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ABSTRACT
The present work emphasizes the importance of testing hypothesis on homogeneity of covariance matrices from multivariate

k populations. The violation of the assumption of the homogeneity of covariance matrices affects the performance of the tests and
the coverage probability of the confidence regions. This work intends to apply two tests of homogeneity of covariance and to
evaluate type I error rates and power using Monte Carlo simulation in normal populations and robustness in non normal populations.
Multivariate Bartlett s test (MBT) and its bootstrap version (MBTB) were used. Different configurations are tested combining
sample sizes, number of variates, correlation and number of populations. Results show that the bootstrap test was considered
superior to the asymptotic test and robust, since it controls the type error I rate.

Index terms: Simulation; type I error rate, power, Monte Carlo.

RESUMO
O presente trabalho ressalta a importância da aplicação de testes sobre a hipótese de igualdade de matrizes de covariâncias de

k

 

populações. A violação da pressuposição da homogeneidade das covariâncias afeta diretamente a qualidade dos testes e a
probabilidade de cobertura das regiões de confiança. Por essa razão, neste trabalho propõe-se aplicar dois testes de homogeneidade de
covariâncias e avaliar as suas performances mediante uso de simulação Monte Carlo em populações normais e a robustez em situações
não-normais avaliando-se o erro tipo I e o poder. Os testes utilizados foram: teste de Bartlett multivariado e a sua versão bootstrap.
Foram feitas combinações entre os tamanhos amostrais, número de variáveis, correlação e número de populações. Os resultados
obtidos permitiram concluir que o teste de bootstrap foi considerado superior aos assintótico e robusto, controlando o erro tipo I.

Termos para indexação: Simulação; erro tipo I; poder, Monte Carlo.
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 INTRODUCTION

In the multivariate inference, in general, is assumed
normality, homogeneity of the covariance matrices and
independence of the sample observations. The violation
of the assumption of covariance homogeneity has directly
effects on tests performance and on the coverage
probability of the confidence regions. For this reason tests
for the null hypothesis of equality of k populational
covariance matrices must be applied. For the specific case
of normal samples there are already several usual and
reliable tests in the literature.

The researchers in general have the need of testing
hypotheses on populational parameters. When testing the
hypotheses the researcher takes the risk of making wrong
decisions, in other words, to incur in errors. These are
called type I and type II errors. The type I error is committed

when ones rejects the null hypothesis given that it is true
and the probability of incurring in this type error is given
by the significance level 

 

(MOOD et al., 1974). It is not
possible to control at the same time the probabilities of the
two types of error, although the type I error rates can be
controlled. The type II error incurs when one accepts the
null hypothesis when it is false and the probability

associated to that error is . For any tests of hypotheses

or decision rules have acceptable results, they should be
planed to minimize the decision errors. This is not a simple
task, because for a settled sample size, the attempt to reduce
certain type of error is accompanied by the increment of
the other. It should be noticed that the type I and type II
error rates are inversely proportional (BORGES &
FERREIRA, 2002). A balance among these error rates is
essential, so that the type II error rate is not excessively
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increased. Usually, a researcher determines the value and
ignores the values . As consequence it is easier to incur
in a type II than in a type I error. The probability (1 )  of
not incurring a type II error is the power of the test, that is
the probability of rejecting 0H , given it is false. The power
of a test (Borges & Ferreira, 2002) is the probability of
detecting differences among treatment levels when they
really exist.

The homogeneity tests assume multivariate
normality. If this assumption was violated these tests are
sensitive on the control of the type I error and on the
power. They do not differentiate between the lack of
normality and possible covariance heterogeneity. The test
of equality of k  covariance matrices proposed by Bartlett
(1954), one of the most used, is strongly affected when the
assumption of multivariate normality is violated. The
bootstrap tests have been suggested in the literature as
an alternative to accomplish inference in the most varied
situations. In the specific case of the covariance matrices
comparisons, the tests were already successfully used,
however, in very restricted situations.

