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Abstract - This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple 
Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. 
Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were 
evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations 
were performed using a new dataset. Results, advantages and limitations of the four methods were compared. 
Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, 
achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit.
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INTRODUCTION

Complex processes with significant time delays 
are difficult to optimize and control. An example of 
such a process in the Kraft pulp mill is continuous 
cooking, which is the dominant pulping method in 
modern mills (Pikka and Andrade, 2015). The role 
of the pulp digester is to remove lignin from wood 
chips. Kappa number is the most used index for 
measuring residual lignin present in the pulp (Costa 
and Colodette, 2007). It is measured either using 
online concentration analyzers, or in the laboratory 
by lignin oxidation with potassium permanganate 
under acidic conditions. The digester primary control 
objective is to produce uniform pulp with minimum 

variability, contributing to keep quality and stability 
in the following fiber line steps. A low kappa number 
affects negatively pulp strengths because of the 
carbohydrate dissolution, resulting in a substantial 
loss in pulp yield. On the other hand, the main 
production failure in a continuous digester occurs 
when a high kappa number pulp is achieved, which 
raises the bleaching chemicals costs, organic charge 
to the effluent treatment station and plugging risks 
at the screen plant as well (which forces reduction 
of the production). In recent years, regarding pulp 
yield aspects, the trend in bleachable-grade chemical 
pulping has been to push the kappa number as high as 
possible, just below the fiber liberation point (Weding, 
2012; Hart, 2014). Thereby, considering the natural 
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wood quality variations, long residence time and the 
tendency of the mills to end the cooking at a higher 
kappa number, a better accuracy in kappa number 
control is a keynote to digester operation.

Making a forecast is to predict a future observation. 
Forecasting is an important issue for manufacturing 
companies. Several decision making processes need 
accurate forecasts in order to choose proper actions 
relevant to different production aspects. For this 
reason, over the years practitioners and academics 
have devoted particular attention to how forecasting 
can be improved to increase forecast accuracy (Danese 
and Kalchschmidt, 2011).

Artificial Neural Networks and statistical methods 
are widely reported for different chemical engineering 
applications (Assidjo et al., 2008; Kazemi-Beydokhti 
et al., 2015). Kappa number prediction models 
are useful in cases where an on-line analyzer is not 
available, or as an inferential sensor to be used as an 
additional kappa number indicator, giving a warning 
to the operators when large discrepancies are observed 
(between measured and estimated values), as a 
reference model for device calibration monitoring or 
for a better understanding of the process behavior as 
well. With a kappa number inference, more information 
can be achieved and then used to determine actions to 
control the process in advance.

In this context, the objective of this study is to 
compare performance of different dynamic inferential 
models for kappa number prediction. Four methods 
- Single Exponential Smoothing (SES), Box-Jenkins 
(ARIMA), Multiple Linear Regression Analysis 
(MLR) and Artificial Neural Networks (ANN) were 
used to formulate and compare the kappa number 
inferential capability of a eucalyptus Kraft pulp 
continuous digester. Advantages and limitations of 
these four methods were discussed.

Kraft Pulping Continuous Digester

The kraft pulp continuous digester is a tubular 
reactor where wood chips react with an aqueous 
solution of sodium hydroxide and sodium sulfide 
(referred to as white liquor) to remove lignin from 
cellulose fibers. Most continuous digesters consist of 
three basic zones: impregnation, cooking and washing, 
where the flow of white liquor is either co-current or 
counter-current with respect to the chips flow (Smook, 
1992).

White liquor penetrates and diffuses into the wood 
chips as it flows down through the impregnation zone. 
The mix is heated to a target cooking temperature 
where bulk delignification starts, and the majority of 

lignin is removed. The cooking process is stopped 
at the beginning of the washing zone by reducing 
the temperature and then cooked pulp is washed in 
a counter-current washing zone, using wash liquor 
injected at the bottom of the digester.

