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A B S T R A C T
One of the parameters involved in the design of pressurized hydraulic systems is the pressure 
drop in the pipes. The verification of the pressure drop can be performed through the Darcy-
Weisbach formulation, which considers a coefficient of head loss (f) that can be estimated 
by the implicit Colebrook-White equation. However, for this determination, it is necessary 
to use numerical methods or the Moody diagram. Because of this, numerous explicit 
approaches have been proposed to overcome such limitation. In this sense, the objective 
of this study was to analyze the explicit approximations of the f for pressurized conduits in 
comparison to the Colebrook-White formulation, determining the most precise ones so that 
they can be used as an alternative solution that is valid for the turbulent flow regime. Twenty 
nine explicit equations found in the literature were analysed, determining the f through 
the Reynolds number in the range of 4 × 103 ≤ Re ≤ 108 and a relative roughness (Ɛ/D) of 
10-6 ≤ Ɛ/D ≤ 5 × 10-2, and obtaining 160 points for each equation. The performance index 
and relative error of the formulations were analyzed in relation to the Colebrook-White 
equation. Considering the equations analyzed, we found seven that presented excellent 
performance and high precision, highlighting the formulation of Offor & Alabi, which can 
be used as an alternative to the Colebrook-White standard equation.

Desempenho de aproximações explícitas do coeficiente
de perda de carga para condutos pressurizados
R E S U M O
Um dos parâmetros envolvido no dimensionamento de sistemas hidráulicos pressurizados 
é a perda de carga das tubulações. Essa verificação pode ser realizada através da formulação 
de Darcy-Weisbach, que considera um coeficiente de perda de carga (f) que pode ser 
mensurado pela equação implícita de Colebrook-White. No entanto, para essa determinação 
é necessário utilizar métodos numéricos ou o diagrama de Moody. Devido a isso, numerosas 
aproximações explícitas são propostas para superar essa limitação. Nesse sentido, o objetivo 
desse trabalho é analisar as aproximações explícitas do f para condutos pressurizados em 
comparação a formulação de Colebrook-White, determinando as mais precisas para que 
possam ser uma solução alternativa, válidas para o regime de fluxo turbulento. Foram 
analisadas 29 equações explícitas encontradas na literatura, determinando o f através do 
número de Reynolds (Re) na faixa de 4 × 103 ≤ Re ≤ 108 e rugosidade relativa (Ɛ/D) de 
10-6 ≤ Ɛ/D ≤ 5 × 10-2, obtendo 160 pontos para cada equação. O índice de desempenho 
e o erro relativo das formulações foram analisados em relação a equação de Colebrook-
White. Considerando as equações analisadas, sete apresentaram excelente desempenho e 
alta precisão, destacando a formulação de Offor & Alabi, a qual pode ser utilizada como 
alternativa à equação padrão de Colebrook-White.
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Introduction

The estimation of head loss in pressurized conduits is a 
significant problem in optimization studies, hydraulic analysis 
of ducts, and water distribution systems (Bardestani et al., 
2017).

The Colebrook-White (1937) (CW) equation has been 
considered as the most accurate approximation for the 
determination of the head loss coefficient (f) and has been 
used as a reference standard; it uses the Reynolds number (Re) 
and the relative roughness of the pipe (Ɛ/D) (Heydari et al., 
2015; Brkić & Ćojbašić, 2016) and is valid for a wide range of 
applicability: 2 × 10³ < Re < 108 and 0 ≤ Ɛ/D ≥ 0.05. However, 
it is implicit in relation to f and requires an iterative process 
for the solution (Brkić, 2016; Brkić & Ćojbašić, 2017). 

Several researchers have sought to find explicit equations 
that could be used as alternatives to the CW equation (Assefa 
& Kaushal, 2015; Mikata & Walczak, 2015). According to Brkić 
& Ćojbašić (2017), explicit approximations give a relatively 
good prediction of the f and can accurately reproduce the CW 

equation and the Moody (1944) diagram. In some of these 
explicit equations, their relative error is so small that they can 
be used directly instead of the CW equation (Çoban, 2012).

Therefore, the objective of this research was to analyze 
some explicit approximations of the pressure loss coefficient 
for pressurized conduits, determining the most accurate 
ones so that they can be used as an alternative to the CW 
formulation.

Material and Methods

 The determination of the f of all equations were performed 
using a Microsoft Excel worksheet, with Re values in the range 
of 4 × 10³ ≤ Re ≤ 108 and Ɛ/D of 10-6 ≤ Ɛ/D ≤ 5 × 10-2, and 160 
points of data for each approximation analyzed were obtained. 
The CW formulation, Eq. 1, can be identified by:

Table 1. Explicit approximations for the determination of the head loss coefficient (f), with their respective authors, 
years of publication, and application ranges
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Continued from Table 1

where:
f 	 - is the coefficient of head loss of the Darcy-Weisbach 

formulation (dimensionless); 
Ɛ/D 	 - is the relative roughness of the pipe (m); and 
Re 	 - is the Reynolds number (dimensionless).