This article aimed to propose a bootstrap version
of the multivariate Bartlett test for the equality of covariance
matrices and to compare its performance with the
asymptotic approach, evaluating the power and the type I
error rates in normal and non-normal situations, where this
last case was used to check the robustness.
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METHODOLOGY

Two tests were considered in this article: the
multivariate Bartlett s test (MBT) for equality of covariance
matrices and its respective bootstrap version (MBTB).

Let 1 2, ,..., ,...,
ii i ij in be a random sample of

size in from the ith population, where

1 2, ,...,T
ij ij ij ijp is the random p-dimensional

vector from the jth sample unit and ith population,

considering 1, 2,...,i k and 1,2,..., ij n . Let the ith

populational mean vector be (1 )i p , the covariance

matrix be ( )i p p and 
1
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The multivariate test of Bartlett for covariance matrices

Under the alternative hypothesis, 1H , from
equation ( 1) and under multivariate normality, the likelihood
function is given by:

The likelihood function (2) was maximized. Thus,
the maximum likelihood estimators of the ith populational
mean vectors and covariance matrices were:

(1)
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(3)

for 1, 2,...,i k .

Under the null hypothesis 0H

 

and multivariate
normality the likelihood function is:
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Proceeding in the same previous way the
populational mean vectors i  estimators were identical to
those of the equations (3) and the common populational

covariance matrix estimator was:

1

k

i i
i

n

n
(5)

It is convenient to substitute the covariance
matrices maximum likelihood estimators by the unbiased
estimators given by:
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The modified likelihood ratio statistic is
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As 2 ln is asymptotically distributed as 2

(MOOD et al., 1974), the test statistic of the MBT is given
by:

2
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n k S n S (8)

where 1 1 2.k p p

 

The degrees of freedom n

were obtained comparing the dimension of the unrestricted

likelihood function [ ( 1) 2]pk p p k  with the dimension

of the restricted likelihood function [ ( 1) 2]pk p p .

Bartlett (1954) proposed a correction to improve the
asymptotic properties of the approach. The modified test
statistic is:

2
2

1

1

1 1 2 3 1
1

1 6 1 1

ln 1 ln .

k

i i

k

p i i
i

p p

n n k p k

n k S n S

(9)

Bootstrap test

A bootstrap version of the asymptotic test
presented in section 2.1 was proposed. The null hypothesis

0H  was imposed combining the k  multivariate samples

in a common sample of size 
1

k

i
i

n n with p-dimensional

observations. The original observations were replaced by

deviations .ij ij i . According to Johnson &

Wichern (1998), those deviations do not change the ith
sample variability, since they represented translations in
the original scale given by the sample mean. That
precaution was taken to avoid those potential differences
in the population means could be responsible for
significantly differences in the results of bootstrap test for
comparing covariance matrices.

The multivariate bootstrap test of Bartlett for
comparing covariance matrices was denoted MBTB. The

basic ideas is to impose the null hypothesis 0H combining
the samples into one, to resample with replacement the
combined sample reproducing k new samples of size in ,

1, 2,...,i k , preserving the dimension and then computing
the test statistics using equation (9). The results obtained
in B resamples were compared with the statistic values
obtained in the original samples. If the proportion of values
of the bootstrap distribution that overcame the test original
values was inferior to the nominal significance level the

hypothesis 0H should be rejected. The algorithm for the

bootstrap test, MBTB, is given by:

1.determine the 2 statistic in the original sample

using (9);

2.create the set
111 1 1,..., ,..., ,...,

kn k kn

using the p-variate residual deviations from all sample
observations;

3.resample  with replacement, reproducing new

k

 

samples, where the elements were deviations 
*
ij

random selected from , given by

* * , 1, 2,...,i ij ij n for 1, 2,..., ;i k

4.restimate the bootstrap covariance matrix  *
iS from

the set *
i ;

5.estimate the statistic (9) and denote it 2 for the

th bootstrap resampling, where 1, 2,..., B ;

6.replicate B times the steps 3 to 5;
7.determine the boostrap p-values  by

where ( )  is an indicator function.

