Acessibilidade / Reportar erro

Leaf gas exchanges and production of kale under Ca(NO3)2 concentrations in salinized nutrient solution1 1 Research developed at Mossoró, RN, Brazil

Trocas gasosas e produção em couve folha sob concentrações de Ca(NO3)2 em solução nutritiva salinizada

ABSTRACT

Adequate mineral supplementation can be a strategy to enable the use of brackish water in the production of vegetables. This study intended to evaluate the effect of calcium nitrate concentrations on leaf gas exchanges and yield of kale (Brassica oleracea L) fertigated with salinized nutrient solutions. The experiment was conducted in a randomized block experimental design (4 + 1), with four replicates. Four nutrient solutions prepared in brackish water (6.0 dS m-1) containing four concentrations of Ca(NO3)2 [(750, 1,125, 1,500, and 1,875 mg L-1)] and a control treatment (standard nutrient solution using low-salinity water, 0.5 dS m-1 (750 mg L-1 of Ca(NO3)2) were used in the study. The following analyses were performed: leaf gas exchanges, leaf area, and fresh matter yield. The standard nutrient solution promoted higher values for photosynthetic rate (13.06 µmol CO2 m-2 s-1), stomatal conductance (0.19 mol H2O m-2 s-1), transpiration (2.76 mmol H2O m-2 s-1), instantaneous water use efficiency (4.73 mmol CO2 mol-1 H2O), instantaneous carboxylation efficiency (0.053 mmol CO2 mol-1 CO2), leaf area (2.78 cm2 per plant), and leaf fresh matter yield (2.64 kg per plant). The Ca(NO3)2 not nullified but mitigated the deleterious effect of salt stress on leaf gas exchanges, except for kale yield (leaf fresh matter).

Key words:
Brassica oleracea L.; soilless; salt stress; calcium

RESUMO

A suplementação mineral adequada pode ser uma estratégia para viabilizar o uso de água salobra na produção de hortaliças. Este estudo teve como objetivo avaliar o efeito das concentrações de nitrato de cálcio nas trocas gasosas foliares e na produção de couve (Brassica oleracea L.) fertigada com soluções nutritivas salinizadas. O experimento foi conduzido em delineamento experimental em blocos casualizados (4 + 1), com quatro repetições. Foram utilizadas cinco soluções nutritivas, sendo quatro foram preparadas em água salobra (6,0 dS m-1) contendo quatro concentrações de Ca(NO3)2 [(750, 1.125, 1.500 e 1.875 mg L-1)] e um tratamento controle (solução nutritiva padrão usando água de baixa salinidade, 0,5 dS m-1 (750 mg L-1 de Ca(NO3)2) . As seguintes análises foram realizadas: trocas gasosas foliares, área foliar e produção de matéria fresca. A solução nutritiva padrão forneceu maiores valores para taxa fotossintética (13,06 µmol CO2 m-2 s-1), condutância estomática (0,19 mol H2O m-2 s-1), transpiração (2,76 mmol H2O m-2 s-1), eficiência instantânea do uso da água (4,73 mmol CO2 mol-1 H2O), eficiência instantânea de carboxilação (0,053 mmol CO2 mol-1 CO2), área foliar (2,78 cm2 por planta) e produtividade de matéria fresca folhas (2,64 kg por planta).O Ca(NO3)2 não anulou, mas atenuou o efeito deletério do estresse salino nas trocas gasosas foliares, com exceção da produção da couve (massa fresca de folhas).

Palavras-chave:
Brassica oleracea L.; cultivo sem solo; estresse salino; nitrato de cálcio

HIGHLIGHTS:

Salt stress decreases the photosynthetic process and yield of kale, regardless of the concentration of Ca(NO3)2.

Adequate calcium (between 1,000 and 1,300 mg L-1) nutrition reduces salinity effect on gas exchanges.

Excess of Ca(NO3)2 (1,875 mg L-1) increases the osmotic effect on gas exchanges, except the internal carbon concentration.