Various factors affect the overall Kraft pulping 
reaction rate, including thermal and fluid dynamic 
factors, liquor and chip diffusion characteristics and the 
delignification reactions (Gullichsen, 2000; MacLeod, 
2007). Continuous Kraft pulping is a complex process 
by its nature. Some of the reasons are raw material 
variability, long time delays involved, non-linear 
behavior, complexity of chip column dynamics, 
operational disturbances, scarce availability of process 
measurements and strong interdependencies between 
process stages and variables (Kocurek et al., 1989; 
Lindstrom, 2007). Continuous cooking is one of the 
major unit operations in the pulp mill and its proper 
control determines the quality characteristics of the 
brown stock pulp and subsequent stages.

Kraft Pulping Modeling

Regardless of whether new or existing processes 
are to be modelled, the objectives of the data analyses 
may be used in monitoring the state of the process. 
Understanding the relationship between factors and 
responses, process diagnosis and optimization allows 
operators to follow the process behavior when it 
shifts from one condition to another. In this context, 
anticipating demand changes is critical in the process 
industry with high capacity utilization (Blackburn et 
al., 2015).

Models may be divided into theoretical and 
empirical ones. Theoretical models explain the nature 
of the reactions, phenomena and different process 
conditions. Empirical models are based on experimental 
data. Kraft pulping has been modeled to various levels 
of complexity. The development of chemical reaction 
rate expressions that take place during Kraft pulping 
is arduous because of the heterogeneous nature of 
the system, multivariable and interactive chemical 
and physical processes and long residence times. 
Nonetheless, modeling and simulation of pulping 
processes have become valuable tools to the pulp and 
paper industries (Dahlquist, 2008).

Some authors presented an approach for predicting 
the kappa number using chemical reaction kinetics 
(Sixta and Rutkowska, 2007; Germgård, 2017), 
physical phenomena (Rantanen, 2006; Laakso, 2008), 
Near Infrared regression models (Monrroy et al., 2008; 
Santos et al., 2014, Moral et al. 2015) or advanced 
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process predictive model control tools (Badwe, 2016; 
Rahman et al., 2017).

In contrast, some researchers have used software 
computing methods developing empirical predictive 
models for kappa number using different data-driven 
approaches. An ANN-based strategy for detection 
of feedstock variations in a continuous pulp digester 
were studied by Dufour et al. (2005). Wood chip 
moisture content and densities and alkali and sulfidity 
in the white liquor were modeled in a pilot plant. 
Ahvenlampi and Kortela (2005) developed a kappa 
number prediction model and fault diagnostics of 
continuous digesters using clustering techniques.The 
results showed the usability of the combined hybrid 
system in the monitoring of the process and the kappa 
number prediction. Halmevaara (2009) developed a 
novel method using multivariate regression to capture 
the dependencies among the system parameters and 
quality measures for large industries, presenting 
results of regression adjustments as an interactive case 
study simulation of a double vessel softwood pulp 
continuous digester. Araneda et al. (2009) adapted 
the Purdue model to the physical characteristics of 
a Kamyr digester. This model was able to represent 
satisfactorily both dynamic and steady states of the 
digester operation, improving information from 
previous models. Predicted data obtained from 
this model were compared to measured ones from 
mills, such as blow-line kappa number, yield, free 
liquor temperature profile, and pulp production rate. 
Saavedra (2011) selected 29 cooking variables from 
his experience with a continuous digester, and used a 
MLR and ANN for predictive models, concluding that 
the ANN presented better results. Galicia et. al (2012) 
applied soft sensors using secondary measurements 
based on multivariate regression techniques. They 
developed a software sensor in order to reduce the 
number of regressor variables and also to provide 
superior prediction performance of kappa number 
applied in both simulated and industrial continuous 
Kamyr digester case studies. Kraft pulping has been a 
widely studied subject, especially concerning softwood 
pulp. Nevertheless, there are only a few references 
to kappa number prediction techniques concerning 
statistical and artificial neural network models from 
industrial hardwood pulping data. In this sense, this 
work brings an important contribution to the studies 
involving hardwood processing.