Monte Carlo simulations

The performance of the two tests was evaluated by
computational Monte Carlo simulation. The type I error
rate and power were recorded to determine the quality of
the performance of the tests. Two different situations were
also considered for evaluating the tests. First, it was
considered the multivariate normal distribution and then it
was simulated multivariate distributions using a linear
transformation of random vectors formed by uniform and
gamma independently distributed variates. In the last
situation the evaluation of the robustness of the two tests

2 2

1pv

B
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for the covariances comparison was accomplished
measuring the type I error rates.

For evaluating the tests performance simulations
were accomplished considering different numbers of
population ( )k , sample sizes ( )in  and number of variates

( )p . It still was considered three p-dimensional

distributions obtained from linear transformations of
normal, gamma and uniform univariate variates. Those

parameters ( , and  ik n p ) were combined in factorial

combination to simulated sample data from those three
distributions.

The k  values were 2, 5 and 10, the number of variates
p was 2, 3, 5 and 10 and the sample sizes varying from 5 to

100. It was made 600 simulations of each configuration, of
each distribution and under 0H and 1H . The MBT and
MBTB were applied in each case. Two nominal significance
levels  (0.01 and  0.05) were adopted. The observed p-
values were confronted with the nominal significance
levels . The proportion of simulations results that
the test s p values were inferior or equal to the nominal
level was computed. Under the null hypothesis 0H this
proportion refers to the type I error rates and under 1H ,
to the power.

Non-normal situations were used to evaluate the
robustness of the tests as in the control of the type I error
rates as in the power. The normal distribution was used in
simulations to propitiate an ideal condition that served as
reference for the other non-normal distributions. The IML
procedure of SAS® (SAS INSTITUTE, 2000) was used in
this work. The following algorithm was adopted for
simulating the jth observation from the ith sample:

a) it was generated realizations of  p variates from
each one of the three distributions. To generate samples from
the univariate normal distribution the function rannor(seed)
of the SASâ (SAS INSTITUTE, 2000) was used, where seed
represents the initial value of the process of generation of
random numbers; from the uniform distribution, the function
ranuni(seed); and from the gamma, rangam seed, . The
seed value was settled as zero, so that the SAS system could
use an initial value from the time of day. The parameter
from the gamma distribution was settled in 1.5, to obtain a
unimodal and right-skewed distribution;

b) the realizations of the  independent and
identically distributed (i.i.d) variates ( rZ ) were used to
compose the vector 1 2[ , ,..., ]T

pZ Z Z Z ;
c) it was considered a single structure for the

covariance matrix for ith population given by

2 1

2

1 2 3

1

1

1

p

p

i

p p p

(10)

For evaluating the type I error rates it was simulated
k

 

populations with the same covariance matrix

, 1, 2,...,i i k , i.e., it was performed simulations

under the null hypothesis 0H of (1). For the power, the

covariance matrices 2 3, , , k  were determined as a

multiple of 1 , considering a criterion that depends on a

coefficient *
i  for determining a degree of heterogeneity

of the covariance matrices. For that, the matrix  1 was

settled by the expression (10) and the other covariance
matrices were given by

*
1 , 2,3,...,i i i k (11)

The criterion used to determine *
i was based on

the generalized variances of i as follow. First it was settled

the value of , given by

1

k (12),

as 2, 4, 8 and 16. Then, the auxiliary quantity d was
calculated by

1

1
d

k
, (13)

and finally the quantity * was obtained by

1
* 1 1 p
i d i (14).

According to the previously defined quantities,
the parameter represents the ratio between the
largest and smallest generalized variances and the
consecutive differences among the ratios of
generalized variances between each population and
the first are d . Then, the 

 

values were settled in 0,
0.1, 0.5 and 0.9.

d) the Cholesky factor of each covariance matrix
was calculated by
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T
i i iF F ,

where the iF matrix is the Cholesky factor of i and was
obtained using the function root ( )i from the SAS®

System (SAS INSTITUTE, 2000), 1, 2,...,i k ;

e) the p-variate random vector ij from the ith

population and jth sample unit was generated by the linear

transformation given by

, 1,2,..., and 1,2,...,ij i i iF Z i k j n

where, without loss of generality, the mean vector i was

considered equal to a p dimensional vector of zeros;
f) the steps (a), (b) and (e) were iterated until a

sample of size 
1

k

i
i

n n was simulated.

