Mineração

Avaliação de capacidade de um depósito típico de níquel laterítico aproveitado através de rota de lixiviação ácida sob pressão

(Capacity assessment of a typical PAL lateritic nickel deposit)

Ruy Lacourt Rodrigues

Engenheiro de Minas, Universidade Federal de Ouro Preto E-mail: ruy.lacourt@vale.com

Valdir Costa e Silva

Professor Associado, Universidade Federal de Ouro Preto E-mail: valdir@demin.ufop.br

Resumo

Avaliou-se a capacidade de produção de uma operação de níquel laterítico, aproveitado através de rota de processo de lixiviação ácida sob pressão, para escalas de produção entre 45000 t/ano Ni e 300000 t/ano Ni, usando parâmetros da indústria.

A análise econômica foi feita utilizando a metodologia de fluxos de caixa descontados e análise de sensibilidade. Os indicadores de desempenho foram interpretados no contexto de avaliação de empreendimentos em mineração, o que permitiu delinear cenários para a recomendação de escala.

A escala recomendável é de 120000 t/ano Ni, que representa a melhor solução de compromisso tendo em vista a rentabilidade do empreendimento, a maturação da tecnologia e o tamanho do mercado.

Palavras-chave: Avaliação econômica em mineração, definição de capacidade, níquel laterítico, lixiviação ácida sob (alta) pressão (*PAL*, *HPAL*, *HiPAL*).

Abstract

The economic evaluation of production capacity for a lateritic nickel operation using pressure acid leach was performed for capacities from 45000 t/year Ni to 300000 t/year Ni using industry parameters.

The economic analysis was performed using discounted cash flow and sensitivity analyses. Performance indicators were interpreted in a mine valuation context, allowing to establish scenarios for capacity recommendation.

The recommended capacity is 120000 t/ano Ni, which represents the best compromise considering profitability, the maturation of the technology and market size.

Keywords: Mining valuation, capacity definition, lateritic nickel, (high) pressure acid leaching (PAL, HPAL, HiPAL).

1. Introdução

As lateritas de níquel, em especial aquelas em que o aproveitamento é feito através de rotas de lixiviação ácida sob pressão, são a maior fonte potencial para o crescimento da oferta do metal.

Os projetos que vêm sendo desenvolvidos através dessa linha tecnológica são de grande porte, a fim de que sejam capturadas economias de escala e diluídos os gastos com utilidades e infra-estrutura.

A definição da capacidade desses empreendimentos é complexa, pois envolve uma tecnologia que ainda está em amadurecimento, grande capital investido e operações com baixo teor de alimentação.

2. Metodologia e premissas

Considerando a qualidade, tamanho e locação de cada depósito mineral, não há procedimentos bem estabelecidos para a definição de capacidade de empreendimentos em mineração. A escolha da escala de produção é, em geral, delineada através de tentativa e erro a partir dos parâmetros para a definição de capacidade, ponderada pela análise do cenário estratégico que afeta cada projeto.

Uma revisão sobre o aproveitamento de níquel laterítico através das várias rotas de processo pode ser encontrada em Dalvi, Bacon e Osborne (2004), onde são feitas referências à capacidade mínima para projetos de aproveitamento de níquel laterítico por rotas de lixiviação ácida sob pressão para as condições de mercado da época.

Um depósito-tipo de tamanho médio foi definido a partir dos dados dos projetos em desenvolvimento e implementação e estabeleceu-se o plano de aproveitamento para várias escalas de produção a partir de parâmetros da indústria (Rodrigues, 2007).

Em seguida, desenvolveu-se a análise econômica do depósito para várias escalas de produção, utilizando a metodologia de fluxos de caixa descontados, o que permitiu estabelecer cenários que levam à recomendação de escala.

As premissas e fontes de dados principais para a análise econômica são mostradas na Tabela 1.

A análise de sensibilidade foi feita através da técnica de Monte Carlo, os parâmetros variáveis são, também, mostrados na Tabela 1.

Considerações sobre as escalas de produção estudadas

Foram feitos estudos para cinco escalas de produção diferentes (em 1000 t/ano Ni): 45, 60, 120, 200 e 300.

