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Abstract - Several methods for computing the Gauss-Christoffel quadrature used for the adaptive characterization
of continuous mixtures were compared as to their efficiency and robustness. Two mixtures with molar fraction
distribution given by truncated gamma distributions were used. We analyzed the Product-Difference, the Golub-
Welsch, the Long Quotient-Modified Difference and the Chebyshev algorithms using regular and generalized
moments, when applicable. The robustness and computational efficiency of changes in the distribution variable
and in the orthogonal polynomial family used to calculate the generalized moments were analyzed. The methods
using generalized moments proved to be more robust than those that use regular moments. Although they are
computationally more expensive, this cost increase is just around 20% for the Chebyshev algorithm. The resulting
adaptive characterization was employed to solve the adiabatic vapor-liquid flash of these mixtures. The results
showed that eight pseudocomponents were able to well represent the properties of the equilibrium streams,
showing the high accuracy of this method.

Keywords: Continuous thermodynamics; Complex mixtures; QMoM; Gauss-Christoffel quadrature; Phase

equilibrium.

INTRODUCTION

Several chemical processes deal with mixtures
whose components cannot be fully identified, such as
petroleum and polymeric solutions. This difficulty is
related to the amount of components in the mixtures
and to the proximity of their chemical and physical
properties. According to Briesen and Marquardt
(2003), a petroleum mixture can contain over 10°
components, making it impossible to characterize all
these components.

Therefore, approximate techniques have been
developed to characterize these mixtures and to solve
the thermodynamic equations related to the phase
equilibria. The most common form of dealing with this
problem is to use a molar fraction distribution function
associated with at least one characterization variable
and then perform the calculations. For hydrocarbon
mixtures, especially for homologous series, the molar
mass is often enough to characterize the mixture
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properties (Lage, 2007). Other variables such as
normal boiling temperature or the API degree of the
mixture are also used for this purpose (Whitson and
Brule, 2000).

The molar fraction distribution functions of
continuous mixtures are usually described by well-
known distribution functions from the literature, such
as gamma, beta or exponential distributions (Huang
and Radosz, 1991; Whitson and Brule, 2000). Then,
the parameters of these distributions are estimated
in order to adjust the probability density distribution
function to the mixture properties. Experimental
analysis techniques, such as chromatography and
true boiling point curves, are used to achieve these
estimations (Whitson and Brule, 2000).

Once the molar fraction distribution function is
characterized, the thermodynamic equations can be
used to solve engineering problems. However, due to
the non-linearities of the thermodynamic models, the
cases for which there is an analytic solution are rare.
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One example is the solution of an isothermic flash for
a continuous mixture considering ideal solutions and
ideal gas behavior (Lage, 2007). For general cases,
the distribution function must be discretized into
pseudocomponents before the thermodynamic equations
can be numerically solved. Several methods for its
discretization have been studied in the literature. The
simplest methods are those that employ an equally spaced
or a function-based discretization (Huang and Radosz,
1991), which are very simple to implement. However,
the properties of the continuous mixture are accurately
approximated by those of the discrete mixture only if a
large number of pseudocomponents is used with these
methods. Huang and Radosz (1991) showed that gamma
and truncated Gaussian distributions need at least 40
pseudocomponents when using a uniform discretization,
or 20 pseudocomponents when a logarithmic function
was used for this purpose. Nevertheless, due to the
peculiarities of each mixture, the choice of a function that
best describes its changes is not straightforward, making
this method not very efficient.

Gauss quadratures are found in the literature as
more efficient alternatives to the above describe
methods (Cotterman and Prausnitsz, 1985; Haynes
and Matthews, 1991; Liu and Wong, 1997). As most
distributions are semi-infinite, the Gauss-Laguerre
quadrature is usually the natural choice. This
methodology allows the use of less discretization
points than in the previous method and proved to
be very efficient when characterizing distributions.
However, this method has fixed quadrature points,
not being suitable to characterize changes in the
distribution function, either in time or space (Briesen
and Marquardt, 2003).

In order to characterize mixtures whose distribution
may vary in time or space, Lage (2007) developed
a characterization method for continuous mixtures
based on the Gauss-Christoffel quadrature using the
moments of the molar fraction distribution function.
This method is analogous to the QMoM (Quadrature
Method of Moments), developed by Mcgraw (1997)
for the solution of aerosol dispersions. Applying the
QMoM for the continuous thermodynamics equations,
it allows the streams to be characterized by their
moments and, whenever these moments change,
the method calculates the new Gauss-Christoftel
quadrature.

Lage (2007) showed that this method presents
good results for the solution of the flash equations and
showed how to deal with the mixing of two streams
based on their moments. Petitfrere et al. (2014) tested
the method described by Lage (2007) for the solution
of the flash equations of real mixtures, proving its
adequacy and accuracy. Extending the application
of this method to distillation columns, Rodrigues
et al. (2012) developed a method for the sequential
simulation of a distillation column for separation of

continuous mixtures. Whenever a stream suffers any
kind of change during the simulation, the method
was able to generate a new quadrature rule that
adaptively characterizes this stream using modified
pseudocomponents.

The core of the QMoM calculation is a routine
to compute the Gauss-Christoffel quadrature. In the
development of the QMoM for the solution of the
populational balance equations, Mcgraw (1997) used
the Product Difference Algorithm (PDA) developed
by Gordon (1968). However, in the literature, several
methods for the generation of this quadrature can
be found. Lage (2007) and Rodrigues et al. (2012)
used an implementation of the PDA where critical
computations were performed in higher precision by
separating the floating point numbers into their mantissa
and exponent (Lage, 2007). This method showed to
be more robust than the PDA developed by Gordon
(1968). Petitfrere et al. (2014) used the Chebyshev
algorithm (Chebyshev, 1858), implemented by
Gautschi (1994) in the library ORTHPOL, concluding
that this algorithm is more robust than the original
PDA (Gordon, 1968).

John and Thein (2012) numerically analyzed
several algorithms for computing the Gauss-
Christoffel quadrature. They compared the PDA from
Gordon (1968), the Golub-Welsch Algorithm (GWA),
developed by Golub and Welsch (1969), and the Long
Quotient-Modified Difference Algorithm (LQMDA),
developed by Sack and Donovan (1972). The LQMDA
is one of the two existing variants of the Chebyshev
algorithm (Chebyshev, 1858). The other variant is the
Wheeler algorithm (Wheeler, 1974). John and Thein
(2012) concluded that the LQMDA (or any of its
variants) is more robust and more efficient than the
other two methods.

However, John and Thein (2012) used the LQMDA
only with regular moments, even though this method
(and its variants) supports the usage of generalized
moments. This type of moment is more flexible to
characterize continuous mixtures than the regular
moments, which raises the expectation that the
methods using them can be more efficient and robust.
Therefore, in this work we extend the analyses carried
out by John and Thein (2012) including the generalized
moments and the effect of the orthogonal polynomial
family used to generate the quadrature. The method
was applied to the adiabatic flash equations in order
to analyze the efficiency of the quadrature points to
represent the molar fraction distribution function for
the streams in equilibrium.

METHODOLOGY

The methods analyzed in this work were the
PDA (Gordon, 1968), the GWA (Golub and Welsch,
1969), the LQMDA (Sack and Donovan, 1972) and
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the Chebyshev algorithm (Chebyshev, 1858), which
can be found in Upadhyay (2012). All of them were
applied using regular moments and the last two were
also tested using generalized moments.

In order to analyze these methods that generate
the Gauss-Christoffel quadrature, a computational
program was implemented that, given a molar fraction
distribution function, calculates the moments of this
distribution, generates its quadrature rule and, when
required, solves the adiabatic flash equations for
the composition of the pseudocomponents of the
equilibrium streams. The procedures and equations
used in this program are detailed in this section. The
development of these methods can be found in the
original references and also in John and Thein (2012).
Therefore, their details are not given here.

Moments calculation

Consider a molar fraction distribution, f{x), in
terms of a characterization variable, x, defined in the
interval [a@, b]. This distribution can be characterized
by its regular moments, defined as:

b
w, = J‘xkf(x)dx, k=0,1,2,... (1)

where k is the order of the moment. These moments
carry information of the distribution that is used by the
algorithms to generate the desired Gauss-Christoffel
quadrature.

