
Spatial analysis of Brazil’s COVID-19 response capacity: 
a proposal for a Healthcare Infrastructure Index 

Abstract  One of the concerns linked to the 
COVID-19 pandemic is the capacity of health 
systems to respond to the demand for care for peo-
ple with the disease. The objective of this study 
was to create a COVID-19 response Healthcare 
Infrastructure Index (HII), calculate the index 
for each state in Brazil, and determine its spatial 
distribution within and across regions. The HII 
was constructed using principal component fac-
tor analysis. The adequacy of the statistical model 
was tested using the Kaiser-Meyer-Olkin test and 
Bartlett’s test of sphericity. The spatial distribu-
tion of the HII was analyzed using exploratory 
spatial data analysis. The data were obtained from 
DATASUS, the Federal Nursing Council, Ministry 
of Health, Government Procurement Portal, and 
the Transparency Portal. The nine states in the 
country’s North and Northeast regions showed 
the lowest indices, while the five states from the 
Southeast and South regions showed the highest 
indices. Low-low clusters were observed in Ama-
zonas and Pará and high-high clusters were found 
in Minas Gerais, Rio de Janeiro, São Paulo, and 
Paraná.
Key words  COVID-19, Health system infrastruc-
ture, Brazil
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Introduction

Coronaviruses are a group of easily transmitted 
viruses common to humans, other mammals 
and birds that cause respiratory, hepatic, enteric, 
and neurological diseases. Six species of corona-
virus are known to cause illness in humans, four 
of which – 229E, OC43, NL63, and HKU1 – are 
prevalent and normally cause cold symptoms. 
The other two – the severe acute respiratory 
syndrome coronavirus (SARS-CoV) and Middle 
East respiratory syndrome coronavirus (MERS-
CoV)1 – are of animal origin and associated with 
often fatal diseases. SARS is rapidly progressive 
infectious disease2.

In December 2019, various health facilities in 
China reported a number of patients with pneu-
monia of unknown cause. This outbreak was as-
sociated with exposures in a seafood market in 
Wuhan, in the Hubei province of China. On De-
cember 31, 2019, the Chinese Center for Disease 
Control and Prevention sent a team to monitor 
and investigate the epidemiological and etiologi-
cal origin of this disease in conjunction with the 
Chinese health authorities in Wuhan and the Hu-
bei province. The Chinese authorities identified a 
new type of coronavirus in the early stages of an 
outbreak whose main symptoms were fever and 
a cough with respiratory distress1,3.

On January 30, 2020, the World Health Or-
ganization (WHO) declared a Public Health 
Emergency of International Concern due to the 
rapid rise in the number of cases and deaths 
in China caused by the new coronavirus 2019 
(COVID-19). Thereafter, the WHO recommend-
ed a number of health measures, including hori-
zontal isolation in affected regions, temperature 
checks at airports and subways, and the use of 
surveillance cameras to help map the path of 
contamination. However, the virus continued 
to spread and, on March 11, 2020, the WHO de-
clared the outbreak to be a global pandemic4.

By July 3, 2020, 10,710,005 global cases of 
COVID-19 and 517,877 deaths had been re-
corded. Forty days later, on August 12, these 
numbers had risen by 48% and 31%, respective-
ly, to 20,624,316 cases and 749,421 deaths. The 
first case in Brazil was recorded on 26 February 
2020 in São Paul and the first death was notified 
on March 17 in the same state4. By July 3, 2020, 
Brazil had recorded 1,539,081 cases and 63,174 
deaths. By August 12, these numbers had risen 
by 52% and 40%, respectively, to 3,180,758 cases 
and 104,528 deaths5,6, making Brazil the coun-

try with the world’s second-highest COVID-19 
death toll and number of cases.

Several countries, including Brazil, have 
made efforts to expand the capacity of their 
health systems to provide the care needed for 
patients with respiratory complications arising 
from COVID-19. According to Brazil’s national 
health information system, DATASUS7, Brazil has 
6,237 hospitals, 5,298 of which are general hos-
pitals and 939 specialized hospitals. The coun-
try has 446,503 hospital beds, 314,725 (70.49%) 
of which are SUS beds (SUS is the acronym in 
Portuguese for Brazil’s public health service, the 
Sistema Único de Saúde) and 131,778 (29.51%) 
private. The majority of beds are concentrated 
in the Southeast Region (40.57%), followed by 
the Northeast (27.12%), South (16.54%), Cen-
ter-West (8.5%), and North (7.27%). However, 
Silva8 points out that Brazil’s hospital system is 
far from being able to guarantee broad-ranging 
quality care to the population due to a range of 
structural deficiencies, including the shortage of 
beds, medicines, and physical facilities and in-
adequate staffing levels and poor working terms 
and conditions.