Introduction

Due to the impending scarcity of water resources, the use of saline water in food production is a major challenge for researchers, especially in the production of leafy vegetables, which are sensitive to salt stress (Soares et al., 2020Soares, H. R. e; Silva, E. F. de F. e; Silva, G. F. da; Cruz, A. F. da S.; Santos Júnior, J. A.; Rolim, M. M. Salinity and flow rates of nutrient solution on cauliflower biometrics in NFT hydroponic system. Revista Brasileira de Engenharia Agrícola e Ambiental , v.24, p.258-265, 2020. https://doi.org/10.1590/1807-1929/agriambi.v24n4p258-265
https://doi.org/10.1590/1807-1929/agriam...
; Souza et al., 2020Souza, C. A. de; Silva, A. O. da; Lacerda, C. F. de; Silva, E. F. de F. e; Bezerra, M. A. Physiological responses of watercress to brackish waters and different nutrient solution circulation times. Semina: Ciências Agrárias, Londrina, v.41, p.2555-2570, 2020. https://doi.org/10.5433/1679-0359.2020v41n6p2555
https://doi.org/10.5433/1679-0359.2020v4...
).

Kale (Brassica oleracea L. var. acephala D.C.) crop is classified as moderately sensitive to salt stress, showing a salinity threshold of 1.8 dS m-1 for the electrical conductivity of the saturation extract (Ayers & Westcot, 1999Ayers, R. S.; Westcot, D. W. A qualidade da água na agricultura. 2.ed. Campina Grande: UFPB, 1999. 153p. Estudos FAO Irrigação e Drenagem 45). However, the tolerance of plants to salinity can vary according to cultivation system, among other factors. Hydroponic cultivation allows greater tolerance to salinity, because of the energy reorganization resulting from the minimization of the matric potential of system (Soares et al., 2020Soares, H. R. e; Silva, E. F. de F. e; Silva, G. F. da; Cruz, A. F. da S.; Santos Júnior, J. A.; Rolim, M. M. Salinity and flow rates of nutrient solution on cauliflower biometrics in NFT hydroponic system. Revista Brasileira de Engenharia Agrícola e Ambiental , v.24, p.258-265, 2020. https://doi.org/10.1590/1807-1929/agriambi.v24n4p258-265
https://doi.org/10.1590/1807-1929/agriam...
; Navarro et al., 2022Navarro, F. E. C.; Santos Júnior, J. A.; Martins, J. B.; Cruz, R. I. F.; Silva, M. M. da; Medeiros, S. de S. Physiological aspects and production of coriander using nutrient solutions prepared in different brackish waters. Revista Brasileira de Engenharia Agrícola e Ambiental, v.26, p.831-839, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p831-839
http://dx.doi.org/10.1590/1807-1929/agri...
)

High concentrations of Na+ (sodium) and Cl (chloride) ions in the cell cytoplasm can inactivate enzymes as well as metabolites, reducing photosynthesis, stomatal conductance, transpiration, and internal carbon concentration, resulting in a decrease in the water-use efficiency (Souza et al., 2020Souza, C. A. de; Silva, A. O. da; Lacerda, C. F. de; Silva, E. F. de F. e; Bezerra, M. A. Physiological responses of watercress to brackish waters and different nutrient solution circulation times. Semina: Ciências Agrárias, Londrina, v.41, p.2555-2570, 2020. https://doi.org/10.5433/1679-0359.2020v41n6p2555
https://doi.org/10.5433/1679-0359.2020v4...
; Silva et al., 2021Silva, J. S. da; Sá, F. V. da S.; Dias, N. da S.; Ferreira Neto, M.; Jales, G. D.; Fernandes, P. D. Morphophysiology of mini watermelon in hydroponic cultivation using reject brine and substrates. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.402-408, 2021. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n6p402-408
http://dx.doi.org/10.1590/1807-1929/agri...
).

Some studies have shown that adequate calcium nutrition mitigates effects of salt stress on plant physiology (Tanveer et al., 2020Tanveer, K.; Gilani, S.; Hussain, Z.; Ishaq, R.; Adeel, M.; Ilyas, N. Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition, v.43, p.28-35, 2020. https://doi.org/10.1080/01904167.2019.1659324
https://doi.org/10.1080/01904167.2019.16...
; Ahmed et al., 2021Ahmed, M. Z.; Hussain, T.; Gulzar, S.; Adnan, M. Y.; Khan, M. A. Calcium improves the leaf physiology of salt treated Limonium stocksii: A floriculture crop. Scientia Horticulturae, v.285, p.1-7, 2021. https://doi.org/10.1016/j.scienta.2021.110190
https://doi.org/10.1016/j.scienta.2021.1...
; Karagöz & Dursun, 2021Karagöz, F. P.; Dursun, A. Calcium nitrate on growth and ornamental traits at salt-stressed condition in ornamental kale (Brassica oleracea L. var. Acephala). Ornamental Horticulture, v.27, p.196-203, 2021. https://doi.org/10.1590/2447-536X.v27i2.2246
https://doi.org/10.1590/2447-536X.v27i2....
). Ca2+ is secondary messenger, involved in the regulation of physiological processes of development and in responses to stress. This ion increases plant tolerance to salt stress because it improves water balance, Na+ secretion, and cell membrane integrity (Tanveer et al., 2020; Ahmed et al., 2021).

