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Abstract  -  Several methods for computing the Gauss-Christoffel quadrature used for the adaptive characterization 
of continuous mixtures were compared as to their efficiency and robustness. Two mixtures with molar fraction 
distribution given by truncated gamma distributions were used. We analyzed the Product-Difference, the Golub-
Welsch, the Long Quotient-Modified Difference and the Chebyshev algorithms using regular and generalized 
moments, when applicable. The robustness and computational efficiency of changes in the distribution variable 
and in the orthogonal polynomial family used to calculate the generalized moments were analyzed. The methods 
using generalized moments proved to be more robust than those that use regular moments. Although they are 
computationally more expensive, this cost increase is just around 20% for the Chebyshev algorithm. The resulting 
adaptive characterization was employed to solve the adiabatic vapor-liquid flash of these mixtures. The results 
showed that eight pseudocomponents were able to well represent the properties of the equilibrium streams, 
showing the high accuracy of this method.
Keywords: Continuous thermodynamics; Complex mixtures; QMoM; Gauss-Christoffel quadrature; Phase 
equilibrium.

INTRODUCTION

Several chemical processes deal with mixtures 
whose components cannot be fully identified, such as 
petroleum and polymeric solutions. This difficulty is 
related to the amount of components in the mixtures 
and to the proximity of their chemical and physical 
properties. According to Briesen and Marquardt 
(2003), a petroleum mixture can contain over 106  
components, making it impossible to characterize all 
these components.

Therefore, approximate techniques have been 
developed to characterize these mixtures and to solve 
the thermodynamic equations related to the phase 
equilibria. The most common form of dealing with this 
problem is to use a molar fraction distribution function 
associated with at least one characterization variable 
and then perform the calculations. For hydrocarbon 
mixtures, especially for homologous series, the molar 
mass is often enough to characterize the mixture 

properties (Lage, 2007). Other variables such as 
normal boiling temperature or the API degree of the 
mixture are also used for this purpose (Whitson and 
Brule, 2000).

The molar fraction distribution functions of 
continuous mixtures are usually described by well-
known distribution functions from the literature, such 
as gamma, beta or exponential distributions (Huang 
and Radosz, 1991; Whitson and Brule, 2000). Then, 
the parameters of these distributions are estimated 
in order to adjust the probability density distribution 
function to the mixture properties. Experimental 
analysis techniques, such as chromatography and 
true boiling point curves, are used to achieve these 
estimations (Whitson and Brule, 2000).

Once the molar fraction distribution function is 
characterized, the thermodynamic equations can be 
used to solve engineering problems. However, due to 
the non-linearities of the thermodynamic models, the 
cases for which there is an analytic solution are rare. 
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One example is the solution of an isothermic flash for 
a continuous mixture considering ideal solutions and 
ideal gas behavior (Lage, 2007). For general cases, 
the distribution function must be discretized into 
pseudocomponents before the thermodynamic equations 
can be numerically solved. Several methods for its 
discretization have been studied in the literature. The 
simplest methods are those that employ an equally spaced 
or a function-based discretization (Huang and Radosz, 
1991), which are very simple to implement. However, 
the properties of the continuous mixture are accurately 
approximated by those of the discrete mixture only if a 
large number of pseudocomponents is used with these 
methods. Huang and Radosz (1991) showed that gamma 
and truncated Gaussian distributions need at least 40 
pseudocomponents when using a uniform discretization, 
or 20 pseudocomponents when a logarithmic function 
was used for this purpose. Nevertheless, due to the 
peculiarities of each mixture, the choice of a function that 
best describes its changes is not straightforward, making 
this method not very efficient.

Gauss quadratures are found in the literature as 
more efficient alternatives to the above describe 
methods (Cotterman and Prausnitsz, 1985; Haynes 
and Matthews, 1991; Liu and Wong, 1997). As most 
distributions are semi-infinite, the Gauss-Laguerre 
quadrature is usually the natural choice. This 
methodology allows the use of less discretization 
points than in the previous method and proved to 
be very efficient when characterizing distributions. 
However, this method has fixed quadrature points, 
not being suitable to characterize changes in the 
distribution function, either in time or space (Briesen 
and Marquardt, 2003).

In order to characterize mixtures whose distribution 
may vary in time or space, Lage (2007) developed 
a characterization method for continuous mixtures 
based on the Gauss-Christoffel quadrature using the 
moments of the molar fraction distribution function. 
This method is analogous to the QMoM (Quadrature 
Method of Moments), developed by Mcgraw (1997) 
for the solution of aerosol dispersions. Applying the 
QMoM for the continuous thermodynamics equations, 
it allows the streams to be characterized by their 
moments and, whenever these moments change, 
the method calculates the new Gauss-Christoffel 
quadrature.