The assessment of available resources and 
health system capacity in a given region or coun-
try is vital for the response to COVID-19, pro-
viding a valuable tool for policymakers making 
decisions on the allocation of public spending on 
the control of the spread of the coronavirus and 
treatment of infected persons.

This study therefore sought to create a 
COVID-19 response Healthcare Infrastructure 
Index (HII), calculate the index for each state 
and determine its spatial distribution within and 
across regions.

Methodology

This section is divided into three parts. In the 
first part, we present the study data and respec-
tive sources. In the second part, we provide a 
brief outline of the multivariate model used in 
the study. Finally, we explain the spatial analysis 
of the data.

Study data

A number of variables capable of capturing 
information on the following dimensions of 
health system capacity at state level were used to 
construct the COVID-19 HII: physical healthcare 



4959
C

iên
cia &

 Saú
de C

oletiva, 25(12):4957-4967, 2020

structure; number of health workers; the exis-
tence of strategic COVID-19 devices; and finan-
cial resources allocated to healthcare.

The data were obtained from DATASUS9, 
the Federal Nursing Council (COFEN)10, Health 
Surveillance Secretariat (SVS), Government 
Procurement Portal11, Ministry of Health12, and 
Transparency Portal13,14. Chart 1 shows the di-
mensions, variables and respective sources.

The data were standardized, which according 
to Fávero and Belfiore15 involves subtracting the 
mean and dividing by the standard deviation for 
each observed value of the variable. 

The following subsections describe the multi-
variate statistical method (principal component 
factor analysis) used to create the index and tech-
niques employed to analyze the spatial distribu-
tion of the HII. 

Multivariate statistical model

As mentioned above, the HII was constructed 
using principal component factor analysis. Ac-
cording to Fávero and Belfiore15, this technique 
allows the researcher to generate uncorrelated 
factors through linear combinations of initial 
variables. According to Manly16, factor analysis 
makes it possible to reduce large numbers of 
variables into a much smaller set of factors, as 
follows:

                         
X

p 
= l

p1
F

1
 + l

p2
F

2
 + ... + l

pj
F

j
 + ε

p
            (1)

Where:  X
p  

is the ith observed variable;  l
p 

is 
the product of the square root of the eigenvalues 
of the correlation matrix multiplied by the eigen-
vectors of the square root of the correlations; F

j
 is 

the ith factor; and ε
p
 is the ith linear combination 

of the principal components Z
j+1 

through Z
p
.

Generalized factor analysis was applied to 
the 21 study variables, using the factor scores to 
construct the HII. Based on Mingoti17, the proce-
dures adopted can be represented as follows: 

HII
m
  =   Ʃ

j=1
 (                F

jm
)                 (2)

Where: HII
m 

is the Healthcare Infrastructure 
Index of the ith state; σ2 is the variance explained 
by factor j; p is the number of selected factors; 
Ʃ

j=1 
σ2

j 

p is the sum of the variances explained by 
the extracted p factors; and  is the factor score of 
the state m for the factor j.

Before proceeding, it was necessary to mea-
sure the adequacy of the factor analysis method-

ology. For this purpose, we performed the Kai-
ser-Meyer-Olkin (KMO) test and Bartlett’s test 
of sphericity. According to Fávero and Belfiore15, 
these tests are represented by the following two 
equations:

KMO =                                                         (3)

Where: l and c are the rows and columns, 
respectively, of the correlation matrix; ρ are the 
model variables; and φ are the higher order cor-
relation coefficients of the model variables. KMO 
values vary between 0 and 1, where the closer the 
value is to 1, the more adequate the model. Ac-
cording to the literature, values of more than 0.6 
indicate adequacy.

According to Fávero and Belfiore15, Bartlett’s 
test of sphericity is represented as follows:

                                                                       (4)

Where: n is the sample size;  k is the number 
of variables; and |D| is the module of the deter-
minant of the correlation matrix  of the variables 
that make up the index. The model is adequate 
when the null hypothesis that the correlation 
matrix is an identity matrix is rejected.