RESULTS  AND  DISCUSSION

In the sequence the main results will be presented
for the type I error rates and power of the two tests studied
in this article. Two different situations were considered
where samples from normal and non-normal (uniform and
gamma) populations were drawn. Also, two nominal
significance levels (5% and 1%) were considerate.

Type I error rates under normal distribution

In Table 1 the type I error rates of the MBT and
MBTB are presented under normality and considering

2k populations for different values of , p and in .
The 95% confidence interval for the nominal significance
level of 5% is [0.034; 0.071]. The results of the type I error
rates were confronted with this interval.

The MBT controlled the type I error rates in almost all
of simulated situations, except for some situations with 3p
for the sample sizes 1 2 5n n , for 0.1; 1 5n and

2 20n for 0and 0.9;  1 5n and 2 60n  for
0and 0.5 ; 1 7n and 2 20n for 0.1

 

. For
these situations MBT did not control the type I error rates
and presented superior rates to the nominal significance
level of 5%, and it is considered liberal (results not
presented). A test is considered liberal when the type I
error rates are significantly superior to the nominal
significance level.

The correlation structure had small or any influence
in the type I error rates of MBT and of MBTB (Table 1). For
instance, considering 1 2 5n n  one can realize that the
changes in the correlation coefficient did not alter the type

I error rates significantly. Therefore, for the other sample
sizes the results were presented only for 0.5 .

The MBTB, in general, was conservative test for
small samples, presenting in some situations null type I
error rates (Table 1). A test is conservative when the type
I error rates are significantly inferior to the nominal
significant level. There was a tendency of MBTB
performance to improve as the sample sizes increase,
considering that it presented type I error rates not
significantly different from the nominal level of 5%. It was
observed that the increase of the number of variates also
affected the multivariate bootstrap test (MBTB)
performance, turning this test more conservative in
opposition to the effect caused in the MBT.

For 5k populations MBT did not maintain the

same performance of the situation of 2k , once it was, in
general, more liberal. The liberality increased as increase the
number of variates, for samples of different and intermediate
sizes in the two populations. MBTB tended to be
conservative for smaller samples. For sample sizes ( in ) at
least equal to 30, the type I error rates were similar to the

nominal significance level of 5% , except for 10p .

The type I error rates of the two tests for 10k
populations showed that there were improvements as the
number of populations k  increased from 2 to 10 (Table 1).
The MBT had the best performance. These results for
populations showed the same tendencies already
discussed for  2k and 5k . It is convenient to point
out that there is no remarkable correlation effect of the
type I error rates in the different tests (Table 1). The MBTB
was shown conservative for 10p , while MBT
controlled the type I error rates.

The type I error rates were evaluated also for the
nominal significance level of  1% ,  2k populations
and some representative situations of sample size in . The
95% confidence interval to the nominal significance level

1%   for the type I error rates is [0.004; 0.022]. Usually,,
the same tendency was verified in the results when
compared to the situation of 5% . The type I error
rates of the MBT did not present results significantly
different from the nominal level. For large sample
sizes 1 2 60n n and number of variates 10p , the
MBTB becomes conservative (results not presented).