Lage (2007) showed that this method presents 
good results for the solution of the flash equations and 
showed how to deal with the mixing of two streams 
based on their moments. Petitfrere et al. (2014) tested 
the method described by Lage (2007) for the solution 
of the flash equations of real mixtures, proving its 
adequacy and accuracy. Extending the application 
of this method to distillation columns, Rodrigues 
et al. (2012) developed a method for the sequential 
simulation of a distillation column for separation of 

continuous mixtures. Whenever a stream suffers any 
kind of change during the simulation, the method 
was able to generate a new quadrature rule that 
adaptively characterizes this stream using modified 
pseudocomponents.

The core of the QMoM calculation is a routine 
to compute the Gauss-Christoffel quadrature. In the 
development of the QMoM for the solution of the 
populational balance equations, Mcgraw (1997) used 
the Product Difference Algorithm (PDA) developed 
by Gordon (1968). However, in the literature, several 
methods for the generation of this quadrature can 
be found. Lage (2007) and Rodrigues et al. (2012) 
used an implementation of the PDA where critical 
computations were performed in higher precision by 
separating the floating point numbers into their mantissa 
and exponent (Lage, 2007). This method showed to 
be more robust than the PDA developed by Gordon 
(1968). Petitfrere et al. (2014) used the Chebyshev 
algorithm (Chebyshev, 1858), implemented by 
Gautschi (1994) in the library ORTHPOL, concluding 
that this algorithm is more robust than the original 
PDA (Gordon, 1968).

John and Thein (2012) numerically analyzed 
several algorithms for computing the Gauss-
Christoffel quadrature. They compared the PDA from 
Gordon (1968), the Golub-Welsch Algorithm (GWA), 
developed by Golub and Welsch (1969), and the Long 
Quotient-Modified Difference Algorithm (LQMDA), 
developed by Sack and Donovan (1972). The LQMDA 
is one of the two existing variants of the Chebyshev 
algorithm (Chebyshev, 1858). The other variant is the 
Wheeler algorithm (Wheeler, 1974). John and Thein 
(2012) concluded that the LQMDA (or any of its 
variants) is more robust and more efficient than the 
other two methods.

However, John and Thein (2012) used the LQMDA 
only with regular moments, even though this method 
(and its variants) supports the usage of generalized 
moments. This type of moment is more flexible to 
characterize continuous mixtures than the regular 
moments, which raises the expectation that the 
methods using them can be more efficient and robust. 
Therefore, in this work we extend the analyses carried 
out by John and Thein (2012) including the generalized 
moments and the effect of the orthogonal polynomial 
family used to generate the quadrature. The method 
was applied to the adiabatic flash equations in order 
to analyze the efficiency of the quadrature points to 
represent the molar fraction distribution function for 
the streams in equilibrium.

METHODOLOGY

 The methods analyzed in this work were the 
PDA (Gordon, 1968), the GWA (Golub and Welsch, 
1969), the LQMDA (Sack and Donovan, 1972) and 
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the Chebyshev algorithm (Chebyshev, 1858), which 
can be found in Upadhyay (2012). All of them were 
applied using regular moments and the last two were 
also tested using generalized moments.

In order to analyze these methods that generate 
the Gauss-Christoffel quadrature, a computational 
program was implemented that, given a molar fraction 
distribution function, calculates the moments of this 
distribution, generates its quadrature rule and, when 
required, solves the adiabatic flash equations for 
the composition of the pseudocomponents of the 
equilibrium streams. The procedures and equations 
used in this program are detailed in this section. The 
development of these methods can be found in the 
original references and also in John and Thein (2012). 
Therefore, their details are not given here.

Moments calculation
Consider a molar fraction distribution, f(x), in 

terms of a characterization variable, x, defined in the 
interval [a, b]. This distribution can be characterized 
by its regular moments, defined as: 

Computation of the quadrature
The studied algorithms generate the quadrature [xj, 

ωj]
n
j=1, that optimally approximates the integral:

( ) ,   0,1, 2,...µ = =∫
b

k
k

a

x f x dx k

where k is the order of the moment. These moments 
carry information of the distribution that is used by the 
algorithms to generate the desired Gauss-Christoffel 
quadrature.

There are also the generalized moments of the 
distribution that are obtained by substituting the 
monomial xk in Equation (1) by the k-order polynomial, 
pk(x), of an orthogonal polynomial family, resulting in: 

( ) ( ) ( )   ,  0,1, 2,...µ = =∫
b

P
k k

a

p x f x dx k

where µk
(P) is the generalized moment of order k 

associated with this orthogonal polynomial family, 
which can be obtained by the following recursion 
formula: 

( )
( )
( ) ( ) ( ) ( )

1

0

1 1

0
1

    ,    0,1,...