Since the values frequently vary between 
0 and 1, after confirming the adequacy of the 
method and generation of factors, the results of 
the index are standardized as shown by the fol-
lowing equation:

HII
m  

=                                        (5)

Where: HII
min

 and HII
máx

 are the minimum 
and maximum calculated indices, respective-
ly. Standardization converts the maximum 
and minimum values to 1 and 0, respectively, 
where the closer the value is to 1, the better the 
COVID-19 response healthcare infrastructure in 
the respective state. To generate the factors, we 
used VARIMAX orthogonal rotation of factors, 
which, according to Hair Jr. et al.18, provides a 
clearer understanding of how the variables are 
associated and how much this characteristic pos-
itively or negatively reflects each factor.

After performing orthogonal rotation, con-
firming the adequacy of the statistical model and 
constructing the index, it was possible to assess 
the spatial distribution of the HII and check for 
the existence of clusters, using Exploratory Spa-
tial Data Analysis (ESDA).
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Spatial analysis 

To assess the spatial distribution of the HII 
across states, we used global and local Moran’s I. 
According to Almeida19, global Moran’s I mea-
sures the similarity between values at spatial loca-
tions. Positive results indicate similarity, whereby 
locations with high incidence of the observed 
variable and/or phenomenon are surrounded by 
locations with similarly high values, while nega-
tive values for I indicate dissimilar values, where-
by high incidence locations are surrounded with 
locations with low values. Local Moran’s I is used 
to assess the existence of spatial clusters of the 
observed phenomenon.

According to Almeida19, global Moran’s I is 
expressed as follows:

I =                                         (6)

Where:  n is the number of regions indexed 
by i and j; z are the standardized variables; W is 
the spatial weights matrix; S

o
 is equal to Ʃi Ʃj wij, 

indicating that the inputs of the spatial weights 
matrix w will be added; and Wz is the mean of 
the standardized variables in the neighboring lo-
cations. To proceed with the spatial analysis, the 
result must reject the null hypothesis of spatial 
randomness or non-existence of clusters.

Local Moran’s I was used to determine the ex-
istence of spatial clusters of IEs

m 
within the differ-

ent states, expressed by Anselin20 as follows:

I = Ʃ I
i 
/ [ S

o 
(Ʃ z2

i 
/ n)]          (7)

Chart 1. Variables and data sources, 2020.

Dimension Variable
Access 

date 
(2020)

Description of data Source

Physical 
structure

X
1

11/06 Number of high complexity outpatient facilities* DATASUS7

X
2

11/06 Number of medium complexity outpatient facilities*

X
3

11/06 Number of primary outpatient facilities*

X
4

11/06 Number of high complexity hospitals*

X
5

11/06 Number of medium complexity hospitals*

X
6

11/06 Number of health centers*

Health 
workers

X
7

12/06 Number of nursing assistants COFEN10

X
8

12/06 Number of nurses

X
9

11/06 Number of doctors* DATASUS7

X
10

12/06 Number of nursing technicians COFEN10

Strategic 
COVID-19 
devices

X
11

07/06 Number of PCR tests Ministry of 
Health12X

12
07/06 Number of rapid tests

X
13

11/06 Number of non-SUS hospital beds* DATASUS7

X
14

11/06 Number of SUS hospital beds*

X
15

11/06 Number of ventilators*

X
16

07/06 Number of non-SUS adult ICUs Ministry of 
Health12X

17
07/06 Number of SUS adult ICUs

Financial 
resources

X
18

11/06 Procurement via auction, waiver and exemption from 
competitive bidding for COVID-19 response (R$)

Procurement 
Portal11

X
19

10/06 Distribution of health spending (R$) Transparency 
Portal13

X
20

10/06 Amount transferred directly to the state government (R$) Transparency 
Portal14X

21
10/06 Amount transferred directly to municipal governments(R$)

*Data from April 2020 obtained from the National Health Facility Register (CNES) available from DATASUS
Source: Authors’ elaboration.

n  
S

o
  

z’Wz
z’z
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According to Almeida19, local Moran’s I 
(LISA) assumes that the sum of the local indi-
cators is proportionately equal to the global Mo-
ran’s I. 

Results

The results of the KMO and Bartlett’s tests 
(0.7459 and 1,715.09, respectively) confirmed 
the adequacy of the principal component factor 
analysis, meaning it was possible to proceed with 
the extraction of common factors. Using varimax 
rotation, which maximizes factor variance, it was 
possible to obtain the factors that make up the . 
The factor selection criterion was an eigenvalue 
of more than 1, resulting in the selection of three 
factors, as shown in Table 1.