Considering the antagonistic interaction between Ca2+ and Na+, enrichment of the cultivation medium with Ca2+ can be a strategy to mitigate the effect of salt stress on plants. In light of the above, this study was conducted to evaluate the effect of calcium nitrate concentrations on leaf gas exchanges and production of kale cultivated in a hydroponic system with salinized nutrient solutions.

Material and Methods

The experiment was conducted from June to October 2019 in a protected environment (5° 12’ 48” S, 37° 18’ 44” W, at an altitude of 37 m a.s.l.), at the Universidade Federal Rural do Semi-Árido (UFERSA), in the municipality of Mossoró in the state of Rio Grande do Norte, Brazil.

During the experiment, daily data on maximum (Tmax), mean (Tmean), and minimum (Tmin) temperature, maximum (RHmax), mean (RHmean), and minimum (RHmin) relative humidity of air were collected using an automatic weather station (Campbell Scientific Inc. model CR1000), installed inside the greenhouse. There were variations from 25.0 to 28.0 ºC for Tmin, 26.0 to 29.0 °C for Tmean, 27.0 to 30.0 for Tmax, 44 to 68% for RHmin, 48 to 72% for RHmean, and 51 to 76% for RHmax.

The adopted experimental design was randomized blocks, in a 4 + 1 scheme, with four replicates and four plants per plot. Kale was grown under two levels of electrical conductivity of water (ECw) used for the preparations of the nutrient solutions: 0.5 dS m-1 - control (low-salinity water obtained from the local supply system) and 6.0 dS m-1, obtained by addition of NaCl. In the other three treatments the cultivation was performed only with salinity (0.6 dS m-1), but with different concentrations of calcium nitrate (S2 - 750, S3 - 1,125, S4 - 1,500, and S5 - 1,875 mg L-1). 750 mg L-1 of calcium nitrate was used in the first two treatments. Each experimental unit was composed of three 5 dm3 capacity pots containing one plant, totaling 60 plants.

The water used to prepare the standard nutrient solution came from the local supply system, whose chemical analysis showed the following characteristics: pH = 7.30, EC = 0.50 dS m-1, Ca2+ = 3.10, Mg2+ = 1.10, K+ = 0.30, Na+ = 2.30, Cl- = 1.80, HCO3 = 3.00, and CO3 2- = 0.20 (mmolc L-1).

The standard nutrient solution adopted was the one recommended by Furlani et al. (1999Furlani, P. R.; Silveira, L. C. P.; Bolognesi, D.; Faquim, V. Cultivo hidropônico de plantas. Campinas: IAC. 1999. 52p. Boletim Técnico, 180) for macronutrients, with the following fertilizer concentrations in mg L-1: 750-calcium nitrate, 500-potassium nitrate, 150-monoammonium phosphate, and 400-magnesium sulfate.

Micronutrients were supplied using a commercial compound namely Rexolin® (Yara Brazil S.A., Porto Alegre), containing the following composition: 2.1% boron (B), 2.66% iron (Fe), 0.36% copper (Cu), 2.48% manganese (Mn), 0.036% molybdenum (Mo), and 3.38% zinc (Zn); besides 11.6% potassium oxide (K2O), 1.28% sulphur (S), and 0.86% magnesium (Mg). The dose applied was as indicated by the manufacturer (30 g of the compound for the preparation of 1,000 L of nutrient solution). In order to adjust the pH of the solution, between 6.0 and 6.5, solutions of 0.1 mol L-1 of KOH or HCl were applied. After preparing the nutrient solutions, their electrical conductivity was measured, obtaining 2.29, 7.48, 8.14, 8.29, and 8.64 dS m-1, for S1, S2, S3, S4, and S5, respectively.

The sowing of the kale cv. Manteiga (Feltrin® Sementes, Farroupilha, Brazil) was carried in polystyrene trays with 128 cells, using coconut fiber substrate. After emergence, thinning was performed, leaving one seedling per cell. Transplanting into pots filled with substrate and washed sand (2:1, weight basis) was done when the seedlings reached four true leaves, at 35 days after sowing.