METHODS

Time series analysis and forecasting has become 
a valuable tool in different applications. The ability 

to forecast optimally, understanding the dynamic 
relationships between variables, is of great practical 
importance (Hair et al. 2009). If physical interpretation 
is less important and a complex system needs to be 
described by a simple input-output model, a data 
driven approach may be applied. This observed 
behavior is mapped by a mathematical representation 
that does not have a physical basis. Much statistical 
methodology is concerned with models in which 
the observations are assumed to vary independently. 
In many applications the dependence between the 
observations is regarded as a challenge, and in planned 
experiments, randomization of the experimental 
design is introduced to validate analysis conducted as 
if the observations were independent. However, many 
data in engineering and industries occur in the form of 
time series (a set of observation generated sequentially 
in time), where observations are dependent and where 
the nature of this dependence itself is of interest (Chase 
Jr., 2013). The body of techniques available for the 
analysis of such series of dependent observations is 
called time series analysis, which may be classified as 
linear or nonlinear. In this paper two univariate (SES 
and ARIMA) and two multivariate methods (MLR and 
ANN) are evaluated and they are briefly described as 
follows.

Single Exponential Smoothing (SES)

Single Exponential Smoothing is a method used 
to smooth and forecast a time series without fitting 
parameters of a model. It is based on a recursive 
computing scheme, where the forecasts are updated 
for each new incoming observation. Exponential 
smoothing is considered a simple prediction 
technique, yet it is used in practice where it shows 
good performance (Makridakis et al., 1983). It is 
used for short-range forecasting, usually just one step 
into the future. The model requires a large number of 
observations, assumes that the data fluctuate around a 
reasonably stable mean, i.e., it is not appropriate for 
data that has a seasonal component, trend or consistent 
pattern of growth (Holt, 2004). The formula for simple 
exponential smoothing is expressed as:

							       (1)

When applied recursively to each successive 
observation in the series, each new smoothed value 
(forecasted Ŷt) is computed as the weighted average 
(given by α) of the current observation (Yt-1) and the 
previous smoothed observation (Yt-1). The previous 
smoothed observation was computed in turn from 

( )Y Y Y1t t t1 1a a= + -- -
t t
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the previous observed value and the smoothed value 
before the previous observation, and so on.

Multiple Linear Regression (MLR)

Multiple Regression analysis is one of the most 
popular statistical estimation procedures. It is an 
extremely powerful tool that enables the researcher 
to learn more about the relationships between the data 
being studied (Ryan, 2011). The optimal input variable 
set will contain the minimum input variables required 
to properly describe the behavior of the output variable, 
with a minimum degree of redundancy and with no 
uninformative (noise) variables. The compromise 
between these extremes is what is usually called 
"selecting the best regression equation" (Draper and 
Smith, 1998).

To estimate the coefficients in the regression model, 
usually an Ordinary Least Squares (OLS) method is 
used due to both its mathematical convenience and the 
ability to provide explicit expressions for the model 
(Fox, 1997). If there are a number of data points (Yi, 
X1i, X2i ,..., X1ni; i = 1,p), with one dependent variable Y 
and q dependent variables Xj (where j = 1, 2, 3 ...p), an 
equation may be written as:

							       (2)

In this instance, multiple linear regression was 
used to determine the statistical relationship between 
the response (kappa number) and the explanatory 
variables (digester process variables).

Time Series Method of Box-Jenkins (ARIMA)

A time series is a set of observations generated 
sequentially in time, in a continuous or discrete 
way, which may be classified as linear or nonlinear 
(Bowerman, 2005). Examples of linear methodologies 
are the Auto Regressive Integrated Moving Average 
models, generally indicated as the ARIMA (p,d,q) 
model where the parameters p, d, and q are non-
negative integers that refer to the order of the 
autoregressive, integrated, and moving average 
parts of the model, respectively. ARIMA models are 
a class of models that have capabilities to represent 
stationary (the process remains in equilibrium around 
a constant level or mean, variance, and autocorrelation 
through time) as well as non-stationary time series to 
produce accurate forecasts based on a description of 
historical data of a single variable. The time series data 
is examined to check for the most appropriate class 
of ARIMA processes through selecting the order of 

the consecutive and seasonal differencing required to 
make the series stationary, as well as specifying the 
order of the regular and seasonal auto regressive and 
moving average polynomials necessary to adequately 
represent the time series model. The Autocorrelation 
Function (AC) and the Partial Autocorrelation 
Function (PAC) are elements of time series analysis 
and forecasting. AC measures the amount of linear 
dependence between observations in a time series that 
are separated by a lag k. A PAC plot helps to determine 
how many auto regressive terms are necessary to 
reveal one or more of the following characteristics: 
time lags where high correlations appear, seasonality 
of the series, trend either in the mean level or in the 
variance of the series (Adhikari and Agrawal, 2013). 
Time series and the ARIMA method have been useful 
in the chemical industry (Balasko and Abonyi, 2007; 
Ng and Srinivasan, 2009; Hill, 2014) and in different 
fields of the applied sciences (Pankratz, 2008; Khashei 
and Bijari, 2011; Fung 2014).