−

+ −

=
=
= + + =k k k k k k k

p x
p x
xp x a p x b p x c p x k

where the coefficients ak, bk and ck define the given 
family. It is important to note that the generalized 
moments are reduced to the regular moments for ak = 
1 and bk = ck = 0.

Once calculated the n quadrature points, the first 2n 
regular or generalized moments from the distribution 
can be reconstructed respectively from: 

( )
1

    ,    0,..., 2 1
=

µ = = −∑
n

k
k i i

i

x f x k n

( ) ( ) ( )
1

    ,    0,..., 2 1
=

µ = = −∑
n

P
k k i i

i

p x f x k n

( ) ( ) ( )
1=

≈ ω∑∫
b n

j j
ja

g x f x dx g x

where f(x) is the molar fraction distribution function 
and g(x) is a given property of the mixture component x 
with infinitesimal molar fraction f(x)dx. By interpreting 
Equation (6) as a discretization of the mixture, the 
abscissas, xj, represent pseudocomponents and the 
weights, ωj, are their molar fraction.

The inner product between two functions p(x) and 
q(x) with respect to the weight function f(x) in the 
interval [a, b] is defined as: 

( ) ( ) ( ),〈 〉 ≡ ∫
b

a

p q p x q x f x dx

As for any Gaussian quadrature rule, the abscissa 
of the quadrature given by Equation (6) are the roots of 
the n-order polynomial of the Christoffel orthogonal 
polynomial family using the inner product defined 
by Equation (7). However, since f(x) is the unknown 
mixture molar fraction distribution, it is impossible to 
have a priori knowledge of the recursion coefficients 
of the corresponding orthogonal polynomial family. 
Therefore, the quadrature rule must be numerically 
computed from the known moments of the distribution 
function, as detailed in the following.

These Christoffel orthogonal polynomials are 
generated by the following recursion: 

( )
( )
( ) ( ) ( ) ( )

1

0
2

1 1

0
1

,    0,1,...

−

+ −

=
=
= −θ −η =k k k k k

P x
P x
P x x P x P x k

where Pk(x) is the Christoffel polynomial of order k 
and the coefficients k and θk can be obtained by: 

,     , 0
,

〈 〉
θ = ≥

〈 〉
k k

k
k k

xP P k
P P

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Combining the recursion equations from P0 to 
Pn−1, the following system of linear equations can be 
assembled: 

Considering the diagonal matrix
2

1 1

1 , 0
, , 1
,− −

=
η = 〈 〉 ≥〈 〉

k k k

k k

k
P P k

P P
(10)

( )− =

nA xI P b

where: 
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If xi is one of the n roots of Pn, then the linear system 
reduces to an eigenvalue problem: 

( ) 0− =

n iA x I P

Therefore, the process of finding the n roots of the 
orthogonal polynomial Pn(x) can be replaced by the 
process of finding the n eigenvalues of the matrix Ãn. 
The numerical methods for finding the eigenvalues are 
better conditioned that those for finding the roots of 
polynomials, which represents a numerical advantage 
in exchanging these problems (John and Thein, 2012).

Furthermore, the computing of eigenvalues for 
symmetric matrices is more accurate than for non-
symmetric matrices. Thus, the matrix Ãn should 
be modified in order to create a symmetric matrix. 

1
0] ,[ −

== n
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( ) 1 0−− =

n iD A x I D DP



1

ˆ

1 0− −
 
 − =
 
 







n

n i
I PA

DA D x DID DP

( ) 0ˆ− =n iA x I P

where 

0 1

1 1 2

2 2 1

1 1

0 0

0
0

0 0
− − −

− −

θ η … … 
 η θ η 
 

=  
 
 η θ η
  … … η θ 



   

   



n

n n n

n n

A

The eigenvalues of An, also called the terminal 
matrix, are the roots of the Christoffel orthogonal 
polynomial of order n, which are the abscissas of the 
Gauss-Christoffel quadrature.

After computing the eigenvector, qi, associated 
with the eigenvalue xi, the weights of the Gauss-
Christoffel quadrature can be expressed by (John and 
Thein, 2012): 

( )
11

2 2
0 ,0 ,

0

, 1,...,
−−

=

 
ω = µ = 

 
∑
n

P
i i i k

k

q q i n

The sum inside Equation (20) is the norm of 
the eigenvector qi. If the routine used to compute 
the eigenvectors is such that the eigenvectors are 
orthonormal, then this sum term can be removed from 
the equation.

The algorithms that compute the Gauss-Christoffel 
quadrature differ in how they build the terminal matrix. 
Once this matrix is obtained, the eigenvalue problem 

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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is solved in the same way for all methods. All methods 
use the moments of the distribution as the necessary 
information to build the matrix An. For a quadrature 
with n points, the first 2n moments must be known.