The irrigation system was of the drip type with recirculation of the nutrient solution (closed system), where the excess of nutrient solution was returned to the reservoir by gravity. For each nutrient solution, an independent irrigation system was used, composed of polyvinyl chloride (PVC) reservoir (210 L), lateral lines of flexible hoses (16 mm), and microtube emitters (spaghetti) 10 cm long, with a mean flow rate of 3.5 L h-1. During the experiment, neither the electrical conductivity nor the pH of the nutrient solutions was monitored or controlled. When the volume of nutrient solution reached the minimum level for suction by the motor pumps, the residual solution was discarded. Then the reservoir was washed and filled with a new nutrient solution.

The control of irrigation was done using a digital timer and adjusting the duration of each event throughout the crop cycle, as follows: 1 min from transplanting (DAT) to 30 DAT, 2 min from 30 DAT to 45 DAT, and 3 min from this time until the end of the experiment. The water consumption of the plants was not measured; however, in all irrigations, the substrate moisture was raised up to the maximum water holding capacity, based on the observation of drainage in the pots.

At 47 DAT, before the first harvest, physiological gas exchange analyses were performed using an infrared gas analyzer, model “LCPro +” - ADC Bio Scientific Ltd. operating with temperature control at 25 ºC, irradiation of 1,200 μmol of photons m-2 s-1 and air flow rate of 200 mL min-1 at an atmospheric CO2 level. The following variables of gas exchanges were evaluated: net photosynthesis (A - µmol CO2 m-2 s-1), stomatal conductance (gs - mol H2O m-2 s-1), transpiration (E - mmol H2O m-2 s-1), and internal carbon concentration (Ci - [(µmol CO2 m-2 s-1)/(mmol H2O m-2 s-1)-1]). From the determination of these variables, the instantaneous water use efficiency (WUEi = A/E, mmol CO2 mol-1 H2O) and the instantaneous carboxylation efficiency (CEi = A/Ci, mmol [(μmol CO2 m-2 s-1)/(mmol CO2 mol-1)-1]) were calculated.

Six leaf harvests (50, 57, 64, 71, 78, and 87 DAT) were carried out, harvesting leaves with a main leaf blade length greater than 20 cm, leaving five leaves per plant (Trani et al., 2015Trani, P. E.; Tivelli, S. W.; Blat, S. F.; Prela-Pantano, A.; Teixeira, É. P.; Araújo, H. S. de; Feltran, J. C.; Passos, F. A.; Figueiredo, G. J. B. de; Novo, M. do C. de S. S. Couve de folha: do plantio à pós-colheita. Campinas: Instituto Agronômico, 36p. 2015.). After the harvests, the leaf area (m2 per plant) and leaf fresh matter yield (g per plant) were determined. For statistical analysis, data on leaf area and fresh mass yield related to the accumulation obtained in the six harvests were considered.

The leaf area (LA) was determined by the product between the number of harvested leaves (NL) and the leaf blade area. The leaf blade area was obtained through linear measurements of the leaf blade length (LBL) and leaf blade width (LBW) (LA = (0.82012 + 0.71913 × (LBL × LBW), R2 = 0.98), according to Marcolini et al. (2005Marcolini, M. W.; Cecílio Filho, A. B.; Barbosa, J. C. Equações de regressão para a estimativa da área foliar de couve folha. Científica, v.33, p.192-198, 2005. https://doi.org/10.15361/1984-5529.2005v33n2p192%20-%20198
https://doi.org/10.15361/1984-5529.2005v...
) for kale. Leaf area values were obtained in cm2 and multiplied by the factor 0.0001 to convert to m2.

The data obtained were subjected to the Shapiro-Wilk normality test and, if normal, to analysis of variance and F-test (p ≤ 0.05); variables that showed significant responses were analyzed by regression analysis, in order to evaluate the effect of Ca(NO3)2 concentrations under saline conditions. Dunnett’s test was used to compare the effects between the salt solution with different calcium concentrations and the control (standard nutrient solution). The statistical analyses were performed using the SISVAR statistical software (Ferreira, 2019Ferreira, D. F. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, v.37, p.529-535, 2019. https://doi.org/10.28951/rbb.v37i4.450
https://doi.org/10.28951/rbb.v37i4.450...
).

Results and Discussion

All variables related to gas exchange (stomatal conductance (gs), internal carbon concentration (Ci), instantaneous water use efficiency (WUEi), photosynthetic rate (A), transpiration (E), and instantaneous carboxylation efficiency (CEi)) were affected by calcium nitrate concentrations. Calcium nitrate concentrations did not affect (p > 0.05) the leaf area (LA) or leaf fresh matter yield (LFMY) variables. There was a significant contrast between the control treatment (standard nutrient solution) and calcium nitrate concentrations for all variables analyzed, at levels of p ≤ 0.05 for Ci and p ≤ 0.01 for the other variables (Table 1).