There are also the generalized moments of the
distribution that are obtained by substituting the
monomial x* in Equation (1) by the £-order polynomial,
p,(x), of an orthogonal polynomial family, resulting in:

b

ME(P) :J.pk (x)f(x)dx , k=0,1,2,... ()

a

where 1 ” is the generalized moment of order k
associated with this orthogonal polynomial family,
which can be obtained by the following recursion
formula:

P (x) =0
Py (x)=1 (3)

xpk(x)=akpM(x)+bkpk(x)+ckpk_l(x) , k=0,1,...

where the coefficients a,, b, and ¢, define the given
family. It is important to note that the generalized
moments are reduced to the regular moments for a, =
landb,=c,=0.

Once calculated the n quadrature points, the first 2n
regular or generalized moments from the distribution
can be reconstructed respectively from:

S f(x) . k=0,..2n-1 )
i=1

i=1

Computation of the quadrature
The studied algorithms generate the quadrature [
o] ,» that optimally approximates the integral: !

ig(x)f(x)dngg(x,)wj (6)

where f{x) is the molar fraction distribution function
and g(x) is a given property of the mixture component x
with infinitesimal molar fraction f{x)dx. By interpreting
Equation (6) as a discretization of the mixture, the
abscissas, X, represent pseudocomponents and the
weights, o, ‘are their molar fraction.

The inner product between two functions p(x) and
q(x) with respect to the weight function f{x) in the
interval [a, b] is defined as:

()= [p(x)a(x) f () %

As for any Gaussian quadrature rule, the abscissa
of the quadrature given by Equation (6) are the roots of
the n-order polynomial of the Christoffel orthogonal
polynomial family using the inner product defined
by Equation (7). However, since f{x) is the unknown
mixture molar fraction distribution, it is impossible to
have a priori knowledge of the recursion coefficients
of the corresponding orthogonal polynomial family.
Therefore, the quadrature rule must be numerically
computed from the known moments of the distribution
function, as detailed in the following.

These Christoffel orthogonal polynomials are
generated by the following recursion:

P, (x)=0
Po(x)=1 ®)
B, (x)=(x-6,)P (x)-n;P_(x), k=0,1,..

where P (x) is the Christoffel polynomial of order &
and the coefficients , and 0, can be obtained by:

_ B, B)

, k>0 9)
“ T (P,R)

Brazilian Journal of Chemical Engineering, Vol. 36, No. 03, pp. 1303 - 1318, July - September, 2019



1306 Felipe C. Chicralla et al.

n=y SRR (10)

(B B

b

Combining the recursion equations from P to
P _, the following system of linear equations can be
assembled:

(4, -xI)P=b (11)
where:
6, 1 0 0
1112 0, 1 :
- 0o . o :
S 0 (12)
ni—z 0,, 1
0 0 T]i_l 0,
Fy(x)
P
P= 1€x) (13)
BH(x)
0
-l 14
b 0 (14)
~F,(x)

Ifx is one of the n roots of P , then the linear system
reduces to an eigenvalue problem:

(4,-x1)P=0 (15)

Therefore, the process of finding the 7 roots of the
orthogonal polynomial P (x) can be replaced by the
process of finding the n eigenvalues of the matrix /fn.
The numerical methods for finding the eigenvalues are
better conditioned that those for finding the roots of
polynomials, which represents a numerical advantage
in exchanging these problems (John and Thein, 2012).

Furthermore, the computing of eigenvalues for
symmetric matrices is more accurate than for non-
symmetric matrices. Thus, the matrix A~n should
be modified in order to create a symmetric matrix.

Considering the diagonal matrix
D=[d],

where

¢=[TT.n]

fori=0,...,n-1,then:

D(4,-xI)D"'DP=0 (16)
DA D" —x DID™ |DP=0 (17)
— T ¥
(4,-x1)P=0 (18)
where

6, n, 0 ... ... 0

n 6 n, .
I U : o
L Lo 0

. nn—Z en—Z nn—l

0O ... ... 0 n,. 6.,

The eigenvalues of 4, also called the terminal
matrix, are the roots of the Christoffel orthogonal
polynomial of order n, which are the abscissas of the
Gauss-Christoffel quadrature.

After computing the eigenvector, g, associated
with the eigenvalue x, the weights of the Gauss-
Christoffel quadrature can be expressed by (John and
Thein, 2012):

n—1 -1
, :ng)qio (Zqikj ,Ji=1..n (20)

k=0

The sum inside Equation (20) is the norm of
the eigenvector g,. If the routine used to compute
the eigenvectors is such that the eigenvectors are
orthonormal, then this sum term can be removed from
the equation.

The algorithms that compute the Gauss-Christoffel
quadrature differ in how they build the terminal matrix.
Once this matrix is obtained, the eigenvalue problem
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is solved in the same way for all methods. All methods
use the moments of the distribution as the necessary
information to build the matrix 4 . For a quadrature
with 7 points, the first 2z moments must be known.

Considering the analyzed methods, it is important
to highlight that only the LQMDA and the Chebyshev
Algorithm can use both regular and generalized
moments as input. Also, the PDA was tested in two
different implementations: the original version by
Gordon (1968) and the modified implementation given
by Lage (2007).

Flash Equations

The equations related to the flash of a continuous
mixture require the usage of continuous properties to
solve the equations of mass balance, energy balance
and phase equilibrium for the entire distributions.
These equations are, respectively:

(=M ()+(=v) (1), VIe[l,,.1.] 21)

H' (T)=yH"(T)+(1-y)H"(T), VIe€[l,..1..] (22)

fV(I):K(I,T,P)fL(I), VIE[[min’Imax] (23)

where [/ is the characterization variable, usually
related to molar mass, and vy is the vaporized fraction.
Assuming ideal solution and ideal gas, the enthalpy
from the streams and the equilibrium constant can be
calculated by Equations (24) and (25), respectively.

J'f VH? (1,T)dI, G=F,LV (24)

Psat ([, T)

K(I,T,P)= , Vie[l,,.]

min > max]

(25)

Once the Gauss-Christoffel quadrature is found for
f(I), the abscissas are the values of the characterization
variable for the discretized pseudocomponents of the
feed stream and the weights are their molar fractions.
Then, the flash equations for discrete mixtures can be
applied, keeping these pseudocomponents fixed during
the flash calculation. Afterwards, the moment set of
each resulting stream, liquid and vapor, can be used
to generate a new pseudocomponent discretization
by computing the corresponding Gauss-Christoffel
quadrature.

The equations of an adiabatic flash of a discrete
mixture consist of the mass and energy balances and
the phase equilibrium equation, which are expressed,
respectively, by Equations (26), (27) and (28).

x'=yx) +(1-y)x", i=l..n (26)
H' (T)=yH"(T)+(1-y)H"(T), i=1..,n (27)
x =K, (T,P)x/, i=l..,n (28)

The equilibrium constants, K, and the enthalpy of
the streams are calculated by:

Ki(T,P):B—(T), i=1,...,n (29)
HG(T)=Zn:xiGI:I,.G’i", G=F,LV (30)

i=1
where the ideal enthalpy for each component is given

by:

T
[cgar (31)

T

ﬁiV’id = hfﬁi (71) ) +

T)dT -AH,,, (32)

vap,i

A = pe ( J’ +[cs(

where AH | was assumed to be independent of 7"and
equal to its value at 298.15 K.

The empirical correlations used to estimate the
thermodynamics properties were taken from the
literature. These correlations relate the property
from the pure component i to its molar mass, M.
These correlations can be found in the Appendix or
in the works of Huang and Radosz (1991) (saturation
pressure) and Marano and Holder (1997) (enthalpy of
formation, enthalpy of vaporization at 298.15 K and
ideal gas heat capacity).

NUMERICAL PROCEDURE

Distribution Functions

For testing the different algorithms for Gauss-
Christoffel quadrature computation, a molar fraction
distribution is needed. Some petroleum mixtures have
distributions that can be approximated by gamma
distributions. Therefore, in this work, two truncated
gamma distributions were used.

The gamma distribution is written as:

M-M,
—3 J (33)

f(M)=

1 (M-M)H)* (_
FN B'T(A)
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where the parameters 4, B, and M and the truncation
interval for the two distribution functions are given
in Table 1. These distributions are depicted in Figure
1. FN is a normalization factor due to the truncation,

given by:

-M,
——2LldM (34
Z jd (34)

N- [ M 0>A ! exp(_M

Table 1. Parameters and truncation intervals for the
two gamma distributions.

Distribution 1
A=2.1
B=26.7
Mo =100

M=[100, 300]

Distribution 2
A=40
B=35.0
Mo =100

M=1100, 450]

0.014
oozt [/ N\
001} | N

0.008 | *,

f,F M
-

0.006 || N,

0.004 I| \

| .
0.002 -

0.007
0.006
0.005 / \

0.004 / \
0.003 / \\

0.002 .’III \

i .,

0001 |/ S~

oL . . . .