Together, the three extracted factors explain 
95.42% of the total variance of the data. The cor-
relation coefficients for the 21 variables and their 
respective factors were obtained using orthogo-
nal rotation. The factor loadings and the gener-
ated factors are shown in Table 1. The literature17 
suggests a cut-off value of at least 0.50 for the se-
lection of factor loadings. 

The first factor was shown to be related to the 
following variables: number of high complexity 
outpatient facilities (x1); number of medium 
complexity outpatient facilities (x2); number 
of primary outpatient facilities (x3); number 
of high complexity hospitals (x4); number of 
medium complexity hospitals (x5); number of 
nursing assistants (x7); number of nurses (x8); 
number of doctors (x9); number of nursing 
technicians (x10); number of PCR tests (x11); 
number of rapid tests (x12); number of non-
SUS hospital beds (x13); number of SUS hospital 
beds (x14); number of ventilators (x15); number 
of non-SUS adult ICUs (x16); number of SUS 
adult ICUs (x17); distribution of health spend-
ing (x19); and amount transferred to municipal 
governments (x21). Factor 1 therefore represents 
the physical and human resources components 
of general operational structure.

The second factor was related to the number 
of medium complexity hospitals (x5), number 
of health centers (x6) and amount transferred 
directly to the state government (x20). This fac-
tor represents initial medical care access mech-
anisms and the source of direct state resources. 
Finally, the third factor was related to number of 
PCR tests (x11), procurement via auction, waiv-
er and exemption from competitive bidding for 
COVID-19 response (x18), and amount trans-

ferred directly to the state government (x20). The 
third factor was therefore related to the context 
of the COVID-19 pandemic, contributing to ex-
plain the functioning of hospitals in the states in 
response to the increased demand for healthcare.

After the formation of the factors, we pro-
ceeded to standardize the results in order to form 
the index, calculating the index for each state. The 
highest HII was found in the State of São Paulo 
(0.781795), followed by Minas Gerais (0.352699), 
both located in the Southeast Region. The lowest 
indices were registered in Amapá (0.045114) and 
Roraima (0.045722), in the county’s North Re-
gion. Table 2 shows the HII

m 
for each state.

The indices suggest that the spatial distribu-
tion of health system infrastructure across the 
country is uneven, with only the State of São 
Paulo achieving an index higher than 0.50. Re-
gional disparities are evident, with higher indices 
being concentrated in the Southeast Region and 
lower indices in the North Region, where there 
have been reports of overburdening in the health 
and funeral systems caused by COVID-1921.

To help observe the clustering of the  in the 
states, Figure 1 shows the spatial distribution of 
the indices in the different locations across the 
country. These results were obtained using hier-
archical clustering, revealing the formation of six 
groups constructed by performing Ward’s link-
age with the application of Euclidean distance. 
These groups were obtained using the indices 
presented in Table 2. 

Figure 1 shows the groups where the dark-
er the tone the higher the index, showing that 
states of Amapá (0.045114), Roraima (0.045722), 
Acre (0.045823), Rondônia (0.06500), Sergipe 
(0.067870), and Tocantins (0,057963) make up 
the lowest index group (Group 1). 

Group 2 is made up of the following states: 
Amazonas (0.080364), Pará (0.118611), Maran-
hão (0.109346), Piauí (0.07648), Rio Grande do 
Norte (0.085771), Paraíba (0.094154), Alagoas 
(0.076142), Espírito Santo (0.09662), Mato Gros-
so (0.096832), Mato Grosso do Sul (0.082707), 
and the Federal District (0.11034).

Group 3 includes the states of Pernambuco 
(0.16726), Ceará (0.147787), Goiás (0.149312), 
and Santa Catarina (0.156648), while Group 4 is 
made up of Bahia (0.218160), Paraná (0.233039) 
and Rio Grande do Sul (0.229693). 

The highest HII
m
 were found in Group 5 (Rio 

de Janeiro, 0.33239; and Minas Gerais, 0.352699) 
and Group 6 (São Paulo, 0.781795). 

Although the spatial distribution of the index 
in the different states is dissimilar, it is necessary 

i i 
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to check for the existence of patterns of spatial 
dependence. For this purpose, we used global 
Moran’s I and local Moran’s I.