For 5k populations and 1% , it was
observed that the type I error rates of the two tests
maintained the performance described previously. It can
be emphasized the effect of the number of variates, mainly
when p  is large compared to the minimum of in  among all
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Table 1  Type I error rates for the two tests, under normality, with nominal significance level of  5%, considering

different values of the sample sizes ( )in , number of variates ( )p , coefficient of correlation ( )

 
and number of

populations ( k ).

in k p

  

MBT MBTB 

(5,5) 2 2 0.0 0.045 0.000* 
(5,5) 2 2 0.1 0.052 0.000* 
(5,5) 2 2 0.5 0.052 0.000* 
(5,5) 2 2 0.9 0.060 0.002* 
(5,20) 2 2 0.5 0.042 0.018* 
(5,60) 2 2 0.5 0.068 0.062 
(7,20) 2 2 0.5 0.048 0.035 
(20,20) 2 2 0.5 0.050 0.037 
(30,30) 2 2 0.5 0.038 0.038 
(60,60) 2 2 0.5 0.060 0.053 
5(0)5 5 2 0.5 0.058 0.012* 
10(10)50 5 3 0.5 0.077* 0.062 
20(0)20 5 3 0.5 0.073* 0.055 
30(0)30 5 5 0.5 0.072* 0.053 
20(0)20 5 10 0.5 0.085* 0.002* 
30(0)30 5 2 0.5 0.048 0.048 
5(0)5 10 2 0.5 0.043 0.015* 
10(10)100 10 3 0.5 0.045 0.037 
20(0)20 10 5 0.5 0.058 0.040 
30(0)30 10 10 0.5 0.058 0.027* 
60(0)60 10 10 0.5 0.057 0.045 

 

* Significantly (P<0.05) different from the nominal level of 5%.

of the k populations. With the increase of  the MBT and
the MBTB became, in almost all cases, conservative.

Type I error rates for non-normal distributions (uniform
and gamma)

Type I error rates for the two tests are presented in
Table 2, considering some specific cases of sample sizes,
p  and p  for a settled number of populations ( 2k ) and

for  the uniform distribution. The MBT and the MBTB
became more conservative than these same tests in the
normal case. The MBTB was conservative for small
samples and tended to present error rates not significantly
different from the nominal significance level 5% , for
large samples, except for 5p .

For larger number of variates, the asymptotic test
(MBT) tended to become conservative, with type I error
rates significantly 0,05p smaller to the nominal
significance level. In the bootstrap version (results not
presented), the simulated error rates were almost always
no significantly different from the nominal level of 5% .
Generally, the type I error rates were controlled, since the

observed values always were equal or smaller than the
nominal significance level.

Type I error rates for MBT and MBTB are presented
in Table 3, considering simulations accomplished from gamma
distribution with shape parameter 1.5

 

and 2k
populations. It can be noticed that the asymptotic MBT was
liberal for all the sample sizes simulated. As larger the sample
sizes most liberal were the test. That shows that this test is
not robust to the normality violation and that seemingly it is
more affected for skewness deviations. These results are similar
to those of Zhang & Boos (1992). A surprising result was the
increasing of the test liberality with the increase of the sample
sizes, since it is expected the opposite.

The bootstrap version (MBTB) was conservative in
small samples or had exact size for 5% . That transition
between liberal to conservative when one changes the
asymptotic test for the bootstrap version is desirable,
although it is not ideal. There was a control of the type I
error rate, although these rates are significantly smaller than
the nominal significant level. Considering large samples and
high dimensions, the MBTB tended to be conservative.
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Table 2  Type I error rates for the two tests, under uniform distribution, with nominal significance level of 5%,

considering different values of the sample sizes ( )in , number of variates ( )p , coefficient of correlation ( )  and for a

settled number of populations to 2k .

in 

 

p

 

MBT MBTB 

(5,5) 0,1 2 0.025* 0.002* 
(5,5) 0,5 2 0.043 0.000* 
(5,20) 0,5 2 0.038 0.033* 
(7,20) 0 2 0.028* 0.037 
(60,60) 0,9 2 0.035 0.040 
(60,60) 0,1 5 0.020* 0.037* 
(60,60) 0 10 0.022* 0.028* 

 

* Significantly (P<0.05) different from the nominal level of 5%.