100 150 200 250 300 350 400 450
M

Figure 1. Distribution functions 1 and 2 used to

analyze the quadrature algorithms.

5 (M)

Definition of the distribution variable

The distribution variable is defined to be a function
of the molar mass. This variable change is important to
increase the accuracy in the calculation of the moments
and, therefore, the overall algorithm robustness. Lage
(2007) commented that this change of variable is
necessary to keep the moments with similar order of

magnitude. This is done by defining / in order that it
belongs to the [0, C] interval, where C is around 1.
Therefore, the distribution variable was defined by:

1= M=M - (35)
M,-M,

and the corresponding molar fraction distribution was
derived as:

— I I
[)=C—=—— — 36
/(1) BAF(A)exp( Bj (36)
where
= BC - 1
p--5¢ - Ll] ¢ (37)
M,-M, FN| M, -M,

Moment calculation

Having defined the distribution function, the
calculations of the regular and generalized moments
are made according to Equations (1) and (2). For
the regular moments, there is the following analytic
solution:

_[r(@)]r 1 1v(A.C/B)
M =C r(4) [E"} r(4) %)
where
A=A+k

and y(a, x) is the incomplete gamma function, defined
as:

It”lexp (39)
0

For the definition of the generalized moments,
the Jacobi orthogonal polynomial family (Sack and
Donovan, 1972) was chosen. This family has two
parameters, o and [, which, when properly chosen,
generate other polynomial families known in the
literature.

The implementation of these polynomials consisted
in computing the recursion coefficients a,, b, and c,,
used in Equation (3). These coefficients were generated
by the method described by Press et al. (1992) for
the interval [1, 1] and then modified to represent the
orthogonal polynomial family in the interval [0, C].
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Adiabatic flash calculation

Once the distribution function was discretized,
the resulting composition was used for the adiabatic
flash calculations, whose methodology can be found
in Henley et al. (2011).

The methodology results in finding the composition
of both vapor (x) and liquid (x) phases, the flash
temperature (7%") as well as the vaporized fraction (y)
of the flash, with the feed stream and flash conditions
given in Table 2.

Table 2. Adiabatic flash conditions.

Distribution 1 Distribution 2
Feed temperature, 7" 500 K 625K
Feed pressure, P” 2 bar 3 bar
Flash pressure, P*" 1 bar 1 bar

Conditions for the numerical analysis

Table 3 lists the methods compared for generating
the quadrature and the type of moments employed by
them. The analysis of the efficiency and robustness
of these algorithms was carried out by calculating the
computational cost and the errors in the reconstructed
moments.

The computational cost was measured by the
function clock, inside the file time.h (in C language).
This function was called before and after each
routine that computes the quadrature and, therefore,
the reported CPU clocks are just for the quadrature
computation.

The error of the reconstructed moments was
calculated as the mean square of the relative errors
(MSRE) of the moments between the analytical
moments, given by Equations (1) or (2) (u, , ), and the
reconstructed moments, given by Equations (4) or (5)
(K4 econsy)> @ccording to:

2

2n-1 _
MSRE = LZ ”’kadiﬁ l'lk,reconst (40)
21 i o dise

Test 1: Efficiency of the methods. The parameter C
was kept equal to 1 and the computational cost and the
MSRE were computed for all cases, varying the number of
quadrature points from 3 to 20. Ten runs of the computer
program were used to evaluate the computational cost,
giving its mean value and standard deviation.

Table 3. Methods analyzed.
Method

Type of moments

LQMDA (Sack and Donovan, 1972) Generalized
Chebyshev Algorithm (Chebyshev, 1858) Generalized

LQMDA (Sack and Donovan, 1972) Regular
Chebyshev Algorithm (Chebyshev, 1858) Regular
GWA (Golub and Welsch, 1969) Regular
PDA (Gordon, 1968) - PDAI Regular
PDA (Lage, 2007) - PDA2 Regular

Test 2: Choice of distribution variable. The value
of the parameter C was varied from 0.5 to 2.0 and its
influence on the values of the 20 first reconstructed
moments was analyzed for methods using either
regular or generalized moments. Besides, for each
value of C, the maximum number of quadrature points
that can be computed by the method (n,, ) and the
associated MSRE were evaluated as a measure of the
method robustness.

Test 3: Choice of orthogonal polynomial family.
Aiming at analysing the influence of the choice of the
orthogonal polynomial family used to compute the
generalized moments, the values of the parameters
of the Jacobi polynomial were varied from -0.5 to
2.0. Some of the chosen parameter values generate
polynomial families known in the literature, as shown
in Table 4. The values of the 20 first reconstructed
moments were compared and the maximum number
of quadrature points achieved by the method (», ) and
the associated MSRE were also evaluated.

Test 4: Adiabatic flash solution. For this test,
only the LQMDA using generalized moments was
employed with C = 1 using the Jacobi polynomials
with o= = 2. The adiabatic flash was computed using
different values for the number of quadrature points
and the accuracy of the following properties of the
streams were analyzed.

» Bubble point temperature of the feed stream at
flash pressure (7%*);

* Dew point temperature of the feed stream at flash
pressure (74%);

* Flash temperature at flash pressure (7%");

» Vapor fraction for the adiabatic flash (y"");

* Mean molar mass for the feed, vapor and liquid
streams (M", M", M").

The mean molar mass of a stream G is given by:

M%=>Mx’, G=F,LV (41)

These properties were compared to those
obtained by using a uniform discretization of the
feed molar fraction distribution using 10 to 10,000
pseudocomponents.

The moments for the liquid and vapor streams were
computed from the flash results. Then, for each stream,
a new characterization was calculated by computing a
new Gauss-Christoffel quadrature. This was used to

Table 4. Parameters of the Jacobi polynomial families.

Polynomial Family o B
Chebyshev (1* order) -0.5 -0.5
Chebyshev (2" order) 0.5 0.5

Legendre 0 0
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obtain the reconstructed moments of the stream and
the corresponding MSRE values.

RESULTS

Test 1 results

The analysis of the efficiency and robustness of
several algorithms for computing the Gauss-Christoftel
quadrature (see Table 3) is given by the results shown
in Tables 5 and 6 for their computational cost and in
Tables 7 and 8 for the corresponding MSRE values,
considering the truncated gamma distributions given
in Table 1 for the molar fraction.

As expected, the computational cost increases with
the number of quadrature points, The methods using
regular moments are less expensive than those that

employed the generalized moments. This is expected
due to the additional cost of computing the recursion
coefficients for the orthogonal polynomials. However,
this cost increase for the Chebyshev method is not
large.

The PDA2 was the most expensive method among
those using the regular moments. This was expected due
to the increase of operations related to the computation
using the mantissa-exponent format. However, this
made the method more robust than the original PDA
(PDALI), allowing it to compute quadrature rules with
a larger number of points.

In relation to the robustness of the methods, it
can be observed that PDA1 is the least robust, being
able to generate the Gauss-Christoffel quadrature rule
for, at most, 6 quadrature points. The other methods

Table 5. Computational cost for the generation of the Gauss-Christoffel quadrature for the distribution 1, in clocks.

., LQMDA Cheb LQMDA Cheb GWA PDA2 PDA1
gen gen reg reg reg reg reg

3 1353+1.2 8.7£0.5 6.0£0.0 39+04 45+0.6 16.1+£0.6 6.7+0.5

4 141.8 +6.1 10.7+£0.5 7.8+0.5 59+04 7.1+0.6 22.7+1.8 11.8+1.1

5 143.9+12.3 13.1+£2.0 10.0£0.9 7.9+0.8 9.4+1.0 29.8+3.0 11.3+1.0

6 149.1+£0.9 16.4+0.6 13.4+0.6 11.5+£0.6 16.1 +£0.4 37.1+1.2 14.8 +0.5

7 151.7+14 19.1+0.4 159+0.4 1.4+£0.6 17.5+0.6 46.0+1.2 NA

8 155429 23.6+0.7 22.5+£0.8 179+0.8 24.0+4.0 593+£54 NA

9 157.9+£13.5 274+34 27.9+6.1 223423 30.2+5.1 65.3+8.3 NA

10 167.9+4.9 348+0.5 30.3+3.9 32.1+£6.8 34.8+0.5 86.1 £10.0 NA

11 174.0£ 6.6 42.4+£5.6 35.9+4.0 347+1.0 429+04 98.6+5.6 NA

12 185.0£6.9 514+32 423+0.5 39.6+£5.0 59.9+6.5 112.8 £8.7 NA

13 188.0+6.8 52.5+2.1 NA NA NA NA NA

14 198.3+4.2 60.1 +£0.4 NA NA NA NA NA

15 211.0£8.0 68.3+0.7 NA NA NA NA NA

16 2189+7.3 79.9+4.5 NA NA NA NA NA

17 228.3+6.0 88.4+2.8 NA NA NA NA NA

18 236.3+6.8 91.6+7.0 NA NA NA NA NA

19 249.0+7.2 108.8+1.3 NA NA NA NA NA

20 259.2+4.7 119.5+1.2 NA NA NA NA NA

Table 6. Computational cost for the generation of the Gauss-Christoffel quadrature for the distribution 2, in clocks.