The methodology to adjust ARIMA models uses an 
iterative steps approach, namely model identification, 
model selection and model checking, described in Box 
and Jenkins (1976).

When the time series is stationary the model is 
called ARMA (p,d) and maybe expressed by:

							       (3)

If the time series is not stationary, it must be be 
transformed into a stationary series.

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) have been 
successfully applied not only for chemical engineering 
purposes (Himmelblau 2000), but also in many other 
different fields. Indeed, in any situation that offers 
difficulties for predicting the behavior, classification 
or control of a system or a process, neural networks 
have been used successfully. Power and ease of use 
(although using sophisticated modeling techniques) 
are the ANN key success factors. Using representative 
process data and training algorithms, the network 
may learn the data structure. They are applicable 
to situations in which a relationship between input 
and output variables exists, but this relationship 
is too complex to be described in an explicit or 
phenomenological way (Patterson, 1996). An ANN is 
a parametric model composed of process units called 
nodes (or neurons), ordered in layers and fully or 

...Y x x x xt p p q q t0 1 1 2 2b b b b b f= + + + + +

Y Y Y Yt t t p t p t t q t q t1 1 2 2 1 1 2 2$$$ $$$d z z z i f i f i f f= + + + + - - - - +- - - - - -

Y Y Y Yt t t p t p t t q t q t1 1 2 2 1 1 2 2$$$ $$$d z z z i f i f i f f= + + + + - - - - +- - - - - -
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partially interconnected. The Multi-Layer Perceptrons 
(MLP) is the most popular neural network architecture 
in use today, where information travels exclusively 
from input to output nodes. This is discussed at length 
in most ANN books (Haykin, 1994).

In general, one hidden layer using sigmoidal-type 
activation functions is enough for approximating any 
continuous non-linear function (Hornik et al., 1989). 
The number of input and output units is directly defined 
by the problem. The definition of the number of hidden 
units to be used is part of a search procedure being 
defined experimentally. Once the number of layers 
and number of units in each layer have been selected, 
the network's weights must be set by minimizing a 
prediction error function. This is the role of the training 
algorithms.

ANN are data intensive, needing a considerable 
amount of data to get reliable results, and great care 
should be taken in designing and testing networks, 
using separated datasets. Briefly, the ability of direct 
input-output nonlinear mapping, robustness, and 
the possibility of working with multiple inputs and 
outputs, make ANN an efficient tool for modelling 
complex processes.

DATA ACQUISITION

The data used in this work were collected from a 
eucalyptus Kraft pulp continuous digester, as indicated 
in Figure 1. The equipment under study is a Kamyr 
single vessel vapor phase digester using the Extended 
Modified Continuous Cooking EMCC process (Sixta, 

2006), from a market pulp mill of 500,000 air dried 
metric tons (admt)/year capacity, located in Minas 
Gerais state in Brazil.

Considering the author's experience working 
with the process control of this pulp mill, seventeen 
process variables that influence the delignification 
reactions were selected, which are: chip bulk 
density, chip consistency, chip bin retention time, 
chip bin temperature, chip meter speed, liquor/wood 
relation, effective alkaline charge, sulfidity, top 
digester temperature, top digester pressure, upper 
cooking screen alkali concentration, upper cooking 
screen temperature, lower cooking screen alkali 
concentration, lower cooking screen temperature, 
lower extraction percentual flow, washing liquor flow/
chip speed relation and previous kappa number.