Table 3  Type I error rates for the two tests, under gamma distribution, with nominal significance level of 5%,

considering different values of the sample sizes ( )in , number of variates ( )p , coefficient of correlation ( )  and for a

settled number of populations to 2k .

in p

 

MBT MBTB 

(5,5) 2 0.112* 0.002* 
(5,20) 2 0.143* 0.020* 
(7,20) 2 0.185* 0.027* 
(60,60) 2 0.263* 0.033* 
(60,60) 5 0.325* 0.047 
(60,60) 10 0.402* 0.018* 

 

* Significantly (P<0.05) different from the nominal level of 5%.

The analysis of the results for the type I error rates
of the tests for 5%  and 5k populations, considering
the p-multidimensional gamma distribution and different
sample sizes showed that there was the same response
pattern of the situation of 2k populations. The
difference is an accentuation of the liberality of the
asymptotic test (MBT). The MBTB was always
conservative or of exact size 5%

 

(results not
presented).

For 10k  populations the same response pattern
for  and  was observed, except for an accentuation of the
liberality of the MBT. Usually, it can be seen that the
asymptotic test (MBT) is not robust considering the type
I error rates for gamma distributions (MOOD et al., 1974).
The bootstrap test (MBTB) controlled the type I error rates
by keeping the empiric rates equal or smaller to the nominal
significance level of 5%. Thus, the MBTB can be
considered a robust test in the control of the type I error
rates.

Power of the tests under normality

For the power study of the tests the correlation
was settled in 0.5 . This strategy was considered
due to the results of the type I error rates have not been
affected by the correlation structure. Although, some cases
were simulated to evaluate the power considering different
correlations (results not presented) and the same response
pattern observed under the null hypothesis was verified.
Thus, the results of power for the two tests considering ,
different sample sizes and dimensions, 5% , 2k and
sampling from normal populations are presented in Table 4.

Considering 2  , a situation of small difference
among the covariance matrices, the values of power of the
tests were small, since they were equal or smaller than the
nominal significance level 5% , mainly with small
sample sizes. As the sample sizes increase, the power of
the tests also increases (Figure 1). These results are
expected, since the tests are, generally, conservative for
small samples.
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Table 4  Power for the two tests, under normality, with nominal significance level of 5%, considering different values

of the sample sizes ( )in  and for a settled number of populations to 2k , number of variates to 2p , coefficient

of correlation to 0.5  and degree of heterogeneity of covariance matrices to 2 .

in 

 

MBT MBTB 

(5,5) 2 0.053 0.000 
(5,60) 2 0.070 0.053 
(30,30) 2 0.187 0.143 
(15,40) 2 0.087 0.070 
(40,15) 2 0.120 0.093 
(15,60) 2 0.107 0.097 
(60,15) 2 0.143 0.127 
(60,60) 2 0.303 0.295 

 

An important aspect is how to associate the sample
sizes with the populations, when the sample sizes are
different. It can always associate the smallest sample size
with the population of smaller generalized variance, the
second smallest sample size with the population of second
smaller generalized variance and so on. The generalized
variance can be expressed by the determinant of the sample
covariance matrix, which reduces to the sample variance
for the case of a single variate ( 1)p . This determinant
is called sample generalized variance.

The association between the samples sizes and the
populations also can be made to verify the effect in the
power of the tests. For the type I error rate, any mention to
that fact was made because the populational covariances
were the same. This effect is important to be evaluated,
mainly when the researcher intends to accomplish
unbalanced experiments. In real situation, it is impossible
for the researcher to do any type of association like that,
because the covariance matrices ( i ) are not known.
However, it is important to study this effect, mainly for
evaluating if there are interactions between heterogeneity
and sample sizes associations of the populations.

Cases considering 2

 

and changes in the
sample sizes from ( 1 15n , 2 60n ) to ( 1 60n , 2 15n )
and from ( 1 15n , 2 40n ) to ( 1 40n , 2 15n ) were
evaluated. The response pattern was basically the same,
i.e., the relative performance of the tests was the same
independently of the association between sample sizes
and the values of the populational generalized variances.
The MBT was slightly superior to the MBTB.

Considering 4 , 2k , 5% and 2p
under multivariate normality, the same response pattern
was observed for the power of the two tests. The

associations of the smaller samples with the populations
of smaller generalized variances resulted in a lower power
of the tests than the cases that the largest samples were
associated to the populations of smaller generalized
variances.