n LQMDA Cheb LQMDA Cheb GWA PDA2 PDA1
gen gen reg reg reg reg reg

3 1354+1.1 84+0.5 6.0+£0.0 39403 5.0+0.0 16.5+1.1 7.0£0.0

4 1424+1.1 10.6+0.5 8.0+0.0 6.0+0.0 73+0.5 223+13 11.5+£0.7

5 1450+ 1.3 129+0.3 10.1+£0.3 84+0.5 99+0.3 309+1.1 11.5+0.5

6 148.3£0.7 163+0.5 13.5+0.5 11.5+0.5 163+0.5 37.8+1.1 149+0.3

7 1523+1.5 20.0+0.5 16.9£0.3 17.2+£0.4 18.0+0.5 462+ 1.1 NA

8 156.7+1.6 26.6+10.0 223+0.7 199+£53 22.6+0.5 57.6+0.7 NA

9 160.5+1.7 27.9+0.6 26.8+0.6 23.4+3.1 334+55 69.7+3.5 NA

10 167.0+3.1 359+0.3 29.8+0.4 29.6+0.5 35.1+0.3 83.1+0.7 NA

11 1722 +4.1 425+6.5 36.7+7.5 359+34 42.1+0.3 99.7+6.1 NA

12 179.2£3.0 494+59 NA NA NA NA NA

13 201.7+6.4 572+1.1 NA NA NA NA NA

14 200.4 +8.1 589+3.9 NA NA NA NA NA

15 215.0+£5.4 68.0+£2.3 NA NA NA NA NA

16 224.8+9.7 78.7+0.7 NA NA NA NA NA

17 227.0+5.6 83.8+0.8 NA NA NA NA NA

18 2319+1.4 94.9+0.6 NA NA NA NA NA

19 250.6+7.8 111.0£3.8 NA NA NA NA NA

20 252.4+2.0 1162+ 1.1 NA NA NA NA NA
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Table 7. MSRE in the reconstructed moments for the distribution 1.
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n LQMDA Cheb LQMDA Cheb GWA PDA2 PDA1
gen gen reg reg reg reg reg

3 7.02x10716 1.16x10°13 9.01x107¢ 3.16x1013 3.25x1073 9.40x1071¢ 9.40x101¢

4 2.31x1013 4.73x10°13 2.42x1013 1.87x10715 2.97x10* 7.78x1016 7.78%10°16

5 9.74x1015 1.10x1014 6.60x1015 1.09x1015 2.42x10°% 4.16x10°13 4.16x1015

6 9.24x1015 1.28x1014 1.07x1014 7.35x10°16 1.83x10° 3.40x1015 3.40x10°13

7 2.61x1014 1.04x1014 1.07x1015 5.70x1015 1.33x107 3.81x1015 NA

8 2.10x1014 1.01x1014 6.30x1015 6.58x1071> 9.40x10° 1.28x1014 NA

9 5.70x1014 7.03x1014 421x1015 3.87x10713 6.50x101° 3.90x101¢ NA

10 4.50x1014 431x1014 2.12x1014 7.98x10713 4.46x101 2.83x1013 NA

11 1.80x1013 1.65x1013 2.57x1013 8.30x1015 2.76x1012 1.76x1014 NA

12 2.60x1013 8.14x1014 3.58x1013 6.71x10713 3.63x1012 6.61x1015 NA

13 5.77x1013 2.59x1013 NA NA NA NA NA

14 1.09x1012 4.95x10713 NA NA NA NA NA

15 2.38x1013 1.69x1013 NA NA NA NA NA

16 9.80x1013 2.46x1013 NA NA NA NA NA

17 4.78x10713 5.53x1013 NA NA NA NA NA

18 1.07x1012 8.09x1013 NA NA NA NA NA

19 1.77x10713 1.69x10713 NA NA NA NA NA

20 4.35x10713 2.51x1013 NA NA NA NA NA

Table 8. MSRE in the reconstructed moments for the distribution 2.

n LQMDA Cheb LQMDA Cheb GWA PDA2 PDA1
gen gen reg reg reg reg reg

3 1.73x1014 3.73x10713 1.99x1013 4.17x1016 1.32x1073 2.61x1013 2.61x1013

4 4.64x1014 3.78x1014 2.56x1013 1.09x1013 1.12x10* 2.84x10°13 2.84x1013

5 4.18x1014 421x1014 1.19x1015 1.19x1013 8.70x10° 4.23x1013 4.23x1015

6 2.20x1014 1.54x1014 5.35x1015 4.24x1015 6.37x107 3.84x1015 3.84x1013

7 2.51x1014 3.57x1014 2.38x1013 3.80x10713 4.50x108 3.44x1015 NA

8 4.90x1014 4.16x1014 3.84x1013 1.83x1013 3.10x10° 1.22x10°13 NA

9 3.61x101M 5.33x10M4 6.85x1015 2.20x1013 2.11x1010 6.61x1015 NA

10 4.83x1014 7.99x1014 2.82x1013 1.02x1014 1.38x101! 6.18x10°15 NA

11 8.69x1014 1.47x1013 3.25x1013 3.06x1013 4.56x1013 4.43x10°1 NA

12 7.25%x1014 6.69x1014 NA NA NA NA NA

13 1.21x1013 7.38x10714 NA NA NA NA NA

14 1.66x1013 4.61x1014 NA NA NA NA NA

15 6.66x1014 4.69x1014 NA NA NA NA NA

16 6.87x10714 6.04x1074 NA NA NA NA NA

17 2.54x1013 2.58x1013 NA NA NA NA NA

18 2.79x10713 4.22x10713 NA NA NA NA NA

19 4.45x1013 4.07x1013 NA NA NA NA NA

20 3.61x1013 4.88x1014 NA NA NA NA NA

using regular moments have similar behaviors among
themselves, being able to compute the quadrature rule
up to 12 points for distribution 1 and 11 points for
distribution 2.

When analyzing the MSRE, although there are
some oscillations, it can be noted that the MSRE tends
to increase with the number of quadrature points due to
error accumulation. The only exception was the GWA,
for which the MSRE decreased by orders of magnitude
as n increases. The reason for this behavior is that this
method requires the usage of an additional moment
of order 2n, which is the main factor responsible for
the MSRE values for this method, because the n—
point quadrature can only exactly compute the first 2n
moments. For this method, the increase of the number
of quadrature points increased the accuracy of this
extra moment.

The methods using generalized moments were
able to obtain the Gauss-Christoffel quadrature
rule for more than 20 points for both distributions,
showing that these methods are more robust than
those using regular moments. The MSRE for these
methods were slightly higher than for the other
methods. However, these errors are of the order of
107", which is still very small for generating the
Gauss-Christoffel quadrature rule for a large number
of quadrature points.

Similarly to the results of John and Thein (2012),
the LQMDA and the Chebyshev method were found
to be equivalent in robusteness and computational cost
when both used the regular moment set. However, for
the generalized moment set, the Chebyshev method
is much faster. For instance, considering the largest n
value (11) for which the LQMDA and the Chebyshev
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method were able to compute the quadrature using
both the generalized and regular moment sets for
both distributions, the increase in the computational
cost related to the usage of the generalized moments
is about 376% for LQMDA and only 20% for the
Chebyshev method.

Test 2 results

The effect of the C value used in the definition of the
distribution variable on the moments used to compute
the quadrature rule is shown in Tables 9 and 10 for
molar fraction distributions 1 and 2, respectively.

Felipe C. Chicralla et al.

