11E-03 150.04 6.8170 1.4107
2 13 8.10E-03 134.37 6.6267 1.4157
3 15 7.89E-03 148.85 6.9433 1.4118
4 12 8.44E-03 138.43 6.6060 1.4207
5 14 1.36E-02 63.12 32.6206 1.3006
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Table 5. Comparison of three cases presented.

Case Number of 
Failures Mean φ Mean JR(u*)

α1 = 50% 12 8.1035 1.4153

α1 = 90% 2 2.3296 1.4099

No PTMs 19 11.9227 1.3919

process development has been presented. Probabilistic 
tendency models are proposed to handle significant 
levels of uncertainty in process models used as 
guidelines for performance improvement. The novelty 
of the proposed approach is shrinking the feasible 
region for optimization until it is included in the so-
called region of improvement (ROI). Accordingly, the 
notion of "tendency" for an imperfect model used in 
run-to-run optimization is formally related to the ROI 
around a model-optimized operating condition. Results 
obtained for a representative case study of a fed-batch 
reactor for producing an API demonstrate that the 
proposed method is both robust to modeling errors and 
to changes in the operating conditions used to begin 
the search for optimal operating conditions. With the 
inclusion of PTMs in the formulation it is up to the 
user to choose how conservative process development 
is by considering the uncertainty associated to model 
predictions. If the budget for process development 
can afford a bigger experimental cost, then higher 
performance may be sought. However, if resources are 
scarce, perhaps the user may prefer to reduce the costs 
at the expense of some optimality loss. In any case, 
the proposed methodology has the tools to takes these 
issues into account.
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NOMENCLATURE

Optimization problem variables
J	 Performance index
E	 Error function
u	 Process parameter vector (or policy vector)
C	 Inequality constraint vector
C	 Equality constraint vector
LB	 Lower bound vector
UB	 Upper bound vector
θ	 Model parameter vector
,Jiu r 	 Expected value of the performance index
pcj	 Probabilities of fulfilling an inequality constraint j
pdj	 Probabilities of fulfilling an equality constraint j

θ̃	 Model parameter distribution vector
φ	 Total experimental cost
ROI	 Region of improvements
f	 Shrinking factor 
mMAX	 Maximum number of experiments per iteration

Process variables

F	 Volumetric flow rate [L.min-1]
A	 Reagent A concentration [mol.L-1]
B	 Reagent B concentration [mol.L-1]
I	 Impurity I concentration [mol.L-1]
P	 Product P concentration [mol.L-1]
V	 Liquid volume [l]
Bin	 Concentration  of  B in the inlet flow [mol.L-1]
rj	 Rate of the j-th reaction [mol.L-1.min-1]
kj	 Kinetic constant of the j-th reaction
ν	 Stoichiometric coefficient for the third reaction
γ	 Exponential factor for the third reaction
t	 Time [min]
tf	 Final time or duration of the experiment [min]

Subscripts and superscript

R	 Real process
θ	 Relative to a parameter setting
*	 Optimal
exp	 Experimental
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The following equations are used to simulate the 
real process:

						              (A.1)

   						               (A.2)

r k A B
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1 1

2 2
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Appendix. API Model used for simulating experiments.

( )

dt
dA r r r V

F A

dt
dB r r r r r V

F B B

dt
dP r r V

F P

dt
dM r r r V

F M

dt
dI r V

F S

dt
dV F

i

1 3 4

1 2 3 4 5

1 2

3 4 5

5
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=- - - + - + -

= - -

= - - -

= -

=

The values for the kinetic constants are given in 
Table A.1.

Table A.1. Parameters used to simulate the experimental data.

Parameter Value

k1 1.225 E-01 [L.mol-1.min-1]

k2 1.870 E-02 [L.mol-1.min-1]

k3 7.0 E-03     [L.mol-1.min-1]

k4 3.0 E-02     [min-1]

k5 3.0 E-01     [L.mol-1.min-1]
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