Considering the analyzed methods, it is important 
to highlight that only the LQMDA and the Chebyshev 
Algorithm can use both regular and generalized 
moments as input. Also, the PDA was tested in two 
different implementations: the original version by 
Gordon (1968) and the modified implementation given 
by Lage (2007).

Flash Equations
The equations related to the flash of a continuous 

mixture require the usage of continuous properties to 
solve the equations of mass balance, energy balance 
and phase equilibrium for the entire distributions. 
These equations are, respectively:

where the ideal enthalpy for each component is given 
by: 

( ) ( ) ( ) ( ) [ ]1 ,    ,= γ + − γ ∀ ∈F V L
min maxf I f I f I I I I

( ) ( ) ( ) ( ) [ ]1 ,    ,= γ + − γ ∀ ∈F V L
min maxH T H T H T I I I

( ) ( ) ( ) [ ], , ,    ,= ∀ ∈V L
min maxf I K I T P f I I I I

where I is the characterization variable, usually 
related to molar mass, and γ is the vaporized fraction. 
Assuming ideal solution and ideal gas, the enthalpy 
from the streams and the equilibrium constant can be 
calculated by Equations (24) and (25), respectively. 

( ) ( ) ( ), ,    , ,= =∫
max

min

I
G G gi

I

H T f I H I T dI G F L V

( ) ( ) [ ],
, , ,    ,= ∀ ∈

sat

min max

P I T
K I T P I I I

P

Once the Gauss-Christoffel quadrature is found for 
fF(I), the abscissas are the values of the characterization 
variable for the discretized pseudocomponents of the 
feed stream and the weights are their molar fractions. 
Then, the flash equations for discrete mixtures can be 
applied, keeping these pseudocomponents fixed during 
the flash calculation. Afterwards, the moment set of 
each resulting stream, liquid and vapor, can be used 
to generate a new pseudocomponent discretization 
by computing the corresponding Gauss-Christoffel 
quadrature.

The equations of an adiabatic flash of a discrete 
mixture consist of the mass and energy balances and 
the phase equilibrium equation, which are expressed, 
respectively, by Equations (26), (27) and (28). 

( )1 ,    1,...,= γ + − γ =F V L
i i ix x x i n

( ) ( ) ( ) ( )1 ,    1,...,= γ + − γ =F V LH T H T H T i n

( ), ,    1,...,= =V L
i i ix K T P x i n

The equilibrium constants, Ki, and the enthalpy of 
the streams are calculated by: 

( ) ( ), ,    1,...,= =
sat

i
i

P T
K T P i n

P

( ) ,

1

 ˆ ,   , ,
=

= =∑
n

G G G id
i i

i

H T x H G F L V

( )
0

,
, 0

ˆ = + ∫
T

V id gi gi
i f i P

T

H h T C dT

( ) ( )
0

,
, 0 , ,

ˆ = + −∆∫
T

L id gi gi
i f i P i vap i

T

H h T C T dT H

where ΔHvap,i  was assumed to be independent of T and 
equal to its value at 298.15 K.

The empirical correlations used to estimate the 
thermodynamics properties were taken from the 
literature. These correlations relate the property 
from the pure component i to its molar mass, Mi. 
These correlations can be found in the Appendix or 
in the works of Huang and Radosz (1991) (saturation 
pressure) and Marano and Holder (1997) (enthalpy of 
formation, enthalpy of vaporization at 298.15 K and 
ideal gas heat capacity).

NUMERICAL PROCEDURE

Distribution Functions
For testing the different algorithms for Gauss-

Christoffel quadrature computation, a molar fraction 
distribution is needed. Some petroleum mixtures have 
distributions that can be approximated by gamma 
distributions. Therefore, in this work, two truncated 
gamma distributions were used.

The gamma distribution is written as: 

( ) ( )
1

0 0( )1 exp
−− − = − Γ  

A

A

M M M Mf
N BF

M
B A

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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where the parameters A, B, and M0 and the truncation 
interval for the two distribution functions are given 
in Table 1. These distributions are depicted in Figure 
1. FN is a normalization factor due to the truncation, 
given by:

magnitude. This is done by defining I in order that it 
belongs to the [0, C] interval, where C is around 1.

Therefore, the distribution variable was defined by: 

( )
1

0 0( )FN exp
−

∆

− − = − Γ  ∫
A

A
M

M M M M dM
B A B

Table 1. Parameters and truncation intervals for the 
two gamma distributions.

Figure 1. Distribution functions 1 and 2 used to 
analyze the quadrature algorithms.