As can be seen, the range of values for the 20 first
regular moments largely varies with the value of C.
For instance, for C = 0.5, this range span 8-9 orders
of magnitude and for C = 4/3 it spans just 2-3 orders
of magnitude. This corroborates the value of 4/3
suggested by Lage (2007) to mitigate the numerical
truncation errors in the quadrature rule computation,
which involves the subtraction of products of these
moments. Considering just the analyzed values, C
= 4/3 and 1.5 are the best choice for distributions 1
and 2, respectively. Therefore, although it is not
worthwhile to seek for a best C value, as it depends on

Table 9. First 20 generalized and regular moments for the distribution 1 for several C values in the distribution

variable definition.

C 0.5 1.0 1.333 1.5 2.0

k w® I, w® m w® m w® m ® m

0 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10°
1 -1.35x100  1.38x101  -1.35x10°  2.75x101  -1.35x10°  3.67x10°0  -1.35x100  4.13x107  -1.35x10° 5.51x10"!
2 1.34x10°0  2.73x102 1.34x10°  1.09x10 1.34x10°  1.94x10! 1.34x10°  2.45x10! 1.34x10°  4.36x10"!
3 -1.02x10°  6.85x103  -1.02x10° 5.48x102 -1.02x10° 1.30x101  -1.02x10° 1.85x10! -1.02x10° 4.38x10
4 8.39x101  2.02x10°  839x107!  3.24x102  8.39x101  1.02x10"  8.39x101  1.64x10"  8.39x107  5.18x107!
5 -5.85x100  6.71x10%  -5.85x10°0  2.15x102  -5.85x10  9.03x102  -5.85x10!  1.63x10"  -5.85x107  6.87x10!
6 5.12x107  2.41x10*  5.12x1010  1.54x10%2  5.12x1070  8.65x102  5.12x100  1.76x10°"  5.12x107  9.87x10!
7 -3.50x1010  9.19x10°  -3.50x100  1.18x102% -3.50x10"  8.80x102 -3.50x10! 2.01x10" -3.50x10"  1.51x10°
8 3.43x101  3.66x10°  3.43x101  938x103  3.43x101  9.35x102  3.43x101  2.40x1071  3.43x101  2.40x10°
9 225107 1.51x10°  -225x10"  7.73x10%  -2.25x10"  1.03x100  -2.25x107 2.97x10"  -2.25x10"  3.96x10°
10 2.50x107  6.38x10°  2.50x107  6.53x10°  2.50x10"  1.16x107  2.50x101  3.77x107  2.50x107  6.69x10°
11 -1.52x101  2.75x10%  -1.52x100  5.64x103  -1.52x101  1.33x107  -1.52x100  4.88x101  -1.52x101  1.16x10!
12 1.93x101  1.21x10%  1.93x10"  4.95x103  1.93x10"  1.56x100  1.93x101  6.42x107  1.93x107  2.03x10!
13 -1.05x10"  537x107 -1.05x10"  4.40x103 -1.05x107 1.85x101 -1.05x10" 8.57x10! -1.05x107  3.61x10!
14 1.55x101  2.42x107  1.55x101  3.96x103  1.55x107  2.21x10! 1.55x10! 1.16x10° 1.55x107  6.49x10!
15 -741x102  1.10x107 -7.41x102 3.59x103 -7.41x102 2.68x107 -7.41x102 1.57x10° -7.41x102 1.18x10?
16  1.30x10"  5.02x10®%  1.30x10"  3.29x103  1.30x10"  3.27x1070  1.30x107  2.16x10°  1.30x107  2.15x10?
17 -5.20x102  231x10% -5.20x102  3.03x103 -520x102 4.01x107 -5.20x102 2.98x10° -5.20x102 3.97x10?
18 1.11x101  1.07x10%  1.11x100  2.81x103  1.11x10"  4.95x107  1.11x100  4.15x10°  1.11x100  7.35x10?
19  -3.56x102  4.98x10° -3.56x102 2.61x10° -3.56x102 6.15x10" -3.56x102 5.79x10° -3.56x102 1.37x10°

Table 10. First 20 generalized and regular moments for the distribution 2 for several C values in the distribution
variable definition.

C 0.5 1.0 1.333 1.5 2.0

k w® m w® ™ ® k w® m w® m

0 1.00x10° 1.00x10° 1.00x10°  1.00x10° 1.00x10°  1.00x10°  1.00x10° 1.00x10° 1.00x10° 1.00x10°
1 -6.46x10"7  1.96x10"  -6.46x10"  3.92x107  -6.46x10" 5.23x107" -6.46x107 589x107  -6.46x10"  7.85x10
2 2.93x1017  4.71x102  2.93x100  1.89x100  2.93x10"  3.35x10T  2.93x107  4.24x10"  2.93x107  7.54x10!
3 1.09x107  1.32x102  1.09x10"  1.05x107  1.09x10" 2.50x107  1.09x10"  3.56x10! 1.09x107  8.44x10!
4 2.17x107  4.14x103  -2.17x102  6.62x102  -2.17x102 2.09x107" -2.17x102 3.35x10"  -2.17x102  1.06x10°
5 1.25x1017  1.42x103  1.25x100  4.53x102  1.25x<100  1.91x10"  1.25x107  3.44x10" 1.25x10! 1.45x10°
6 4.10x102%  5.18x10*  4.10x102  3.31x102  4.10x102 1.86x101 4.10x102% 3.77x10"  4.10x102 2.12x10°
7 7.69x102  1.99x10*  7.69x102% 2.55x10% 7.69x10% 1.91x107 7.69x10%2  4.35x10"! 7.69x102 3.26x10°
8 6.49x102  7.96x10°  6.49x102 2.04x10% 6.49x102 2.03x10" 6.49x102 522x107  6.49x102 5.22x10°
9 6.89x102  3.28x10°  6.89x102 1.68x10% 6.89x102% 2.23x10" 6.89x10%  6.46x10"  6.89x10? 8.61x10°
10 6.83x10%2  1.39x10°  6.83x102  1.42x102 6.83x102 2.52x10" 6.83x102  820x10"  6.83x102 1.46x10!
11 6.89x102  5.98x10° 6.89x102 1.23x102 6.89x102 2.89x101 6.89x102  1.06x10°  6.89x102 2.51x10!
12 6.91x102  2.62x10°%  6.91x102 1.07x102 6.91x102 3.38x10" 6.91x102  1.39x10°  6.91x10? 4.40x10!
13 6.94x102  1.16x10°  6.94x10% 9.53x103  6.94x102 4.00x107 6.94x102  1.85x10° 6.94x1072 7.81x10!
14 697x10% 522x107  6.97x10% 8.55x10°  6.97x102% 4.78x10 6.97x10%  2.50x10°  6.97x10? 1.40x10?
15 7.00x102  2.36x107  7.00x102  7.75x103  7.00x102 5.78x107' 7.00x102  3.39x10°  7.00x102 2.54x10?
16  7.02x10% 1.08x107  7.02x102  7.08x10°  7.02x102 7.03x10°0  7.02x102  4.65x10°  7.02x10%  4.64x10?
17 7.05x102  4.96x10%  7.05x102  6.51x103  7.05x102 8.62x10" 7.05x102  6.41x10°  7.05x102 8.53x10?
18 7.07x102  2.30x10%  7.07x10%  6.02x10°  7.07x10% 1.06x10° 7.07x10%  8.90x10° 7.07x102 1.58x103
19  7.09x10%2  1.07<10%  7.09x102  5.60x10°  7.09x102 1.32x10° 7.09x102  1.24x10! 7.09x102 2.93x10°
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the distribution, a choice of C within [4/3, 3/2] seems
to be a good rule of thumb.

On the other hand, the value of C had no effect in
the range of values of the generalized moments. This
was expected because the change of variable made in
the distribution function was also carried out in the
orthogonal polynomials to maintain their orthogonality
in the desired interval.

The effect of the distribution variable definition on
the robustness and the efficiency of the methods can
be analyzed from the maximum number of quadrature
points for which the methods were able to generate the
quadrature rule and the corresponding MSRE values,
which are shown in Tables 11 and 12 for molar fraction
distributions 1 and 2, respectively.

As the order of magnitude of the generalized
moments were not affected by the value of C used in
the definition of the distribution variable, the maximum
number of quadrature points does not change with it
for the methods using such moments. Moreover, the
corresponding MSRE values are basically independent
of the C value.

On the other hand, the methods using the regular
moments were affected by the value of C, notably
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PDAI1, whose n__value increased with the C value.
This was not expected because the magnitude of
the regular moments also increased with the the C
value.

The other methods were able to calculate quadrature
rules with 11-12 points without following any specific
pattern. The MSRE values were around 107* - 10715
for the PDA2, LQMDA-reg and Cheb-reg. The MSRE
for GWA were higher, of the order of magnitude of
107 to 107'2, but this can be explained by the error
accumulation caused by the additional moment of
order2n_ .