A despeito de grande variação quanto ao tamanho dos recursos, o limite superior de capacidade para os projetos em estudos e implementação é de 60000 t/ano Ni, conforme mostra a Figura 1.

A implementação do empreendimento em escalas muito grandes implica investimentos muito altos e o fornecimento de uma fatia de mercado muito expressiva a partir de uma única operação, dependente de tecnologia ainda em maturação, aumentando os riscos e limitando a escala dos empreendimentos.

Portanto as simulações a escalas muito elevadas consistem em um exercício que se justifica para se estabelecer uma amplitude de escala suficiente, a fim de se definir a capacidade recomendável.

Tabela 1 - Premissas	е	fontes	de	dados.
----------------------	---	--------	----	--------

Parâmetro (unidade)		Fonte	Valor / Cenário			
			Caso base	Análise de sensibilidade		
Taxa de desconto			12%	8% a 20%		
Preços (USD/lb)	Ni	Adaptados de Neudorf e Huggins (2004)	5,5	4,5 a 8,0		
	Со		10	8 a 15		
Investimentos iniciais (USD/lba)		Adaptados de Dolan e Nendick (2004)	20	16 a 25		
Custos operacionais (USD/Ib)		Hand (2006), ajustes conforme Johnston (2006)	2,0	1,5 a 3,0		
Taxa	ação	DNPM (2000)	Toda a produção para exportação		Toda a produção para exportação	
Financiamento		Barbosa (2007)	40% dos investimentos a juros de 6,5% a.a. com 3 anos de carência e 5 anos para amortização do principal			

3. Resultados e discussão

A Figura 2 mostra as relações entre o valor presente líquido e os investimentos iniciais e a escala de produção.

A análise a partir do valor presente líquido indica como recomendável a escala de 200000 t/ano Ni. Entretanto os investimentos são muito altos e a fatia de mercado fornecida é, também, muito grande.

Os investimentos iniciais para as escalas até 60000 t/ano Ni ou 120000 t/ano Ni, embora elevados no contexto da indústria de mineração, têm suporte na base de dados da indústria (Rodrigues, 2007, op. cit.); a partir daí, os valores são muito elevados.

A análise através da eficiência do uso do capital - relação entre o valor presente líquido do empreendimento e o valor presente dos investimentos - e da taxa interna de retorno, mostrada na Figura 3, oferece maiores subsídios para a decisão.

A eficiência de capital é um parâmetro mais adequado que o valor presente líquido para a escolha da escala recomendável, na medida em que esta-

belece a relação entre valor recuperado e os investimentos. Considerando esse parâmetro, a escala recomendável é de 120000 t/ano Ni.

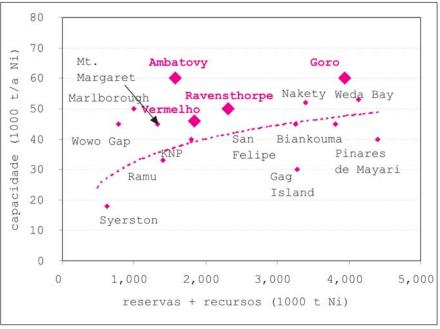


Figura 1 - Capacidade vs. metal contido para os projetos em desenvolvimento e implementação.

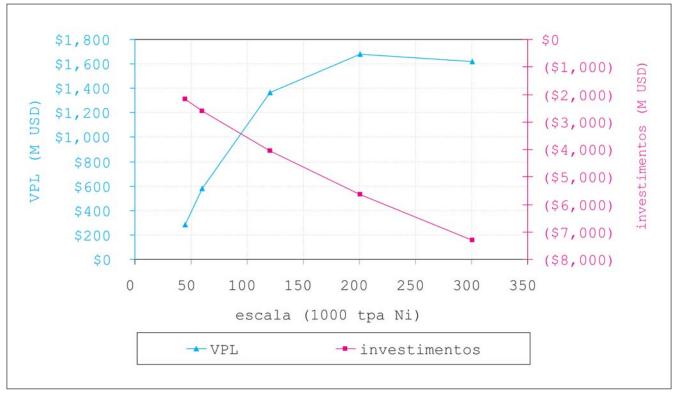


Figura 2 - Valor presente líquido e investimentos vs. escala.