Definition of the distribution variable
The distribution variable is defined to be a function 

of the molar mass. This variable change is important to 
increase the accuracy in the calculation of the moments 
and, therefore, the overall algorithm robustness. Lage 
(2007) commented that this change of variable is 
necessary to keep the moments with similar order of 

0

0

−
=

−f

M MI C
M M

and the corresponding molar fraction distribution was 
derived as: 

( ) ( )
1

exp
−  = − Γ  

A

A

I If I C
B A B

where 

0 0

1,        
FN

 
= =  

− −  f f

BC CB C
M M M M

Moment calculation
Having defined the distribution function, the 

calculations of the regular and generalized moments 
are made according to Equations (1) and (2). For 
the regular moments, there is the following analytic 
solution: 

( )
( )

( )
( )
, /1

−

 Γ γ µ =    Γ Γ   
k k

A A C B
C

A B A

where

= +A A k

and γ(a, x) is the incomplete gamma function, defined 
as: 

( ) ( )1

0

, exp−γ = −∫
x

aa x t t dt

For the definition of the generalized moments, 
the Jacobi orthogonal polynomial family (Sack and 
Donovan, 1972) was chosen. This family has two 
parameters, α and β, which, when properly chosen, 
generate other polynomial families known in the 
literature.

The implementation of these polynomials consisted 
in computing the recursion coefficients ak, bk and ck, 
used in Equation (3). These coefficients were generated 
by the method described by Press et al. (1992) for 
the interval [1, 1] and then modified to represent the 
orthogonal polynomial family in the interval [0, C].

(34)

(35)

(36)

(37)

(38)

(39)
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Adiabatic flash calculation
Once the distribution function was discretized, 

the resulting composition was used for the adiabatic 
flash calculations, whose methodology can be found 
in Henley et al. (2011).

The methodology results in finding the composition 
of both vapor (xi

V) and liquid (xi
L) phases, the flash 

temperature (Tflash) as well as the vaporized fraction (γ) 
of the flash, with the feed stream and flash conditions 
given in Table 2.

Test 2: Choice of distribution variable. The value 
of the parameter C was varied from 0.5 to 2.0 and its 
influence on the values of the 20 first reconstructed 
moments was analyzed for methods using either 
regular or generalized moments. Besides, for each 
value of C, the maximum number of quadrature points 
that can be computed by the method (nmax) and the 
associated MSRE were evaluated as a measure of the 
method robustness.

Test 3: Choice of orthogonal polynomial family. 
Aiming at analysing the influence of the choice of the 
orthogonal polynomial family used to compute the 
generalized moments, the values of the parameters 
of the Jacobi polynomial were varied from -0.5 to 
2.0. Some of the chosen parameter values generate 
polynomial families known in the literature, as shown 
in Table 4. The values of the 20 first reconstructed 
moments were compared and the maximum number 
of quadrature points achieved by the method (nmax) and 
the associated MSRE were also evaluated.

Test 4: Adiabatic flash solution. For this test, 
only the LQMDA using generalized moments was 
employed with C = 1 using the Jacobi polynomials 
with α = β = 2. The adiabatic flash was computed using 
different values for the number of quadrature points 
and the accuracy of the following properties of the 
streams were analyzed. 

• Bubble point temperature of the feed stream at 
flash pressure (Tbub); 

• Dew point temperature of the feed stream at flash 
pressure (Tdew); 

• Flash temperature at flash pressure (Tflash); 
• Vapor fraction for the adiabatic flash (γflash); 
• Mean molar mass for the feed, vapor and liquid 

streams (MF, MV, ML). 
 The mean molar mass of a stream G is given by: 

Table 2. Adiabatic flash conditions.

Conditions for the numerical analysis
Table 3 lists the methods compared for generating 

the quadrature and the type of moments employed by 
them. The analysis of the efficiency and robustness 
of these algorithms was carried out by calculating the 
computational cost and the errors in the reconstructed 
moments.

The computational cost was measured by the 
function clock, inside the file time.h (in C language). 
This function was called before and after each 
routine that computes the quadrature and, therefore, 
the reported CPU clocks are just for the quadrature 
computation.

The error of the reconstructed moments was 
calculated as the mean square of the relative errors 
(MSRE) of the moments between the analytical 
moments, given by Equations (1) or (2) (µk,dist), and the 
reconstructed moments, given by Equations (4) or (5) 
(µk,reconst), according to: 

Table 3. Methods analyzed.

2
2 1

, ,

0 ,

1
2

−

=

 µ −µ
=   µ 

∑
n

k dist k reconst

k k dist

MSRE
n

Test 1: Efficiency of the methods. The parameter C 
was kept equal to 1 and the computational cost and the 
MSRE were computed for all cases, varying the number of 
quadrature points from 3 to 20. Ten runs of the computer 
program were used to evaluate the computational cost, 
giving its mean value and standard deviation.

Table 4. Parameters of the Jacobi polynomial families.