Next, these variables were properly adjusted 
according to the retention time delay as presented in 
Figure 1. To exemplify this adjustment, a chip sample 
collected at 00:00 (hh:min) at the chip bin conveyor 
entrance is compared to a kappa number measured 
in a sample collected from the blow digester at 03:30 
(hh:min). A temperature at the top of the digester (and 
others located in the top digester) is compared to the 
kappa number measured in a sample collected from 
the blow-line digester at 03:00h later and so forth.

Initially, data samples containing missing data, 
dubious values, and evident outliers were removed, 
as well those below 50% of the normal running 
production. All the process data are relative to 30 
minutes frequency, and were obtained from the 
DCS (Digital Control System). The kappa number 

Figure 1. Continuous Digester Flow sheet.
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data were obtained from an on-line kappa number 
analyzer (KappaQ- supplied by Metso Automation), 
which uses an automatic sample collecting system and 
makes analysis by optical properties using a previous 
calibration curve.

The working dataset was divided into two 
independent groups (months of January and February). 
The first one (with 1471 observations) was used as 
reference for model identification, that is, to estimate 
the model parameters, whereas the second (with 1343 
observations) was used to verify the generalized 
forecasting capacity of the previously identified 
models.

A variable selection process helps to decrease the 
risk of overfitting the model by reducing the number 
of independent variables in the model. This task 
is also important when identifying neural models 
since redundant variables may worsen its general 
performance. Besides, one consideration in the 
choice of predictor variables is the extent to which a 
chosen variable contributes to reducing the remaining 
variation in the response after allowance is made for 
the contributions of other predictor variables that 
have tentatively been included in the model. Other 
considerations include the importance of the variable 
as a causal agent in the process under analysis; the 
degree to which observations on the variable can be 
obtained more accurately, or quickly, or economically 
than those on competing variables; and the degree to 
which the variable can be controlled (Kutner et al., 
2005). Therefore, the stepwise method was carried out 
in order to eliminate variables that do not affect the 
kappa number significantly, with significance levels α 
of 0.1 for both variable inclusion and removal (Correia 

et al., 2014). As a result, 11 independent variables were 
selected as variable inputs to the MLR (a linear model) 
and ANN (nonlinear model), as used in different 
approaches (Heiat, 2002; Couto, 2009; May et al., 
2011). The variable subset is listed in Table 1, with 
the respective time delays in relation to the dependent 
variable kappa number (output).

As described above, because SES and ARIMA are 
univariate models, the process variables from Table 1 
were not used in such analyses.

RESULTS AND DISCUSSION

Due to confidentiality reasons, the kappa number 
dataset was standardized, i.e., auto scaled to unit 
variance and mean centered, according to Equation 4 
(Johnson and Wichern, 2002):

							       (4)

Figure 2 presents the time series evolution from the 
first dataset (used for modeling), and Figure 3 presents 
the time series evolution from the second dataset (used 
to test generalization capacity). In Figure 2 there are 
some long peaks around observations 350 and 850, 
while in Figure 3 they are present around observations 
380 and 820. These peaks occurred due to wood 
density variations.

Both figures indicate that the proposed empirical 
models were validated within the range for which 
they were estimated (without extrapolations) and the 
kappa number results have a similar behavior over 
time. These datasets represent major time operation 
characteristics.

Table 1. Digester Selected Variables.
  Variable     Unit Delay (h)

01. CBRT     Chip Bin Retention Time min -3.5

02. RPM       Chip Meter Speed RPM -3.5

03. EA          Effective Alkali Charge % -3.0

04. TOPT     Top Digester Temperature ºC -3.0

05. UPCA     Upper Cooking Alkali 
Concentration g/L -2.5

06. UPCT     Upper Cooking Temperature ºC -2.5

07. LOCA     Lower Cooking Alkali 
Concentration g/L -1.5

08. LOCT Lower Cooking Temperature ºC -1.5

09. LEPF      Lower Extraction Percentual Flow % -0.5

10. WFRPM Relation Washing Liquor Flow/
RPM m3/RPM -0.5

11. PKAPPA Previous Kappa number kappa Unit -0.5

12. KAPPA Blow Flow Kappa number kappa Unit 0.0

k s
k k

s i
n

k

i
1= -

=

r/
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Single Exponential Smoothing

According to Figure 2, the industrial dataset is 
a non-seasonal time series exhibiting a constant 
trend. Thus, the α parameter (Equation 1) was tested 
iteratively seeking a minimum RMSE, choosing 
α=0.9 (after some trials) to be used at validation of the 
model. The first three average observations were used 
as the initialization value. A histogram of residuals is 
presented in Figure 4, which presents a visual evidence 
of a normal distribution, with a mean around zero, but 
some undesirable residuals points beyond ± 4.