To detect spatial autocorrelation, we calculat-
ed univariate global Moran’s I using the queen 
and rook contiguity criteria. Both calculations 
showed similar results. Based on these results, the 
null hypothesis of spatial randomness was reject-
ed, thus confirming spatial autocorrelation in the 
HII

m
 data. 

After confirming spatial dependence, it was 
possible to analyze local patterns of spatial as-
sociation in the data using local Moran’s I. The 
results showed the formation of low-low clusters 
in the North Region, high-high clusters in the 
Southeast Region, and low-high clusters in Mato 
Grosso do Sul, as shown in Figure 2. The statisti-
cal significance level was set at 5%.

Low-low clusters mean that the states with a 
low HII

m 
are surrounded by other states with low 

HII
m
. For high-high clusters, the opposite is the 

case, with states with better health infrastructure 
being surrounded by other states with similarly 
high levels of infrastructure. In turn, low-high 
clusters indicate states with low HII

m
  surrounded 

by other states with high HII
m
.

Low-low clusters were found in Amazonas 
and Pará, while high-high clusters were observed 
in the South and Southeast regions (Minas 
Gerais, Rio de Janeiro, São Paulo, and Paraná). As 
mentioned above, Mato Grosso do Sul formed a 
low-high cluster. 

Discussion

Our findings reveal that access to healthcare 
across Brazil is uneven and unequal, as shown 
by the gap between the first and last placed states 
(São Paulo, HII

m 
= 0.781795; and Amapá, HII

m 
= 

Table 1. Factor loadings, communalities, variables, eigenvalues, factor variance.

Variable Factor 1 Factor 2 Factor 3 Communality

X1 0.9427* 0.2257 0.1700 0.9685

X2 0.9563* 0.2314 0.0045 0.9681

X3 0.9207* 0.3200 -0.0147 0.9503

X4 0.9180* 0.2249 0.2988 0.9826

X5 0.8197* 0.5201* 0.0015 0.9425

X6 0.2070 0.9351* -0.0741 0.9227

X7 0.9494* -0.0736 0.1284 0.9232

X8 0.9546* 0.1691 0.2088 0.9835

X9 0.9783* 0.1139 0.1609 0.9960

X10 0.8392* 0.3194 0.4158 0.9791

X11 0.6132* 0.2269 0.6987* 0.9158

X12 0.9501* 0.2676 0.1341 0.9923

X13 0.9831* 0.1139 0.1187 0.9935

X14 0.9113* 0.3798 0.0961 0.9839

X15 0.9583* 0.1125 0.2551 0.9960

X16 0.9085* 0.0341 0.3953 0.9827

X17 0.9713* 0.1875 0.0403 0.9802

X18 0.0280 -0.1663 0.8877* 0.8164

X19 0.8659* 0.2166 0.3522 0.9207

X20 0.1287 0.6369* 0.6591* 0.8567

X21 0.8634* 0.4595 0.1624 0.9829

Eigenvalues 14.9575 2.5721 2.5081 -

Explained variance (%) 0.7123 0.1225 0.1194 -

Total variance (%) 0.7123 0.8347 0.9542 -
*Factor loadings of more than 0.5.
Source: Authors’ elaboration.
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Table 2. Health Infrastructure Index (HII
m
) by state and region, 2020.

Region State HII
 m

Region State HII
m

North Rondônia 0.065007 Northeast Sergipe 0.067870

North Acre 0.045823 Northeast Bahia 0.218160

North Amazonas 0.080364 Southeast Minas Gerais 0.352699

North Roraima 0.045722 Southeast Espírito Santo 0.096621

North Pará 0.118611 Southeast Rio de Janeiro 0.332393

North Amapá 0.045114 Southeast São Paulo 0.781795

North Tocantins 0.057963 South Paraná 0.233039

Northeast Maranhão 0.109346 South Santa Catarina 0.156648

Northeast Piauí 0.076482 South Rio Grande do Sul 0.229693

Northeast Ceará 0.147787 Center-West Mato Grosso do Sul 0.082707

Northeast Rio Grande do Norte 0.085771 Center-West Mato Grosso 0.096832

Northeast Paraíba 0.094154 Center-West Goiás 0.149312

Northeast Pernambuco 0.167269 Center-West Federal District 0.110340

Northeast Alagoas 0.076142    
Source: Authors’ elaboration based on the study data and IBGE (Brazilian Institute of Geography and Statistics)27.