,    , ,= =∑G G G
i iM M x G F L V

These properties were compared to those 
obtained by using a uniform discretization of the 
feed molar fraction distribution using 10 to 10,000 
pseudocomponents.

The moments for the liquid and vapor streams were 
computed from the flash results. Then, for each stream, 
a new characterization was calculated by computing a 
new Gauss-Christoffel quadrature. This was used to 

(40)

(41)
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obtain the reconstructed moments of the stream and 
the corresponding MSRE values.

RESULTS

Test 1 results
The analysis of the efficiency and robustness of 

several algorithms for computing the Gauss-Christoffel 
quadrature (see Table 3) is given by the results shown 
in Tables 5 and 6 for their computational cost and in 
Tables 7 and 8 for the corresponding MSRE values, 
considering the truncated gamma distributions given 
in Table 1 for the molar fraction.

As expected, the computational cost increases with 
the number of quadrature points, The methods using 
regular moments are less expensive than those that 

employed the generalized moments. This is expected 
due to the additional cost of computing the recursion 
coefficients for the orthogonal polynomials. However, 
this cost increase for the Chebyshev method is not 
large.

The PDA2 was the most expensive method among 
those using the regular moments. This was expected due 
to the increase of operations related to the computation 
using the mantissa-exponent format. However, this 
made the method more robust than the original PDA 
(PDA1), allowing it to compute quadrature rules with 
a larger number of points.

In relation to the robustness of the methods, it 
can be observed that PDA1 is the least robust, being 
able to generate the Gauss-Christoffel quadrature rule 
for, at most, 6 quadrature points. The other methods 

Table 5. Computational cost for the generation of the Gauss-Christoffel quadrature for the distribution 1, in clocks.

Table 6. Computational cost for the generation of the Gauss-Christoffel quadrature for the distribution 2, in clocks.
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using regular moments have similar behaviors among 
themselves, being able to compute the quadrature rule 
up to 12 points for distribution 1 and 11 points for 
distribution 2.

When analyzing the MSRE, although there are 
some oscillations, it can be noted that the MSRE tends 
to increase with the number of quadrature points due to 
error accumulation. The only exception was the GWA, 
for which the MSRE decreased by orders of magnitude 
as n increases. The reason for this behavior is that this 
method requires the usage of an additional moment 
of order 2n, which is the main factor responsible for 
the MSRE values for this method, because the n−
point quadrature can only exactly compute the first 2n 
moments. For this method, the increase of the number 
of quadrature points increased the accuracy of this 
extra moment.

The methods using generalized moments were 
able to obtain the Gauss-Christoffel quadrature 
rule for more than 20 points for both distributions, 
showing that these methods are more robust than 
those using regular moments. The MSRE for these 
methods were slightly higher than for the other 
methods. However, these errors are of the order of 
10−13, which is still very small for generating the 
Gauss-Christoffel quadrature rule for a large number 
of quadrature points.

Similarly to the results of John and Thein (2012), 
the LQMDA and the Chebyshev method were found 
to be equivalent in robusteness and computational cost 
when both used the regular moment set. However, for 
the generalized moment set, the Chebyshev method 
is much faster. For instance, considering the largest n 
value (11) for which the LQMDA and the Chebyshev 

Table 7. MSRE in the reconstructed moments for the distribution 1.

Table 8. MSRE in the reconstructed moments for the distribution 2.
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method were able to compute the quadrature using 
both the generalized and regular moment sets for 
both distributions, the increase in the computational 
cost related to the usage of the generalized moments 
is about 376% for LQMDA and only 20% for the 
Chebyshev method.

Test 2 results
The effect of the C value used in the definition of the 

distribution variable on the moments used to compute 
the quadrature rule is shown in Tables 9 and 10 for 
molar fraction distributions 1 and 2, respectively.

As can be seen, the range of values for the 20 first 
regular moments largely varies with the value of C. 
For instance, for C = 0.5, this range span 8-9 orders 
of magnitude and for C = 4/3 it spans just 2-3 orders 
of magnitude. This corroborates the value of 4/3 
suggested by Lage (2007) to mitigate the numerical 
truncation errors in the quadrature rule computation, 
which involves the subtraction of products of these 
moments. Considering just the analyzed values, C 
= 4/3 and 1.5 are the best choice for distributions 1 
and 2, respectively. Therefore, although it is not 
worthwhile to seek for a best C value, as it depends on 

Table 9. First 20 generalized and regular moments for the distribution 1 for several C values in the distribution 
variable definition.

Table 10. First 20 generalized and regular moments for the distribution 2 for several C values in the distribution 
variable definition.
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the distribution, a choice of C within [4/3, 3/2] seems 
to be a good rule of thumb.