Test 3 results

The results regarding the choice of the orthogonal
polynomial family to generate the generalized
moments were obtained by varying the values of the
parameters o and B of the Jacobi polynomial family,
The results for the distributions 1 and 2 are shown in
Tables 13 and 14, respectively. It can be observed that
the values of the 20 first generalized moments span a
range that is reduced when the values of a and B were
increased. For the tested values, it was observed that
the generalized moments of the Legendre polynomials

Table 11. Maximum number of quadrature points obtained for the Gauss-Christoffel quadrature for the distribution

1 for several C values in the distribution variable definition and the corresponding MSRE values.

LQMDA-gen Cheb-gen LQMDA-reg Cheb-reg GWA PDA2 PDA1
Rmax MSRE HMinax MSRE HMmax MSRE Rmax MSRE Minax MSRE Rmax MSRE Hinax MSRE
0.500 85 557x10 85 2.42x10M 12 3.58x10B 12 6.71x105 12 3.63x102 12 6.61x100 6 3.40x1071°
0.700 85 2.29x10 85 3.14x102 11 7.57x10 11  9.90x10¢ 11 5.21x10% 11 4.42x1012 6 5.13x101
0.900 85 3.43x102 85 432x10" 11  1.07x10™ 11 8.01x10% 11 4.92x10"2 11 3.36x105% 6  6.64x10°15
1.000 85 5.57x101 85 2.42x10M 12 3.58x101 12 6.71x1075 12 3.63x102 12 6.61x10°% 6 3.40x1015
1.100 85 3.35x10 85 6.93x1072 11 1.91x10™ 11 1.02x10™ 11 4.45x10"2 11 1.20x105 6  2.17x10
1.200 85 1.95x10' 85 290x102 11 3.74x10% 11 9.52x10°'5 11  4.07x<102 11 1.49x10¥ 6 3.73x10
1.300 85 2.89x101 85 3.13x10M 12 4.87x10B 12 2.79x10B 12 6.61x1072 12 5.05x100 6 3.74x10
1.333 85 3.42x102 85 1.83x10' 11 9.82x10° 11 1.19x10™ 11 4.78x102 11 3.85x10"° 7  4.25x10"2
1.500 85 2.60x10'" 85 296x102 11 7.79x10% 11 538x10% 11 4.53x102 11 1.69x10% 7  8.43x105
1.750 85 1.93x101 85 496x102 11 9.17<10% 11 9.79x10% 11 4.13x102 11 17810 7  1.20x104
2.000 85 5.57x101 85 2.42x10' 12 3.58x10B 12 6.71x10%5 12 3.63x102 12 6.61x10%° 7 3.81x105
2.500 85 6.55x102 85 9.60x102 11 4.17<10°% 11 82910 11 2.89x102 11 2.07x10* 7  1.05x10%
3.000 85 2.60x10 85 296x102 11 7.79x105 11 5.38x10 11 453x1012 11 1.69x10% 8 4.66x101

Table 12. Maximum number of quadrature points obtained for the Gauss-Christoffel quadrature for the distribution
2 for several C values in the distribution variable definition and the corresponding MSRE values.

C LQMDA-gen Cheb-gen LQMDA-reg Cheb-reg GWA PDA2 PDA1
0.500 84 4.90x10 84 9.46x10'2 11 325x105 11 3.06x105 11  456x103 11 443x105 6 3.84x1071°
0.700 84 1.48x1013 84 2.73x102 11 1.20x10™ 11 1.25x10% 11  7.95x10 11 1.25x10% 6 1.87x10
0.900 84 8.41x102 84 7.04x102 11 3.42x105 11 593x105 11  9.65x103 11  9.19x10'° 6  1.09x10"3
1.000 84 4.90x102 84 9.46x10'2 11 325x105 11 3.06x101 11 456x101 11 443105 6 3.84x1015
1.100 84 4.76x102 84 530x102 11 2.74x105 11 4.42<10%5 11 220108 11  1.15x10% 6 6.78x10%3
1.200 84 3.85x1072 84 4.70x1072 11 6.56x10°5 11 149105 11 1.49x1012 11 728105 6  2.77<105
1.300 84 2.84x102 84 1.72x10" 11 3.01x10% 11 1.22x105 11 2.33x102 11 1.09x10% 7 7.56x105
1.333 84 8.95x102 84 735x102 11 7.17<10°% 11 1.37x10™ 11  1.44x<102 11 3.50x10% 7 1.56x105
1.500 84 1.01x10'" 84 1.00x10M 11 7.12x10°% 11 2.42x105 11 3.98x10°1 11 2.32x101 7 4.82x1015
1.750 84 7.83x102 84 291x102 11 2.83x105 11 2.75x10™ 11 1.29x102 11 5.51x10% 7 433x105
2.000 84 4.90x10'2 84 9.46x10'2 11 325x105 11 3.06x10% 11  4.56x1083 11  4.43x105 7 3.44x101
2.500 84 1.11x10M 84 593x10"2 11 2.05x<10°% 11 1.53x10°%5 11 1.09x102 11 6.01x105 7  2.40x10"
3.000 84 1.01x10" 84 1.00x10M1 11 7.12x105 11 242x105 11 3.98x108 11 2.32x105 8  1.64x10713
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Table 13. Generalized moments for the distribution 1 for some orthogonal polynomial families.

o 2 2 1 1 0 1 0.5 0 -0.5

B 2 1 2 1 1 0 0.5 0 -0.5

k w® w® w® w® w® w® w® w® w®

0 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10°
1 -1.35%10° -6.23x10! -1.62x10° -8.98x10! -1.17x10° -1.74x10! -6.74x101 -4.49x10! -2.25%10!
2 1.34x10° 3.33x10 1.68x10° 5.05%10" 7.86x10! -1.13x10! 2.11x10? 1.84x1073 -1.24x10!
3 -1.02x10° -4.60x102 -1.39x10° -1.79x10! -3.64x101 1.41x10! 2.88x1072 1.29x10! 1.49x101
4 8.39x10! 4.74x1072 1.07x10° 5.10x1072 1.20x10! -5.86x102 -7.17x102 -9.51x102 -6.62x102
5 -5.85x10! 4.38x1072 -7.95%10! 5.11x103 -2.25%102 2.85%102 5.58x1072 4.22x1072 8.73x1073
6 5.12x101 2.76x1072 6.12x101 -3.89x1073 -4.78%1073 3.33x10% -2.99x102 -1.30x102 8.39x1073
7 -3.50%x10! 4.21x10? -4.70x10"! 1.18x102 8.56x1073 4.67x103 1.73x1072 2.34x1073 -8.33x1073
8 3.43x10! 3.11x102 3.81x10"! -1.91x103 -6.94x1073 4.82x1073 -8.28x1073 3.54x10* 4.82x1073
9 -2.25x1071 3.87x1072 -3.05%x10°! 7.30%1073 4.97x103 3.06x1073 5.97x103 -6.71x10* -2.51x1073
10 2.50x10! 3.31x102 2.58x10! 2.15x10% -3.54x103 3.77x103 2.87x103 5.15%10 1.21x1073
11 -1.52x10! 3.72x102 -2.13x10! 4.95x103 2.57x103 2.79x103 2.81x103 -3.49x10* -6.91x10*
12 1.93x10! 3.41x102 1.86x10" 1.02x1073 -1.92x1073 3.02x103 -1.23x1073 2.35x10* 3.69x10*
13 -1.05x10! 3.66x1072 -1.56x10! 3.70x1073 1.47x103 2.50x103 1.61x103 -1.63x10* -2.59x10*
14 1.55%10 3.47x1072 1.40x101 1.31x103 -1.15x103 2.55x103 -5.76x10% 1.15x10* 1.47x10%
15 -7.41%x10%2 3.62x102 -1.19x10"! 2.97x103 9.19x10* 2.23x103 1.04x103 -8.21x10* -1.21x10*
16 1.30x10" 3.50%x1072 1.09x10! 1.38x103 -7.51x10* 2.22x103 2.81x10% 5.89x10* 6.72x10%
17 -5.20%10% 3.61x102 -9.36x102 2.51x103 6.32x10* 2.02x103 7.36x10* -3.99x10* -6.26x10%
18 1.11x10% 3.52x102 8.71x102 1.34x103 -5.47x10% 1.96x103 -1.44x10* 2.63x10% 3.14x10%
19  -3.56x1072 3.61x1072 -7.51x1072 2.22x103 4.96x10* 1.84x1073 5.71x10* -1.20x10?° -3.27x10*