Table 1
Summary of the F-test and mean values for net photosynthesis (A), stomatal conductance (gs), transpiration (E), internal carbon concentration (Ci), instantaneous water-use efficiency (WUEi), instantaneous carboxylation efficiency (CEi), leaf area (LA), and leaf fresh matter yield (LFMY) in kale cv. Manteiga subjected to standard nutrient solution and salinized nutrient solutions enriched with calcium nitrate

Except for Ci, the use of saline nutrient solution reduced the other variables analyzed, regardless of the Ca(NO3)2 concentrations used. When comparing the values obtained in the standard nutrient solution with those obtained in the saline solution at the same concentration (750 mg L-1) of Ca(NO3)2, there were reductions of 38.67, 26.32, 15.86, 45.28, 49.28, and 53.79%, for the variables A, gs, E, WUEi, CEi, LA, and LFMY, respectively (Table 1).

As observed in Table 1, the concentrations of Ca2+ were not efficient to reduce the effect of salinity on the production of kale. This fact occurred because, despite the increase in the availability of Ca2+ resulting in less absorption of Na+, high concentrations of the fertilizer increase the electrical conductivity of the nutrient solution, so that the plants were not able to overcome the osmotic effects associated with the increase in the total concentration of salt (Guimarães et al., 2012Guimarães, F. V. A.; Lacerda, C. F. de; Marques, E. C.; Abreu, C. E B. de; Aquino, B. F de; Prisco, J. T.; Gomes-Filho, E. Supplemental Ca2+ does not improve growth but it affects nutrient uptake in NaCl-stressed cowpea plants. Brazilian Journal of Plant Physiology, v.24, p.9-18, 2012. https://doi.org/10.1590/S1677-04202012000100003
https://doi.org/10.1590/S1677-0420201200...
).

Still in relation to Table 1, it appears that, among these variables, only WUEi was benefited by the increase in the concentration of Ca(NO3)2 at the concentration of 1,125 mg L-1, with no significant difference between this and the standard nutrient solution.

There was no effect of salinity on Ci, but the use of Ca(NO3)2 at concentrations of 1,125 and 1,500 mg L-1 in saline nutrient solution increased Ci by 13.44 and 10.25%, respectively (Table 1).

The decrease in A of kale under salt stress corroborates the results already shown by Souza et al. (2020Souza, C. A. de; Silva, A. O. da; Lacerda, C. F. de; Silva, E. F. de F. e; Bezerra, M. A. Physiological responses of watercress to brackish waters and different nutrient solution circulation times. Semina: Ciências Agrárias, Londrina, v.41, p.2555-2570, 2020. https://doi.org/10.5433/1679-0359.2020v41n6p2555
https://doi.org/10.5433/1679-0359.2020v4...
), who also found a decrease in photosynthetic activity in species of the same botanical family as kale under salt stress.

Salinity affects photosynthetic activity due to the accumulation of Na+ and/or Cl- ions in chloroplasts, which affect the biochemical and photochemical processes involved in photosynthesis. In addition, salt stress decreases CO2 uptake because of salt stress, causing the closure of stomata, reducing the photosynthetic process (Silva et al., 2021Silva, J. S. da; Sá, F. V. da S.; Dias, N. da S.; Ferreira Neto, M.; Jales, G. D.; Fernandes, P. D. Morphophysiology of mini watermelon in hydroponic cultivation using reject brine and substrates. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.402-408, 2021. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n6p402-408
http://dx.doi.org/10.1590/1807-1929/agri...
).