In all twenty nine explicit equations of the f from different 
authors were analysed, years of publication, and range of 
applicability involving Re and Ɛ/D, as listed in Table 1. Their 

choice was determined to evaluate most of the equations 
available in the literature. In this study, any model devoid of 
iterations was considered explicit.

The precision, related to the distance of the values of the 
explicit equations in relation to CW, was determined by the 
concordance index (d) proposed by Willmott (1981). The 
values ranged from 0 (without a match) to 1 (perfect match).

The Pearson correlation coefficient (r) allows quantifying 
the degree of association between the two variables involved 
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in the analysis. The closer to 1, the greater the degree of linear 
statistical dependence between the variables, and the closer to 
zero, the lower the strength of that relationship.

The equations were evaluated using the performance index 
(Id) adapted from Camargo & Sentelhas (1997), whose value 
is the product of d and r. The criteria for interpreting d, r, Id, 
and their respective classifications are presented in Table 2.

After sorting the equations that had a performance index 
rated as “Excellent,” the mean of the relative error (MRE) was 
calculated. According to Sadeghi et al. (2015), it is a very useful 
parameter for evaluating practically the most precise model 
for the estimation of the f.

The values of the MRE were classified as follows: “Very 
good,” MRE ≤ 0.55; “Good,” 0.55 < MRE ≤ 1.00; “Average,” 
1.00 < MRE ≤ 2.00; “Weak,” 2.00 < MRE ≤ 3.00; and “Poor,” 
MRE > 3.00.

their higher MRE of 10.24 and 16.15%, respectively. The other 
equations were classified as “Good.”

The mean values of the RE found in this study are in 
agreement with those of Brkić (2011b), who carried out a 
review of 26 explicit approximations based on the RE criterion 
and concluded that most of the explicit models available are 
very precise, with the exception of those of Moody (1947), 
Wood (1966), Eck (1973), Round (1980), and Rao & Kumar 
(2007).

According to Winning & Coole (2013), when 28 explicit 
equations of the f were compared with CW, the most precise 
approximations were those obtained by the equations of 
Zigrang & Sylvester (1982), Romeo et al. (2002), and Buzzelli 
(2008). This study found similar values of accuracy, with the 
exception of Romeo et al. (2002), which presented higher 
values of RE.

Brkić (2011a), Winning & Coole (2013) and Offor & Alabi 
(2016) analyzing explicit equations of the f, found that the RE 
values of Rao & Kumar’s (2007) equation were the highest in 
relation to all the explicit equations analyzed in their research, 
being consistent with what was obtained in this study. 

The discrepancy between the RE values found in this 
study and those obtained by Brkić’s (2016) proposed equation 
is possibly due to the fact that the approximation obtained 
by this study covers a limited range of applicability of Re and 
Ɛ/D, with values of 106 ˂ Re ˂ 108 and 10-2 ˂ Ɛ/D ˂ 5 × 10-2 

only, respectively.
For an approximation of the range of applicability that the 

CW equation provides, only the explicit equations covering 
4 × 10³ ≤ Re ≤ 108 and 10-6 ≤ Ɛ/D ≤ 5 × 10-2 and MRE < 0.55% 
will be valid. This is applied because some highly accurate 
approximations are valid only at limited Re and Ɛ/D intervals 
and, thus, may incorrectly estimate the f.

Of the 29 explicit approximations of the f analyzed, only 7 
satisfied these conditions, which were Eqs. 8, 10, 19, 21, 22, 26, 
and 30. These approximations are presented in Figure 1A-G, 
which shows the RE distribution for the entire Re range of 
4 × 10³ ≤ Re ≤ 108 and the Ɛ/D of 10-6 ≤ Ɛ/D ≤ 5 × 10-2. 

A joint analysis of Figure 1A-G shows that the equation 
of Sonnad & Goudar (2006) presented the highest value of 
the maximum RE and the lowest value of the minimum RE 
in relation to the others, with values of 3.17 and 0.003%, 
respectively.

For Chen (1979), the minimum RE value was 0.019% for an 
Ɛ/D of 10-5 and an Re of 5 × 106, and the maximum RE value 
was 1.837% for an Ɛ/D of 10-4 and an Re of 4 × 10³. Shacham 
(1980) presented a minimum RE value of 0.069% for an Ɛ/D 
of 5 × 10-6 and an Re of 5 × 107, and a maximum RE value of 
1.270% for an Ɛ/D of 10-6 and an Re of 4 × 10³.