O valor recomendável a partir da taxa interna de retorno é 200000 t/ano Ni, mas uma análise incremental da taxa interna de retorno mostra que os ganhos entre 120000 t/ano Ni e 200000 t/ano Ni são marginais. A taxa interna de retorno é de 14,6% para a escala de 45000 t/ano Ni - um valor no limite de aceitação na indústria de mineração. Para uma taxa de barreira (*hurdle rate*), mais alta, de 20% - que pode se justificar em condições de maiores riscos -, a escala mínima aceitável seria pouco superior a 100000 t/ano Ni.

A Figura 4 mostra os resultados obtidos para a eficiência de capital e para a taxa interna de retorno nas análises de sensibilidade.

Para uma eficiência de capital maior que 0.3, a um risco menor que 20%, a menor escala recomendável é 120000 t/ ano Ni. Os riscos de que a eficiência de capital seja menor que 0.3 são de 40% para a escala de 300000 tpa Ni

Para uma taxa interna de retorno superior a 15%, a um risco máximo de 20%, as escalas recomedáveis são superiores a 120000 t/ano Ni.

4. Conclusão

A análise feita na discussão dos resultados do caso-base não é conclusiva, tendo em conta que o valor recomendável para a escala de produção a partir da análise de diferentes indicadores não converge. A análise de sensibilidade permite estabelecer cenários onde os riscos podem ser avaliados e a escala recomendada é de 120000 t/ano Ni.

Considerando, ainda, o porte dos investimentos, o tamanho do mercado e o estágio de maturação da tecnologia de aproveitamento, a escala de produção recomendada para o empreendimento é 120000 t/ano Ni.

Em outros contextos, tais como para o aproveitamento de cobre e ouro, uma abordagem comum para grandes depósitos é delinear reservas e estabelecer os investimentos para a implementação dos projetos, visando a uma vida do empreendimento entre 15 e 20 anos, no máximo - uma escolha que é arbitrária, mas é usual. Adotando-se esses parâmetros para o tamanho de depósito definido, o

valor recomendável de escala seria de 90000 t/ano Ni a 120000 t/ano Ni de capacidade, os valores convergem com a conclusão anterior.

5. Agradecimentos

Os autores agradecem ao grupo Vale e à Universidade Federal e Ouro Preto pelo apoio durante o desenvolvimento do projeto de pesquisa.

6. Disclaimer

Os autor principal é empregado do grupo Vale, que apoiou a pesquisa. Os dados utilizados na pesquisa, no entanto, são todos de fontes públicas e não refletem a opinião ou visão do Grupo sobre o tema de pesquisa.

7. Referências bibliográficas

BARBOSA, Fabio. 1Q07 results - May 4, 2007: CVRD. Disponível em: http://www.cvrd.com.br/cvrd/media/

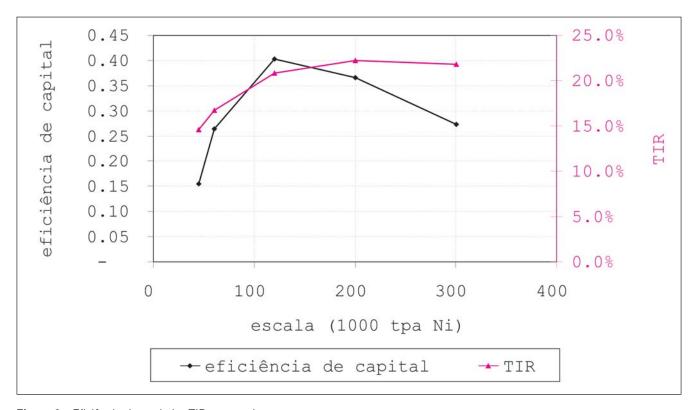


Figura 3 - Eficiência de capital e TIR vs. escala.