In a study conducted by Ahmed et al. (2021Ahmed, M. Z.; Hussain, T.; Gulzar, S.; Adnan, M. Y.; Khan, M. A. Calcium improves the leaf physiology of salt treated Limonium stocksii: A floriculture crop. Scientia Horticulturae, v.285, p.1-7, 2021. https://doi.org/10.1016/j.scienta.2021.110190
https://doi.org/10.1016/j.scienta.2021.1...
) with Limonium stocksii, the authors found that the application of CaCl2 increased the photosynthetic activity of the plants subjected to salt stress. Salachna et al. (2017Salachna, P.; Piechocki, R.; Byczyńska, M. Plant growth of curly kale under salinity stress. Journal of Ecological Engineering, v.18, p.119-124, 2017. https://doi.org/10.12911/22998993/66247
https://doi.org/10.12911/22998993/66247...
), working with Brassica oleracea var. Sabellica, known as kale, also observed a reduction in stomatal conductance in plants subjected to salt stress. The reduction in stomatal conductance in response to salt stress is a consequence of a decrease in leaf water potential, leading to loss of turgor (Dantas et al., 2021Dantas, M. V.; Lima, G. S. de; Gheyi, H. R.; Pinheiro, F. W. A.; Silva, L. de A.; Fernandes, P. D. Summer squash morphophysiology under salt stress and exogenous application of H2O2 in hydroponic cultivation. Comunicata Scientiae, v.12, p.1-9, 2021. https://doi.org/10.14295/cs.v12.3464
https://doi.org/10.14295/cs.v12.3464...
; Sousa et al., 2022Sousa, H. C.; Sousa, G. G. de; Cambissa, P. B. C.; Lessa, C. I. N.; Goes, G. F.; Silva, F. D. B. da; Abreu, F. da S.; Viana, T. V. de A. Gas exchange and growth of zucchini crop subjected to salt and water stress. Revista Brasileira de Engenharia Agrícola e Ambiental , v.26, p.815-822, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p815-822
http://dx.doi.org/10.1590/1807-1929/agri...
).

The decreased transpiration in plants under salt stress is related to the closure of stomata in response to osmotic stress caused by the increased salinity (Mastrogiannidou et al., 2016Mastrogiannidou, E.; Chatzissavvidis, C.; Antonopoulou, C.; Tsabardoukas, V.; Giannakoula, A.; Therios, I. Response of pomegranate cv. Wonderful plants tο salinity. Journal of Soil Science and Plant Nutrition, v.16, p.621-636, 2016. https://doi.org/10.4067/S0718-95162016005000032
https://doi.org/10.4067/S0718-9516201600...
).

The increase in Ci with elevated Ca2+ concentrations in plants subjected to salt stress was also observed by Ahmed et al. (2021Ahmed, M. Z.; Hussain, T.; Gulzar, S.; Adnan, M. Y.; Khan, M. A. Calcium improves the leaf physiology of salt treated Limonium stocksii: A floriculture crop. Scientia Horticulturae, v.285, p.1-7, 2021. https://doi.org/10.1016/j.scienta.2021.110190
https://doi.org/10.1016/j.scienta.2021.1...
). For He et al. (2018He, L.; Yu, L.; Li, B.; Du, N.; Guo, S. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biology, v.18, p.180, 2018. https://doi.org/10.1186/s12870-018-1393-3
https://doi.org/10.1186/s12870-018-1393-...
), exogenous calcium improved the photosynthetic capacity by enhancing the carbon assimilation capacity of leaves and by regulating stomatal movement under stress. The internal CO2 concentration is commonly related to stomatal dynamics since stomatal closure hinders CO2 influx and decreases its concentration in the substomatal chamber (Navarro et al., 2022Navarro, F. E. C.; Santos Júnior, J. A.; Martins, J. B.; Cruz, R. I. F.; Silva, M. M. da; Medeiros, S. de S. Physiological aspects and production of coriander using nutrient solutions prepared in different brackish waters. Revista Brasileira de Engenharia Agrícola e Ambiental, v.26, p.831-839, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p831-839
http://dx.doi.org/10.1590/1807-1929/agri...
; Silva et al., 2022Silva, J. S. da; Dias, N. da S.; Jales, G. D.; Reges, L. B. L.; Freitas, J. M. C. de; Umbelino, B. F.; Alves, T. R. C.; Silva, A. A. da; Fernandes, C. dos S.; Paiva, E. P. de; Morais, P. L. D. de; Melo, A. S. de; Brito, M. E. B.; Ferreira Neto, M.; Fernandes, P. D.; Sá, F. V. da S. Physiological responses and production of mini-watermelon irrigated with reject brine in hydroponic cultivation with substrates. Environmental Science and Pollution Research, v.29, p.11116-11129, 2022. https://doi.org/10.1007/s11356-021-16412-x
https://doi.org/10.1007/s11356-021-16412...
). According to Fernandes et al. (2010Fernandes, O. B.; Pereira, F. H. F.; Andrade Júnior, W. P. de; Queiroga, R. C. F.; Queiroga, F. M. de. Efeito do nitrato de cálcio na redução do estresse salino no meloeiro. Revista Caatinga, v.23. p.93-103, 2010.), this type of behavior demonstrates that the reduction of the photosynthetic process in the saline treatment is due not only to the reduction of stomatal opening, but also to damage to the cellular structure responsible for CO2 assimilation, is possibly caused by a reduction in the osmotic-water potential and accumulation of ions outside the range that plants tolerate.