Figure 2. First Dataset Standardized Kappa Number Evolution.

Figure 3. Second Dataset Standardized Kappa Number Evolution.

The performance of the forecasting methodologies 
was calculated onto the second dataset according to 
Equations 5-7, where n is the number of observations:

MAD: Mean absolute deviation:

							       (5)

MAPE: Mean absolute percentage error:

							       (6)

RMSE: Root mean square error

							       (7)

Reliability was measured by the MAD and the 
MAPE. Accuracy was measured by the RMSE. A 
benefit of the RMSE is that it is measured in the same 
units as the original data, while its drawback is that 
large errors can dominate the value (Makridakis and 
Hibon, 1995). These forecasting indexes from the 
four methods are summarized in Table 5. In addition, 
the residuals (predicted(observed values) were also 
considered by means of the residuals histogram. The 
results for each approach are depicted in the following.

MAD n
Y Y, ,observed i predicted ii

n

1=
-

=
/

/
MAPE n

Y Y Y, , ,observed i predicted ii

n
observed i1=

-
=

/

RMSE n
Y Y, ,observed i predicted ii

n 2

1=
-

=
Q V/

Figure 4. Histogram of SES Model Residuals.

Multiple Linear Regression

Selected variables shown in Table 1 were used for 
identification of the MLR model (Equation 2). Using 
the software EViews (Econometric Views v.5), OLS 
was applied in order to obtain a relationship between 
the dependent variable (kappa number) and the eleven 
regression variables. As a result, Table 2 indicates the 
estimated parameters for kappa number estimation 
(variables are described in Table 1).

This model was used to perform forecasting from 
the second dataset. The histogram of residuals is 
presented in Figure 5, with a visual evidence of normal 
distribution, with no residuals points beyond ± 4. This 
provides a better result of such model in comparison to 
the previous SES approach.

Time Series Method of Box-Jenkins

Besides indexes MAD, MAPE, and RMSE 
described in Equations 5-7, models were selected 
using others statistical decision criteria, like the Akaike 
Information Criterion (AIC), Schwarzs Bayesian 
Criterion (SBC), Durbin-Watson (DW), and Theil 
Inequality Coefficient (TIC). Except for DW, a lower 
mean is considered better in the evaluation of all these 
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Table 2. Estimated parameters for regression equation.
Variable Coefficient Std.Error p value

TOPT     -0.0306 0.0082 0.000

LOCT       -0.0410 0.0077 0.000

UPCT          -0.0193 0.0080 0.015

UPCA     -0.0524 0.0153 0.000

LOCA     -0.0940 0.0094 0.000

CONSTANT     15.7238 1.5751 0.000

EA 0.0398 0.0161 0.013

LEPF 0.0092 0.0032 0.003

PKAPPA 0.8832 0.0098 0.000

WFRPM 0.0590 0.0260 0.023

CBRT -0.0177 0.0084 0.034

RPM 0.0128 0.0039 0.000

Figure 5. Histogram of MLR Residuals.

criteria. The DW metric is an error pattern indicator 
(if the pattern is random, the DW will be around 2). 
These and related scalar measures to choose between 
alternative models in a class are discussed in some 
texts on statistics (Gujarati, 2004; Makridakis et al., 
1995). The EViewsv.5 software was used to estimate 
the parameters for the ARIMA models and subsequent 
statistical analysis. Based on both the autocorrelation 
function (AC) and the partial correlation function 
(PAC), ARMA models were identified (from 
Equation 3).

As indicated in Figure 6, the correlogram of the 
first dataset shows a slow continuous decay from 
Autocorrelation, and significant bars from Partial 
Correlation until second-third order. The correlogram 
also indicates that the kappa number exerts a strong 
influence on the next value.