Figure 1. Spatial distribution of indicies by groups.

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Groups

Key

SRC: SIRGAS 2000.
Municial grid: IBGE28.
Software: QGIS 3.12
Source: authors 
elaboration.

0      250     500   km
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Figure 2. Clusters and significance levels achieved using ESDA.

SRC: SIRGAS 2000.

Municipal grid: IBGE28.

Software: QGIS 3.12

Source: authors elaboration.

Key

HII

Not Significant (20)

High-High (4)

Low-Low (2)

Low-High (1)

Key

HII

Not Significant (20)

p=0.05 (1)

p=0.01 (6)

1: 50.000.000 1: 50.000.000

0.045114, respectively). It is possible to note that 
some states are grouped with non-neighboring 
states from other regions. The results also show 
differences in health infrastructure within re-
gions.

It is important to highlight that the states of 
Groups 1 and 2 – North Region and part of the 
Northeast and Center-West regions – have low 
levels of health infrastructure in comparison to 
the other groups. This pattern is also observed in 
the statistically significant spatial clusters. Spe-
cific attention should be paid to Amazonas and 
Pará, which form a low-low cluster, suggesting 
weaker health system capacity, especially in criti-
cal situations with sharp spikes in demand. 

The situation of locations with a low level 
of health infrastructure may be aggravated by 
the distance between these states and those with 
higher , especially in the case of transfer of crit-
ically ill patients to other health facilities for ex-
ample. In an analysis hospital bed availability for 

the COVID-19 response in Rio Grande do Sul, 
Smolski et al.22 concluded that the majority of 
the population depends on transfers to services 
concentrated in regional referral centers. The au-
thors also found inequalities in the distribution 
and provision of hospital beds and ventilators 
and some health regions lacked adult ICU beds. 
Pedrosa and Albuquerque23 also investigated the 
distribution of COVID-19 cases and ICU beds 
allocated to the treatment of the disease in the 
State of Ceará.

Adequate infrastructure for responding to 
peaks in demand such as those experienced 
during the COVID-19 pandemic is fundamental 
for combating disease mortality. In this regard, 
Moreira24 showed that health regions with the 
highest COVID-19 mortality rates were located 
in areas with a shortage of ICU beds and venti-
lators concentrated mainly in parts of the North-
east, Southeast, and South regions of the country.

According to Noronha et al.25, the pressure 
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added to the health system by the demand for 
healthcare triggered by the COVID-19 pandem-
ic exposes healthcare inequalities, showing that 
capacity is insufficient, despite the presence of 
the private sector. This structure should be re-
inforced with, for example, the creation of field 
hospitals combined with strategies designed to 
reduce the spread of the disease.

The highest HIIs were found in the Southeast 
Region, more specifically in São Paulo. It is im-
portant to underline that, according to the Na-
tional Supplementary Health Agency (ANS)26, in 
March 2020, the Southeast Region also account-
ed for the highest number of private health in-
surance plans, followed by the South, Northeast, 
Center-West, and North regions. Moreover, data 
from the 2008 Household Budget Survey shows 
that average household spending on healthcare 
and health insurance was highest in the South-
east Region, followed by the South, Center-West, 
Northeast, and North regions27.

It is also important to highlight that health 
infrastructure alone does not necessarily reflect 
the vulnerability of the state to pandemics like 
COVID-19, as other factors like the speed at 
which the virus spreads, isolation indices, mask 

use and other transmission reduction measures, 
number of inhabitants, and population density 
may influence the number of cases and deaths. 
These factors provide several directions for fu-
ture research.

It is hoped that the findings of this study will 
contribute to public policies designed to expand 
health infrastructure in Brazil in order to reduce 
regional disparities in access to healthcare. Study 
limitations include the limited number of studies 
on COVID-19 and national trends given that the 
pandemic is a recent phenomenon and it is still 
difficult to measure its effects, thus restricting 
the scope of discussion of this topic. Other lim-
itations relate to infrastructure recently imple-
mented in response to the pandemic, making it 
difficult to include all relevant information in the 
study. In addition, it is important to bear in mind 
that health infrastructure is used not only for the 
COVID-19 response, but also for the prevention, 
diagnosis and treatment of other diseases. The 
findings should therefore be interpreted with 
caution, given that the health system should be 
prepared to tackle a range of other diseases. Fu-
ture research should expand on this study using 
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local time series data and dynamic indices.
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