The decrease in CEi occurred because the deleterious effect of salt stress was greater on photosynthesis compared to internal carbon concentration. As salt stress becomes more severe, dehydration of mesophyll cells inhibits photosynthesis, mesophyll metabolism is impaired and carboxylation efficiency is compromised (Veloso et al., 2022Veloso, L. L. de S. A.; Silva, A. R. R. da; Lima, G. S. de; Azevedo, C. A. V. de; Gheyi, H. R.; Moreira, R. C. L. Growth and gas exchange of soursop under salt stress and hydrogen peroxide application. Revista Brasileira de Engenharia Agrícola e Ambiental , v.26, p.119-125, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n2p119-125
http://dx.doi.org/10.1590/1807-1929/agri...
).

The decrease in leaf development and, consequently, in kale yield in response to salt stress has also been observed in the literature (Karagöz & Dursun, 2021Karagöz, F. P.; Dursun, A. Calcium nitrate on growth and ornamental traits at salt-stressed condition in ornamental kale (Brassica oleracea L. var. Acephala). Ornamental Horticulture, v.27, p.196-203, 2021. https://doi.org/10.1590/2447-536X.v27i2.2246
https://doi.org/10.1590/2447-536X.v27i2....
; Šamec et al., 2021Šamec, D.; Linić, I.; Salopek-Sondi, B. Salinity stress as an elicitor for phytochemicals and minerals accumulation in selected leafy vegetables of Brassicaceae. Agronomy, v.11, p.362, 2021. https://doi.org/10.3390/agronomy11020361
https://doi.org/10.3390/agronomy11020361...
; Zeiner et al., 2022Zeiner, M.; Cindrić, I. J.; Nemet, I.; Franjković, K.; Sondi, B. S. Influence of soil salinity on selected element contents in different Brassica Species. Molecules, v.27, p.1878, 2022. https://doi.org/10.3390/molecules27061878
https://doi.org/10.3390/molecules2706187...
), as well as by other authors working with other Brassicaceae, such as pak choi (Brassica campestris var Chinensis L.) (Ding et al., 2018Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. Plos One, v.13, p.e0202090, 2018. https://doi.org/10.1371/journal.pone.0202090
https://doi.org/10.1371/journal.pone.020...
), broccoli (Brassica oleracea L. var. Italica) (Rios et al., 2020Rios, J. J.; Agudelo, A.; Moreno, D. A.; Carvajal, M. Growing broccoli under salinity: the influence of cultivar and season on glucosinolates. Scientia Agricola, v.77, p.1-10, 2020. http://dx.doi.org/10.1590/1678-992X-2019-0028
http://dx.doi.org/10.1590/1678-992X-2019...
), and cauliflower (Brassica oleracea var. botrytis L.) (Soares et al., 2020Soares, H. R. e; Silva, E. F. de F. e; Silva, G. F. da; Cruz, A. F. da S.; Santos Júnior, J. A.; Rolim, M. M. Salinity and flow rates of nutrient solution on cauliflower biometrics in NFT hydroponic system. Revista Brasileira de Engenharia Agrícola e Ambiental , v.24, p.258-265, 2020. https://doi.org/10.1590/1807-1929/agriambi.v24n4p258-265
https://doi.org/10.1590/1807-1929/agriam...
). In cauliflower, Soares et al. (2020) observed a decrease in the accumulation of fresh mass in response to an increase in salinity.

When analyzing the effect of calcium fertigation, it appears that all variables reflecting gas exchange were affected in a quadratic way by the increase in Ca(NO3)2 concentrations, with higher values occurring at levels of 1.235, 1.084, 1.369, 1.391, 1.147, and 1.254, leading to 9.11 µmol CO2 m-2 s-1, 0.15 mol H2O m-2 s-1, 2.24 mmol H2O m-2 s-1, 267.23 µmol CO2 mol-1, 4.35 [(µmol CO2 m-2 s-1)/(mmol H2O m-2 s-1)-1], and 0.035 [(μmol CO2 m-2 s-1)/(mmol CO2 mol-1)-1], for A (Figure 1A), gs (Figure 1B), E (Figure 1C), Ci (Figure 1D), WUEi (Figure 1E), and CEi (Figure 1F), respectively.