Figure 6. Model Dataset Correlogram.

This way, ARMA (1,2), ARMA (2,1), ARMA 
(2,2) and ARMA (1,1) parameter subsets were tested, 
presenting good results (in this order) as shown in 
Table 3.

Table 3. Results from the statistical criteria for the selected models.

Model ARMA(1,1) ARMA(2,1) ARMA(2,2) ARMA 
(1,2)

MAD 0.4036 0.3890 0.3871 0.3868

RMSE 0.5841 0.5553 0.5500 0.5500

MAPE 2.4314 2.3537 2.3412 2.3389

AIC 1.7652 1.6665 1.6491 1.6473

SBC 1.7722 1.6806 1.6666 1.6614

DW 1.9052 2.0387 2.0042 1.9963

Considering accuracy and parsimony properties, 
ARMA (1,2) was chosen as the best forecasting model 
and its estimated parameters are displayed in Table 4, 
where C is the constant term, AR(1) the autoregressive, 
MA(1) and MA(2) the moving average terms.

Table 4. ARMA (1,2) model estimated parameters.
Variable Coefficient Standard Error p Value

C 16.14181 0.15600 0.000

AR (1) 0.85180 0.01552 0.000

MA (1) 0.36187 0.02742 0.000

MA (2) 0.27356 0.02699 0.000

AC and PAC functions from residuals are 
presented in Figure 7, indicating a white noise and 
homoscedasticity of residuals.

Applying the coefficients indicated in Table 4 
at Equation3, the fitted model was applied to the 
validation data set to perform predictions. A histogram 
of the residuals is presented in Figure 8, which presents 
no values beyond ± 3, with a significant frequency 
between -1 and 1, indicating a better description 
of the kappa number in comparison to the first two 
approaches.
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Artificial Neural Networks (ANN)

Using the modeling data subset, the neural 
network model was constructed following the steps 
of specification, selection and final model estimation. 
Matlab (MATrix LABoratory) v.7.9.0 was used to 
estimate the ANN parameters.

In the ANN model, the MLP architecture was used; 
11 input variables (Table 1); 1 output variable (kappa 
number); 1 hidden layer; hyperbolic tangent as the 
transfer function; 750 epochs (after some trials); 75% 
in the training dataset; 25% in the validation dataset; 
Identity Output Layer Transfer Function. To select the 
optimum neural network model, the number of hidden 
neurons was varied from 1 up to 23 (each value ran 
30 times), according to the correlation coefficient, 
RMSE (Root Mean Squared Error), angular and linear 
coefficient. The average degree of association between 
collected and estimated kappa number was calculated 
on the validation data subset. Figure 9 summarizes 
results of correlation coefficient (where the vertical 
bar means the average confidence interval) from 1 to 
23 hidden neurons. The selected model was the one 
containing three hidden neurons.

A re-estimation of the weights matrix for the ANN 
model, using both the training and the validation 
datasets, was carried out. Figure 10 depicts the final 
neural network model with eleven inputs and three 
hidden neurons.

Figure 7. ARMA (1,2) Residuals Correlogram.

Figure 8. Histogram of ARMA (1,2) Residuals.

Figure 9. Hidden neurons evaluation.

Figure 10. Final neural network model.

The error can be determined by running all the 
training cases through the network, comparing the 
actual output generated with the desired or target 
outputs. The algorithm therefore progresses iteratively, 
through a number of epochs. In each epoch, each 
training case is submitted in turn to the network, and 
the target (collected in the mill) and actual (model 
estimates) outputs are compared to the error calculated. 
This error is used to adjust the weights, and then the 
process repeats. The initial network configuration is 
at random, and training usually stops when a given 
number of epochs elapse or when the error stops 
increasing.

After defining the architecture model, the second 
dataset was used for validation. To maintain the same 
criteria for comparison with the 3 methods (SES, MLR 
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and ARIMA), a specific algorithm was developed 
in a Matlab code to use the parameters obtained in 
modeling data from the validation dataset, considering 
that the ANN default of the software uses the same 
dataset for training, selection, and validation of model 
parameters. Thus, a conjunct of residuals (predicted-
observed) was obtained, for which the histogram is 
indicated in Figure 11.

scope of the present study, could be used to determine 
the influence of the inputs over the output kappa 
number.