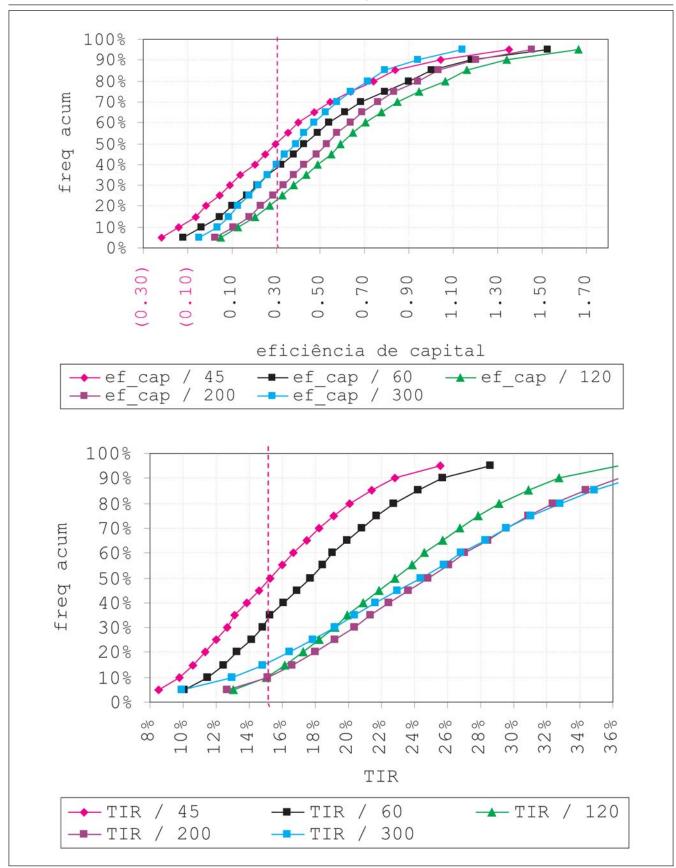


Figura 4 - Eficiência de capital e TIR vs. escala - sensibilidade.

Cvrdweb1Q07.pdf>Acesso em: 21 Mai. 2007. p. 11.

DALVI, A., BACON, G., OSBORNE, R..
The past and the future of nickel laterites.
In: PDAC 2004 International convention,
2004, Toronto. Toronto: Prospectors and
Developers Association of Canada, 2004.
Disponível em: http://www.pdac.ca/pdac/publications/papers/2004/techprgm-dalvi-bacon.pdf> Acesso em:
20 nov. 2006.

DNPM. Informações básicas para o investidor - tributação da mineração no Brasil - análise da situação atual e das mudanças propostas na reforma tributária - Brasília, 2000. Disponível em: h t t p://www.dnpm.gov.br/mosta_atquivoasp?IDBancoAtquivoArquivo=368>. Acesso em: 29 mai. 2006.

DOLAN, D., NENDICK, R. Beating USD10 per pound of installed capacity for a laterite nickel plant. In: IMRIE, W. e LANE, D. (eds.). International Laterite Nickel Symposium - 2004. Charlotte, NC, U.S.A, Proceedings. Warrendale, PA: TMS (The Minerals, Metals & Materials Society), 2004. p. 55-62.

HAND, S. Inco: Inco. Disponível em: <www.inco.com/investorinfo/ presentations/pdf/ BMONesbittFebruary27-06slides.pdf >. Acesso em: 29 mar. 2006.

JOHNSTON, Peter. Minara Presentation - February 2006: Minara Resources. Disponível em: <www.minara.com.au/uploads/ 060227% 20-% 20 Minara% 20 presentation % 20 Final.pdf >. Acesso em 29 mar. 2006. p. 6.

NEUDORF, D., HUGGINS, D. An alternative nickel laterite project development model. In: IMRIE, W. e LANE, D. (eds.). International Laterite Nickel Symposium - 2004, Charlotte, NC, U.S.A, Proceedings. Warrendale, PA, USA: TMS (The Minerals, Metals & Materials Society), 2004. p. 63-76.

RODRIGUES, R. Definição de capacidade de um depósito médio de níquel laterítico aproveitado através de rota de lixiviação ácida sob pressão. Ouro Preto: Programa de Pós-Graduação em Engenharia Mineral, Universidade Federal de Ouro Preto, 2007. (Dissertação de Mestrado em Engenharia Mineral).

Artigo recebido em 07/03/2008 e aprovado em 20/04/2008.

Descubra as muitas informações da:

Geologia, Mineração, Metalurgia & Materiais e Engenharia Civil.

Assine e publique na Rem

Conheça o nosso novo site: www.rem.com.br