Table 14. Generalized moments for the distribution 2 for some orthogonal polynomial families.

o 2 2 1 1 0 1 0.5 0 -0.5

B 2 1 2 1 1 0 0.5 0 -0.5

k P w® P w® P e P w® w®

0 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10° 1.00x10°
1 -6.46x10! -3.82x102 -1.04x10° -4.31x10! -8.23x10! 1.77x101 -3.23x10! -2.15x101 -1.08x10!
2 2.93x10"! -1.03x10! 5.43x10! -5.73%102 1.77x10! -2.54x107! -1.63x10! -2.23x107! -2.36x10"!
3 1.09x101 2.23x10! -6.99x102 1.95x10! 1.50x10°! 9.30x102 1.89x10! 1.62x101 1.21x101!
4 2.17x10%2 4.03x1072 -6.92x1072 -7.58x102 -1.43x10! 5.18x102 -4.95%x102 -1.25%10%2 2.20x1072
5 1.25%x10! 6.92x102 9.09x102 2.40%102 5.19x102 -2.39x102 -1.32x102 -3.66x102 -4.61x10%2
6 4.10x102 8.79x1072 -3.66x102 2.04x102 -3.21x10* 2.37x1072 2.41x1072 2.38x1072 1.78x1072
7 7.69%102 6.75%102 2.64x102 -1.67x1073 -1.12x102 9.28x1073 -9.00x103 -6.10x1073 6.73x10*
8 6.49x102 7.74x102 5.01x10% 1.28x102 7.96x1073 6.28%x1073 4.42x103 -1.04x1073 -4.48x103
9 6.89x1072 7.32x1072 8.27x1073 4.97x103 -3.68x103 9.14x1073 1.26x1073 1.83x1073 2.46x1073
10 6.83%1072 7.43%x1072 5.39x1073 7.00%1073 1.34x103 6.30x103 6.78x10* -1.05%1073 -8.72x10™
11 6.89x102 7.39x1072 5.58x1073 5.71x103 -4.08x10* 6.59x1073 1.34x103 4.26%10% 5.05x10°%
12 6.91x1072 7.39x1072 5.07x1073 5.50%x103 1.09x10* 5.82x1073 7.11x10* -1.39x10* 2.23x10%
13 6.94x102 7.39x1072 4.79x103 5.09x103 -2.53x10° 5.48x1073 8.93x10* 3.92x10° -9.16x10°°
14 6.97x102 7.39x102 4.49%103 4.78x1073 5.53x10° 5.09x103 6.82x10* -9.34x10° 4.95x10°6
15 7.00%x1072 7.40%x1072 4.25%103 4.50x1073 -2.12x107 4.78x1073 6.84x10* 2.57x10° -3.92x10°3
16 7.02x102 7.40x102 4.02x103 4.25%1073 6.74x107 4.50x1073 5.93x10* 2.45x107 -1.24x10°3
17 7.05%1072 7.41x1072 3.83x103 4.03x103 1.39x10° 4.25%103 5.65x10* 1.04x10°¢ 2.07x107
18 7.07x102 7.41x1072 3.65%103 3.83x103 1.44x10° 4.03x103 5.12x10* 1.41x10°¢ -1.27x10?
19 7.09%102 7.42x1072 3.49x1073 3.65x1073 2.40x10° 3.83x1073 4.83x10* 1.93x10°¢ -1.36x107

had the largest order of magnitude range, that is, [u
/Pl ~10°and 10 k=1, ..., 20, for the distributions
1 and 2, respectively.

The results for the n, and the MSRE values are
shown in Tables 15 and 16 for the distributions 1 and
2, respectively. The computations using the Chebyshev
polynomials of 1* order (o = p = —0.5) had the lowest
value of n _ for distribution 2 and presented the
highest order of magnitude for the MSRE for both
distributions. The Legendre polynomials (o0 = B =
0) also showed large values for the MSRE for both
distributions. The Jacobi polynomials with a = = 1

or a = = 2 showed low MSRE values, making them
good choices for the cases analyzed.

Test 4 results

For the adiabatic flashes of both distributions,
according to the conditions given in Table 2, the
results for the MSRE values and for some properties
of the equilibrium streams for several numbers of
discretization points are shown in Tables 17 and 18 for
the distributions 1 and 2, respectively. It should be noted
that the MSRE values for the liquid and vapor streams
are those computed after the re-characterization of

Brazilian Journal of Chemical Engineering



Quadrature Algorithms for Phase Equilibrium of Continuous Mixtures

Table 15. Maximum number of quadrature points
obtained for the Gauss-Christoffel quadrature for the
distribution 1 for some orthogonal polynomial families
and the corresponding MSRE values.
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Table 16. Maximum number of quadrature points
obtained for the Gauss-Christoffel quadrature for the
distribution 2 for some orthogonal polynomial families
and the corresponding MSRE values.

LOMDA Cheb LOMDA Cheb
Type Gen gen Type Gen gen
a B Amax MSRE Hmax MSRE o B HAmax MSRE Hmax MSRE
2.0 2.0 85 5.57x101! 85 2.42x1011 20 20 84 4.90x1012 84 9.46x1012
2.0 1.0 85 4.31x1012 85 3.25%1012 2.0 1.0 84 2.32x1012 84 9.62x10°13
1.0 2.0 85 2.86x101 85 1.70x10! 1.0 2.0 84 1.02x10712 84 1.31x10M
1.0 1.0 85 9.07x1012 85 5.47x10M 1.0 1.0 84 3.61x1012 84 5.97x1012
0.0 1.0 85 4.13x101 85 7.26x1012 0.0 1.0 84 1.51x1010 84 3.77x1010
1.0 0.0 85 5.46x1012 85 1.44x101 1.0 0.0 83 3.60x1010 84 2.74x1010
0.5 0.5 85 2.99x10°1 85 1.52x101! 0.5 0.5 84 1.56x101 84 3.31x1012
0.0 0.0 85 2.36x101 85 3.90x101! 0.0 0.0 84 6.85%10710 84 3.51x1010
0.5 -0.5 85 2.16x1010 85 4.82x1010 -0.5 -0.5 81 1.72x10°10 82 1.15x1010
Table 17. Stream properties for the adiabatic flash for distribution 1.
n Vi T Plash yflash M M M- MSREF MSRE" MSRE”
Gauss-Christoffel Quadrature
3 462.992  539.071 478.222  0.32949 155.087 131.721 166.568 1.04x10°15 2.17x10°15 4.05x10°15
4 461.939 539.336 478.312 0.31792 155.087 132.229 165.741 1.86x10°15 5.28x10° 7.28x10°15
5 461.805 539.342  478.122  0.31756 155.087 132.281 165.699 7.51x10°15 9.61x10°15 4.99x10°15
6 461.791 539.342 478.121 0.31780 155.087 132.247 165.726 3.03x10 8.34x1071 1.84x10°15
7 461.790 539.342  478.129  0.31779 155.087 132.248 165.725 1.50x10° 14 8.21x101 2.49x10°14
8 461.790 539.342  478.128  0.31779 155.087 132.250 165.724 1.80x10°14 8.10x1014 4.30x104
10 461.790 539.342  478.128  0.31779 155.087 132.250 165.724 5.20x107 4.22x10°13 1.41x10
12 461.790 539.342  478.128  0.31779 155.087 132.250 165.724 2.29x10°13 1.22x10°13 1.08x10°1
14 461.790 539.342  478.128 0.31779 155.087 132.250 165.724 6.07x10°13 1.30x1013 1.20x10°1
20 461.790 539.342  478.128 0.31779 155.087 132.250 165.724 2.03x1013 3.68x1013 4.85%x10°13
30 461.790  539.342  478.128  0.31779  155.087 132.250 165.724 1.85x101 8.20x1013 1.48x10°12
50 461.790 539.342  478.128  0.31779 155.087 132.250 165.724 7.96x1012 5.38x10°13 1.82x10°13
80 461.790 539.342  478.128 0.31779 155.087 132.250 165.724 2.02x101 2.16x1012 1.65x10°12
Uniform Discretization
10 470.467 543.272  476.038  0.14931 157.854 133.576 162.115 NA NA NA
20 463.704  540.803  477.821 0.29001 155.739 132.517 165.225 NA NA NA
40 462.225 539971 478.068 0.31161 155.268 132.304 165.662 NA NA NA
80 461.895 539.635 478.116 0.31624 155.146 132.260 165.731 NA NA NA
100 461.857 539.573  478.121 0.31677 155.130 132.255 165.735 NA NA NA
200 461.809 539.454 478.127 0.31748 155.104 132.250 165.735 NA NA NA
400 461.796  539.398  478.128  0.31767 155.094 132250 165.731 NA NA NA
800 461.793  539.370 478.128  0.31773 155.090 132.250 165.728 NA NA NA
1000 461.793 539.364  478.128 0.31774 155.090 132.250 165.727 NA NA NA
2000 461.792  539.353  478.128 0.31776 155.088 132.250 165.725 NA NA NA
4000 461.792  539.347  478.128  0.31776 155.088 132.250 165.725 NA NA NA
8000 461.791 539.345  478.128  0.31777 155.087 132.250 165.724 NA NA NA
10000 461.791 539.344  478.128  0.31777 155.087 132.250 165.724 NA NA NA

each stream, being similar to the MSRE results shown
in Section 4.1 for the feed distributions.