Complementing the results, Figure 12 illustrates the 
modeled versus observed values for all the methods 
(for confidentiality reasons the axis data are omitted).

In a general way, setting aside SES (the simplest), 
all the methods present good accuracy. Moreover, 
ARIMA showed better values in all forecast indexes. 
Likewise, more than 90% of the prediction data is 
lower than 01 kappa unit of deviation in the ARIMA 
model, confirming it to be the best option among the 
analyzed models.

CONCLUSIONS

This paper discusses kappa number estimation 
using different modeling approaches in a continuous 
cooking process. Data from an industrial continuous 
digester were used to compare the performance of 
these kappa number predicting methods. Four different 
methods were compared considering accuracy of the 
results. SES and ARIMA methodology were developed 
in dynamic models using the observed and predicted 
kappa number values. MLRA and ANN Models 
were done with 11 process input cooking variables. 
Considering that none of the data points included in the 
validation subset were used in the training phase, it is 
possible to conclude that the ANN, MLR and ARIMA 
models are quite acceptable considering practical 
application in predicting kappa number, providing 
digester operators with an accurate on-line estimation 
to be used as an inferential sensor. These models 
presented a desirable normal distribution with zero 
mean in residuals. Considering the results obtained in 
this study, the ARIMA model showed better accuracy 
when compared to the others, according to all statistical 
forecasting indexes evaluated, followed by MLR, 
ANN and SES. With these measurements it is possible 
to estimate the blow-line kappa number before the 
end of the cooking process, allowing the operating 
personnel to make faster corrections concerning kappa 
number deviations. ARIMA methodology may be a 
useful tool for pulp mills, since it can be applied to 
optimize and control the cooking process and may be 
easily included in any electronic spreadsheet, updated 
from time to time as more data become available.

These four methods can be adapted to any 
continuous reactor, turning this manuscript of interest 
for the pulp and paper industry audience and for 
different chemical industries as well.

Figure 11. Histogram of ANN residuals.

Table 5 summarizes some forecasting indexes from 
the four methods studied, as expressed in Equations 
5, 6 and 7. Also included is the percentage of absolute 
deviation value lower than 1 kappa unit (which is 
considered an acceptable value for mill applications).

Table 5. Summary of Forecasting Indexes.
MODEL   SES    ARIMA       MLR      ANN

MAD   1.0261 0.4552 0.5540 0.6150

MAD<1 
(%) 64.1102 90.7713 86.0883 81.7216

RMSE   1.4052 0.4130 0.7681 0.8549

MAPE   6.2220 2.7327 3.3373 3.6740

ARIMA presented the lowest MAD, followed by 
MLR, ANN and SES. ARIMA obtained more than 
90% of MAD points lower than 1 kappa unit, which 
is very appreciable, giving reliability to digester 
operation. Concerning the RMSE and MAPE, ARIMA 
presented the best result as well, followed by MLR, 
ANN and SES. Similar results may be observed for 
the MLR and the ANN models, and also in the residues 
histogram (Figures 5 and 11). In a general way, the 
kappa number is driven by its past value, as indicated 
in Figure 6. Then, for this case, the complexity of a 
neural network modeling would not compensate for its 
use. A sensitivity analysis study, which is beyond the 
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Figure 12. Modeled versus Observed Kappa Number.

NOMENCLATURE

ANN Artificial Neural Networks

ARIMA Auto Regressive Integrated Moving 
Average

ARMA Auto Regressive Moving Average
MLR Multiple Linear Regression
SES Single Exponential Smoothing
α weighted index
β0, β1...βq regression estimated parameters

( );1 i
i

p

1

d n z= -
=

/  μ denoting the process mean;

εt 
error component (Yt-Ŷt), with mean = 
0; variance = σ2

ϕ1,...,ϕp the parameters of the AR model;
θ1,...,θq the parameters of the MA model;
ki kappa number observation
ks standardized kappa number
k kappa number mean
Sk kappa number standard deviation
n total number of the sample
x1, x2...xq correlated variables
Yt observed value at time t
Ŷt estimated value at time t

_
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