On the other hand, the value of C had no effect in 
the range of values of the generalized moments. This 
was expected because the change of variable made in 
the distribution function was also carried out in the 
orthogonal polynomials to maintain their orthogonality 
in the desired interval.

The effect of the distribution variable definition on 
the robustness and the efficiency of the methods can 
be analyzed from the maximum number of quadrature 
points for which the methods were able to generate the 
quadrature rule and the corresponding MSRE values, 
which are shown in Tables 11 and 12 for molar fraction 
distributions 1 and 2, respectively.

As the order of magnitude of the generalized 
moments were not affected by the value of C used in 
the definition of the distribution variable, the maximum 
number of quadrature points does not change with it 
for the methods using such moments. Moreover, the 
corresponding MSRE values are basically independent 
of the C value.

On the other hand, the methods using the regular 
moments were affected by the value of C, notably 

PDA1, whose nmax value increased with the C value. 
This was not expected because the magnitude of 
the regular moments also increased with the the C 
value.

The other methods were able to calculate quadrature 
rules with 11-12 points without following any specific 
pattern. The MSRE values were around 10−14 - 10−15 
for the PDA2, LQMDA-reg and Cheb-reg. The MSRE 
for GWA were higher, of the order of magnitude of 
10−13 to 10−12, but this can be explained by the error 
accumulation caused by the additional moment of 
order 2nmax.

Test 3 results
The results regarding the choice of the orthogonal 

polynomial family to generate the generalized 
moments were obtained by varying the values of the 
parameters α and β of the Jacobi polynomial family, 
The results for the distributions 1 and 2 are shown in 
Tables 13 and 14, respectively. It can be observed that 
the values of the 20 first generalized moments span a 
range that is reduced when the values of α and β were 
increased. For the tested values, it was observed that 
the generalized moments of the Legendre polynomials 

Table 12. Maximum number of quadrature points obtained for the Gauss-Christoffel quadrature for the distribution 
2 for several C values in the distribution variable definition and the corresponding MSRE values.

Table 11. Maximum number of quadrature points obtained for the Gauss-Christoffel quadrature for the distribution 
1 for several C values in the distribution variable definition and the corresponding MSRE values.
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Table 13. Generalized moments for the distribution 1 for some orthogonal polynomial families.

Table 14. Generalized moments for the distribution 2 for some orthogonal polynomial families.

had the largest order of magnitude range, that is, |µ0
(P) 

/ µk
(P)| ~ 105 and 106, k = 1, …, 20, for the distributions 

1 and 2, respectively.
The results for the nmax and the MSRE values are 

shown in Tables 15 and 16 for the distributions 1 and 
2, respectively. The computations using the Chebyshev 
polynomials of 1st order (α = β = −0.5) had the lowest 
value of nmax for distribution 2 and presented the 
highest order of magnitude for the MSRE for both 
distributions. The Legendre polynomials (α = β = 
0) also showed large values for the MSRE for both 
distributions. The Jacobi polynomials with α = β = 1 

or α = β = 2 showed low MSRE values, making them 
good choices for the cases analyzed.

Test 4 results
For the adiabatic flashes of both distributions, 

according to the conditions given in Table 2, the 
results for the MSRE values and for some properties 
of the equilibrium streams for several numbers of 
discretization points are shown in Tables 17 and 18 for 
the distributions 1 and 2, respectively. It should be noted 
that the MSRE values for the liquid and vapor streams 
are those computed after the re-characterization of 
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each stream, being similar to the MSRE results shown 
in Section 4.1 for the feed distributions.

It can be observed that the discretization using the 
Gauss-Christoffel quadrature was not only capable of 
representing well both mixture properties, but it also 
does this with a much smaller number of discretization 
points. For both distributions, 8 quadrature points 
were enough to accurately represent the properties of 
these mixtures. For uniform discretizations of these 
mixtures, Tables 17 and 18 show that the number of 
pseudocomponents has to be around 104 in order to 
achieve similar accuracy in the computation of the 
mixture properties.

Above 8 quadrature points, the Gauss-Christoffel 
quadrature discretization obtained the same values for 
all the properties of the streams, showing the good 
convergence of this method. The usage of more than 8 
quadrature points only increased the MSRE values as 
already discussed.

For the uniform discretization method, it can be seen 
that its convergence is very slow, which can be verified by 
the fact that the stream properties still vary for n > 1000. 
Due to the large number of pseudocomponents that is 
needed, their molar fraction became quite low. This leads 
to a large accumulation of truncation errors that precluded 
the computations for n > 10000 for both distributions.

Table 15. Maximum number of quadrature points 
obtained for the Gauss-Christoffel quadrature for the 
distribution 1 for some orthogonal polynomial families 
and the corresponding MSRE values.