It can be observed that the discretization using the
Gauss-Christoffel quadrature was not only capable of
representing well both mixture properties, but it also
does this with a much smaller number of discretization
points. For both distributions, 8 quadrature points
were enough to accurately represent the properties of
these mixtures. For uniform discretizations of these
mixtures, Tables 17 and 18 show that the number of
pseudocomponents has to be around 10* in order to
achieve similar accuracy in the computation of the
mixture properties.

Above 8 quadrature points, the Gauss-Christoffel
quadrature discretization obtained the same values for
all the properties of the streams, showing the good
convergence of this method. The usage of more than §
quadrature points only increased the MSRE values as
already discussed.

For the uniform discretization method, it can be seen
that its convergence is very slow, which can be verified by
the fact that the stream properties still vary for n > 1000.
Due to the large number of pseudocomponents that is
needed, their molar fraction became quite low. This leads
to a large accumulation of truncation errors that precluded
the computations for » > 10000 for both distributions.
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Table 18. Stream properties for the adiabatic flash for distribution 2.

Felipe C. Chicralla et al.

n Y i Téew Plash yfash MF M M- MSREF MSRE" MSRE"
Gauss-Christoffel Quadrature
3 555.174  654.723  595.723  0.42818 237324 196.014 268.257  1.73x10M 1.67x10°1 3.95x10716
4 551.918  654.896  594.212  0.42635 237.324 197314  267.060  4.64x10“  4.38x105  4.35x10
5 551.263  654.899  594.138  0.42662 237324 196.756  267.509  4.18x10 L11x10%  421x10M
6 551.156  654.899 594221 0.42623 237.324 196.843  267.396  2.20x10%  221x10%  2.43x10M
7 551.141  654.899 594203 0.42644 237324 196.852 267.415 2.51x10%  2.24x10M 1.21x1013
8 551.139  654.899 594205 0.42641 237324 196.844 267.417  4.90x10 1.70x1014 5.45x1013
10 551.139  654.899 594205 0.42640 237324 196.846 267.415 4.83x10  5.08x10 5.64x1013
12 551.139  654.899 594205 0.42640 237324 196.846 267.415  7.25x10™  2.05x10713 1.20x1012
14 551.139  654.899  594.205 0.42640 237324 196.846 267.415  1.66x103 3.30x1013 1.96x1012
20 551.139  654.899 594205 0.42640 237.324 196.846  267.415  3.61x103 1.81x1013 1.79x1012
30 551.139  654.899  594.205 0.42640 237.324 196.846 267.415  4.68x10°" 6.02x10°4  2.82x1012
50 551.139  654.899 594205 0.42640 237324 196.846 267.415 1.76x102  4.23x10713 1.34x101
80 551.139  654.899 594205 0.42640 237.324 196.846  267.415  5.04x103 3.79x1012 9.91x1012
Uniform Discretization
10 551.288  657.766  594.440  0.42681 237.954 196.675 268.691 NA NA NA
20 551.144 656338  594.288  0.42502 237.718 196.798  267.966 NA NA NA
40 551.178  655.615 594243  0.42559  237.527 196.826  267.683 NA NA NA
80 551.161  655.255 594224  0.42599 237426 196.836 267.548 NA NA NA
100 551.157  655.184  594.220 0.42607 237.405 196.838  267.522 NA NA NA
200 551.148  655.041 594.213 0.42624 237365 196.842  267.468 NA NA NA
400 551.143  654.970 594209 0.42632 237344 196.844  267.442 NA NA NA
800 551.141 654934 594207 0.42636 237.334 196.845 267.428 NA NA NA
1000  551.140 654.927 594207 0.42637 237332 196.845 267.426 NA NA NA
2000  551.139 654913 594206 0.42639 237.328 196.845 267.420 NA NA NA
4000  551.139 654906 594206 0.42640 237326 196.846  267.418 NA NA NA
8000  551.139  654.902 594.205 0.42640 237.325 196.846 267.416 NA NA NA
10000  551.139  654.901  594.205 0.42640 237.325 196.846 267.416 NA NA NA
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the two mixtures analyzed in this work. The only
disadvantage in using generalized moments is
their larger computational cost. The usage of the
generalized moment set made the LQMDA almost
five times slower, whereas the Chebyshev algorithm
showed just a 20% increase in its computational
cost. Therefore, the Chebyshev algorithm using
generalized moments is recommended to be used in
the QMoM.

Due to the small number of pseudocomponents
needed for accurate results, the QMoM proved to
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for performing thermodynamic calculations for
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and Petitfrere et al. (2014).

Paulo L. C. Lage acknowledges the financial
support from CNPq, grants #456905/2014-6 and
305265/2015-6. Argimiro R. Secchi acknowledges the
financial support from CNPq, grant #302893/2013-0.
This study was financed in part by the Coordenagao de
Aperfeicoamento de Pessoal de Nivel Superior - Brasil
(CAPES) - Finance Code 001.

NOMENCLATURE

Gamma distribution parameter
Terminal matrix

Recursion coefficient for an orthogonal
polynomial family of order &

Gamma distribution parameter
Recursion coefficient for an orthogonal
polynomial family of order k&

Upper limit for the change of variable
Recursion coefficient for an orthogonal
polynomial family of order &

Heat capacity

Diagonal matrix

Molar fraction distribution function
Distribution normalization factor
Enthalpy

v Enthalpy of vaporization

Enthalpy of formation

NN

S
B

Brazilian Journal of Chemical Engineering



Quadrature Algorithms for Phase Equilibrium of Continuous Mixtures 1317

I Identity Matrix

1 Distribution variable

K Equilibrium constant

M Molar mass

M Mean molar mass

MSRE Mean square error

N Number of quadrature points

P Pressure

P(x) Christoffel orthogonal polynomial of order &
p,(x)  Orthogonal polynomial of order &

q, Eigenvector of the terminal matrix, associated
with the eigenvalue x,

T Temperature

X, Abscissa of the Gauss-Christoffel quadrature

Greek letters

o Parameter for the Jacobi polynomials

B Parameter for the Jacobi polynomials

n, Recursion coefficient of the Christoffel

orthogonal polynomial of order &

Y Vaporized fraction

r Gamma function

. Regular moment of order &

n”  Generalized moments of order &

® Weight from the Gauss-Christoffel quadrature

0 Recursion coefficient of the Christoffel
orthogonal polynomial of order &

Superscripts

bub Bubble point

dew  Dew point

F Feed stream

flash  Flash condition

G Feed, vapor or liquid stream

gi Ideal gas condition

L Liquid stream

sat Saturation condition

vV Vapor stream
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APPENDIX

Properties Correlations

In this appendix, the correlations found in the
literature for the estimation of the properties of the
generated pseudocomponents are listed.

Saturation Pressure (Huang and Radosz, 1991):

B, =9.5046+0.016104M (42)
B, =exp(5.0237+0.72702in (M )) (43)
P,, =100000exp (B, — B, /T) (44)

where [P | = Pa, and [T] = K.
Ideal Gas Heat Capacity (Marano and Holder,
(1997):

Cy' = (-0.0919055+0.011308T (K) - 637920107 (K ) +1.4060510° "
(N, +0.284370) R

where N, = (M - 2)/14, R is the ideal gas constant and
[C.#1=[R].

Ideal Gas Enthalpy of Formation (Marano and
Holder, 1997):

hff = —8.3206(NC +2.111890)RT0 (46)
where [hfgi] =[R][T,] and T, = 298.15 K.

Enthalpy of Vaporization (Marano and Holder,
1997):
AH" =(1+1.99516(N, —0.112756))RT,  (47)

where [AH"®] = [R][T].

0
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