For Buzzelli (2008), the minimum RE value was 0.007% 
for an Ɛ/D of 5 × 10-6 and an Re of 5 × 107, and the maximum 
RE value was 2.156% for an Ɛ/D of 10-6 and an Re of 4 × 10³. 
Vantankhah & Kouchakzadeh (2008) presented a minimum 
RE value of 0.01% for an Ɛ/D of 5 × 10-6 and an Re of 5 × 107, 
and a maximum RE value of 2.112% for an Ɛ/D of 10-6 and an 
Re of 4 × 10³.

Fang et al. (2011) presented a minimum RE value of 0.009% 
for an Ɛ/D of 2 × 10-3 and an Re for 105, and a maximum RE 

Table 2. Criteria for interpreting the concordance index, 
the precision index, the performance index, and their 
respective classifications

Concordance

index (d)

Correlation

coefficient (r)

Performance

index (Id)
Classification

0.95-1.00 0.95-1.00 0.90-1.00 Excellent

0.89-0.95 0.89-0.95 0.80-0.90 Optimum
0.84-0.89 0.84-0.89 0.70-0.80 Very Good

0.77-0.84 0.77-0.84 0.60-0.70 Good
0.71-0.77 0.71-0.77 0.50-0.60 Moderately Good

0.63-0.71 0.63-0.71 0.40-0.50 Moderate
0.55-0.63 0.55-0.63 0.30-0.40 Moderately Poor

0.45-0.55 0.45-0.55 0.20-0.30 Poor
0.32-0.45 0.32-0.45 0.10-0.20 Very Poor

0.00-0.32 0.00-0.32 0.00-0.10 Bad

Results and Discussion

All the explicit equations in relation to the CW standard 
presented d values very close to 1.00, being classified as 
“Excellent,” thus possessing a high degree of accuracy among 
the variables involved.

The r of most of the explicit equations also provided values 
very close to 1.00, demonstrating a good association of the 
variables involved. Eqs. 14, 25, 27, and 28 were classified as 
“Excellent,” but had correlation coefficient (r) of less than 0.99. 
Meanwhile, Eq. 20 had a lower value, with r = 0.93478, being 
classified as “Optimum,” and presented a lower correlation 
between the variables involved.

According to the Id, all the equations presented an 
“Excellent” classification, with values close to 1.00 except for 
Eq. 20, which obtained an Id of 0.93444.

Analyzing the performance coefficients, we can conclude 
that all explicit equations obtained a satisfactory performance 
for the estimation of the f when compared with the implicit 
CW formulation. Because of this, a statistical analysis was 
performed using the relative error (RE) to evaluate the most 
accurate model for estimating the f.

The approximations of Eqs. 8, 10, 12, 17, 19, 21, 22, 24, 26, 
and 30 presented an MRE lower than 0.55%, all being classified 
as “Very good.” The lowest value found was that of Eq. 30, with 
MRE = 0.30%.

Models 2, 3, 5, 9, 14, 23, 27, 29, 28, and 20 presented an 
MRE above 1.00%, with the last two standing out owing to 
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Figure 1. Distribution of the relative error estimate (RE%), Reynolds number (Re), and relative roughness (Ɛ/D) produced 
by the equations of A) Chen (1979); B) Shacham (1980); C) Sonnad & Goudar (2006); D) Buzzelli (2008); E) Vantankhah 
& Kouchakzadeh (2008); F) Fang et al. (2011), and G) Offor & Alabi (2016), when compared to the Colebrook-White 
(1937) equation (Eq. 1)

A. B.

C. D.

E. F.

G.
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value of 2.375% for an Ɛ/D of 10-6 and an Re of 4 × 10³. For 
Offor & Alabi (2016), the minimum value of RE was 0.005% 
for an Ɛ/D of 5 × 10-6 and an Re of 108, and the maximum RE 
value was 2.128% for an Ɛ/D of 5 × 10-6 and an Re of 4 × 10³.

Conclusions

1. The equations of Chen (1979), Shacham (1980), Sonnad & 
Goudar (2006), Buzzelli (2008), Vantankhah & Kouchakzadeh 
(2008), Fang et al. (2011), and Offor & Alabi (2016) showed 
higher performance indexes and precision when compared to 
the Colebrook-White approximation.

2. The equation of Offor & Alabi (2016), in relation to the 
explicit models analyzed, stood out from the others, presenting 
the highest performance index and precision, apart from 
covering the widest range of Reynolds number applicability 
and showing the highest relative roughness, and, therefore, 
can be used as an alternative to the implicit Colebrook-White 
equation. 
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