Table 16. Maximum number of quadrature points 
obtained for the Gauss-Christoffel quadrature for the 
distribution 2 for some orthogonal polynomial families 
and the corresponding MSRE values.

Table 17. Stream properties for the adiabatic flash for distribution 1.



Felipe C. Chicralla et al.

Brazilian Journal of Chemical Engineering

1316

CONCLUSION

Among the methods compared for the computing 
of the Gauss-Christoffel quadrature, we concluded 
that those using generalized moments are more 
robust. Although these methods require a higher 
computational effort than those using regular 
moments, the gain in robustness is worthwhile as 
the number of quadrature points can be larger than 
80. Even though this is an advantage, it might not 
be necessary as 8 pseudocomponents were shown 
to be enough for representing the properties of 
the streams involved in the adiabatic flash for 
the two mixtures analyzed in this work. The only 
disadvantage in using generalized moments is 
their larger computational cost. The usage of the 
generalized moment set made the LQMDA almost 
five times slower, whereas the Chebyshev algorithm 
showed just a 20% increase in its computational 
cost. Therefore, the Chebyshev algorithm using 
generalized moments is recommended to be used in 
the QMoM.

Due to the small number of pseudocomponents 
needed for accurate results, the QMoM proved to 
be an efficient and computationally cheap method 
for performing thermodynamic calculations for 
continuous and multicomponent mixtures, as also 
pointed out by Lage (2007), Rodrigues et al. (2012) 
and Petitfrere et al. (2014).
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NOMENCLATURE

A	 Gamma distribution parameter 
An	 Terminal matrix 
ak	 Recursion coefficient for an orthogonal
	 polynomial family of order k 
B	 Gamma distribution parameter 
bk	 Recursion coefficient for an orthogonal
	 polynomial family of order k
C	 Upper limit for the change of variable 
ck	 Recursion coefficient for an orthogonal
	 polynomial family of order k
Cp	 Heat capacity 
D	 Diagonal matrix 
f	 Molar fraction distribution function 
FN	 Distribution normalization factor 
H	 Enthalpy 
∆Hvap	 Enthalpy of vaporization 
Hf,i	 Enthalpy of formation 

Table 18. Stream properties for the adiabatic flash for distribution 2.
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I	 Identity Matrix 
I	 Distribution variable 
K	 Equilibrium constant 
M 	 Molar mass 
M 	 Mean molar mass 
MSRE	 Mean square error 
N	 Number of quadrature points 
P	 Pressure 
Pk(x)	 Christoffel orthogonal polynomial of order k
pk(x)	 Orthogonal polynomial of order k
qi	 Eigenvector of the terminal matrix, associated
	 with the eigenvalue xi 
T	 Temperature 
xi	 Abscissa of the Gauss-Christoffel quadrature 

Greek letters 
α	 Parameter for the Jacobi polynomials 
β	 Parameter for the Jacobi polynomials 
ηk	 Recursion coefficient of the Christoffel
	 orthogonal polynomial of order k
γ	 Vaporized fraction 
Γ	 Gamma function 
µk	 Regular moment of order k
µk

(P) 	 Generalized moments of order k
ωi	 Weight from the Gauss-Christoffel quadrature
θk	 Recursion coefficient of the Christoffel
	 orthogonal polynomial of order k

Superscripts 
bub	 Bubble point 
dew	 Dew point 
F	 Feed stream 
flash	 Flash condition 
G	 Feed, vapor or liquid stream 
gi	 Ideal gas condition 
L	 Liquid stream 
sat	 Saturation condition 
V	 Vapor stream 
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APPENDIX

Properties Correlations
In this appendix, the correlations found in the 

literature for the estimation of the properties of the 
generated pseudocomponents are listed.

Saturation Pressure (Huang and Radosz, 1991):

where [Psat] = Pa, and [T] = K.
Ideal Gas Heat Capacity (Marano and Holder, 

(1997):

1 9.5046 0.016104= +B M

( )( )2 exp 5.0237 0.72702= +B ln M

( )1 2100000exp /= −satP B B T

( ) ( ) ( )( )
( )

6 2 9 30.0919055 0.011308 6.3792010 1.4060510

0.284370

− −= − + − +

+

gi
P

c

C T K T K T K

N R

where Nc = (M - 2)/14, R is the ideal gas constant and 
[CP

gi] = [R].
Ideal Gas Enthalpy of Formation (Marano and 

Holder, 1997): 

( ) 08.3206 2.111890= − +gi
f ch N RT

where [hf
gi] = [R][T0] and T0 = 298.15 K.

Enthalpy of Vaporization (Marano and Holder, 
1997):

( )( ) 01 1.99516 0.112756∆ = + −Vap
cH N RT

where [ΔHVap] = [R][T0].

(42)

(43)

(44)

(45)

(46)

(47)