Figura 1  Power of the two tests, under normality, with
5% nominal significance level, considering sample sizes

1 2 30n n and 1 2 60n n in function of the

differences between generalized variances of the two
covariance matrices.

The power relative response pattern of the tests
for 5k and 10k populations, considering normal
populations, with com 2p and 2 or 16 is exactly the
same of the cases for 2k . It can notice that as the number
of populations increases one can expect a decrease in the
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power of the tests. Generally, the magnitude of that
reduction is small and less than the effect of the increase
in the number of variates. It is also convenient to point out
that this effect is pronounced for samples of intermediate

sizes (5 20)in . A great differentiation among tests was

observed with large ( 16) and small sample sizes.

Power of the tests under non-normality

The power of the tests was evaluated under
atypical conditions and for that two distributions (uniform
and gamma) were considered. The results allowed detecting
that the bootstrap test had best performance compared to
the counterpart asymptotic tests in larger samples. In this
case, the MBTB presented power of 40% under uniform
distribution ( 2) and 29.5% under normal distribution.

The MBT in small samples performed better than
MBTB and in intermediate sample sizes, it performed worst.
There was little differentiation of the tests in the case of
large differences among the populational generalized
variances ( 8 ).

The results under uniform distribution considering

10k populations, =2 and 8, 2p variates and

different sample sizes allowed conclude that there was a
sensitive power reduction of MBT. The MBTB suffered a

small reduction in the power, when the number of
populations changes from  2k to 10k .

The asymptotic test had larger power, as already
expected, considering the gamma distribution in the case
of  (Table 5). This larger power is not real, because the size
of the test is larger than the nominal significance level
under the null hypothesis.

The power of the MBTB was small for 2 and
small sample sizes. For larger samples 1 2( 60)n n , the
power was 12.2% in gamma and 29.5% in normal
distributions, respectively. There was reduction of the
power from normal to gamma distributions, but it was the
opposed that occurred in the uniform distribution.

When  the difference among the covariance matrices
is large ( 2) , the response pattern observed for

2 is maintained, but occurring only an expected
increase in the power. As type I error rates of the asymptotic
test tend to increase with the increase of the sample size.
Then, the asymptotic test, which theoretically should be
recommended for larger samples, cannot be done in gamma
distributions. The results of power, observed for

10k showed that the differences between the asymptotic
and bootstrap tests amplified, mainly considering 2 .
However the general comparative response pattern of the
tests is the same related for the  2k populations case.

Tabela 5  Power for the two tests, under gamma distribution, with nominal significance level of 5%, considering

different values of the sample sizes ( )in , number of populations ( )k , number of variates ( )p

 

and degree of

heterogeneity of covariance matrices to ( ) and for a settled coefficient of correlation to 0.5 .

ni 
k p

  

MBT MBTB 

(5,5) 2 2 2 0.130 0.000 
(20,20) 2 2 2 0.308 0.055 
(15,35) 2 2 2 0.333 0.052 
(35,15) 2 2 2 0.293 0.067 
(60,60) 2 2 2 0.493 0.122 
(5,5) 2 2 8 0.165 0.000 
(20,20) 2 2 8 0.695 0.303 
(15,35) 2 2 8 0.722 0.323 
(35,15) 2 2 8 0.725 0.398 
(60,60) 2 2 8 0.977 0.872 
5(0)5 10 2 2 0.483 0.017 
20(0)20 10 2 2 0.850 0.030 
5(0)5 10 2 8 0.522 0.022 
20(0)20 10 2 8 0.947 0.172 
15(5)60 10 2 8 0.987 0.150 
60(5)15 10 2 8 0.995 0.522 
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CONCLUSIONS

This Monte Carlo simulations applied in this article
allowed that one concluded that the bootstrap multivariate
test (MBTB) was considered a superior and robust test
when compared to the asymptotic alternative (MBT),
because this test controlled the type I error rates.
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