Figure 1
Net photosynthetic rate (A), stomatal conductance (B), transpiration (C), internal CO2 concentration (D), instantaneous water-use efficiency (E), and instantaneous carboxylation efficiency (F) in kale cv. Manteiga fertigated with calcium nitrate concentrations in salinized nutrient solutions

When comparing these values with those obtained at the lowest concentration of Ca(NO3)2, the greatest gains were obtained in the variables A (14.59%), E (16.67%), Ci (20.35%), and CEi (20.69%). On the other hand, excessive concentrations of Ca(NO3)2 caused reductions in these variables, mainly for A, gs, WUEi, and CEi, with losses of 20.64 (Figure 1A), 26.67% (Figure 1B), 21.61% (Figure 1E), and 22.86% (Figure 1F), respectively, compared to the values obtained at the lowest concentration of Ca(NO3)2.

Despite that, the increase in Ca(NO3)2 concentrations did not nullify the deleterious effect of salt stress on the analyzed variables, confirming the results presented by Ahmed et al. (2021Ahmed, M. Z.; Hussain, T.; Gulzar, S.; Adnan, M. Y.; Khan, M. A. Calcium improves the leaf physiology of salt treated Limonium stocksii: A floriculture crop. Scientia Horticulturae, v.285, p.1-7, 2021. https://doi.org/10.1016/j.scienta.2021.110190
https://doi.org/10.1016/j.scienta.2021.1...
), who observed that the application of Ca2+ (CaCl2) did not improve photosynthetic gas exchange of Limonium stocksii under saline conditions. However, the data presented show that, depending on the analyzed variable, kale subjected to salt stress responded positively to calcium fertigation. These results indicate that adequate Ca2+ nutrition can be an efficient strategy to decrease the deleterious effect of salt stress on plants, thus confirming the results reported by other authors (Ahmed et al., 2021).

Calcium helps plants to maintain relative water content and stomatal conductance, thus preventing damage due to cytoplasm dehydration (Ahmad et al., 2018Ahmad, P.; Abd_Allah, E. F.; Alyemeni, M. N.; Wijaya, L.; Alam, P.; Bhardwaj, R.; Siddique, K. H. M. Exogenous application of calcium to 24-epibrassinosteroid pretreated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Scientific Reports, v.8, p.1-15, 2018. https://doi.org/10.1038/s41598-018-31917-1
https://doi.org/10.1038/s41598-018-31917...
). For Rashedy et al. (2022Rashedy, A. A.; Abd-ElNafea, M. H.; Khedr, E. H. Co-application of proline or calcium and humic acid enhances productivity of salt stressed pomegranate by improving nutritional status and osmoregulation mechanisms. Scientific Reports , v.12, p.14285, 2022. https://doi.org/10.1038/s41598-022-17824-6
https://doi.org/10.1038/s41598-022-17824...
), the presence of Ca ions alleviated the toxic effects of salinity by promoting tissue growth, resulting from the role of Ca2+ in plant cell elongation and division, permeability of cell membrane, nitrogen metabolism, and carbohydrate transport.

In addition, Ca2+ acts on stomatal movement, which influences the transpiration process, carbon assimilation, and water use efficiency. The action of this element in stomatal opening and closing indicates the triggering of different signals depending on the oscillation speed of calcium concentration in the cytoplasm (Liu et al., 2013Liu, Y. F.; Han, X. R.; Zhan, X. M.; Yang, J. F.; Wang, Y. Z.; Song, Q. B.; Chen, X. Regulation of calcium on peanut photosynthesis under low night temperature stress. Journal of Integrative Agriculture, v.12, p.2172-2178, 2013. https://doi.org/10.1016/S2095-3119(13)60411-6
https://doi.org/10.1016/S2095-3119(13)60...
).

The A showed a very strong correlation with the variables gs, E, WUEi, and CEi (Table 2). The gs correlated strongly with E and very strongly correlated with the variables A, WUEi, and CEi. A greater gs allows an increase in the flux of CO2 into the plant and can affect transpiration rates and, subsequently, the A process. The positive correlation between gs and E can be explained by a greater opening of the stomata, causing E to continue along with A (Burbano-Erazo et al., 2020Burbano-Erazo, E.; Cordero, C.; Pastrana, I.; Espitia, L.; Gomez, E.; Morales, A.; Pérez, J.; López, L.; Rosero, A. Interrelation of ecophysiological and morpho-agronomic parameters in low altitude evaluation of selected ecotypes of sweet potato (Ipomoea batatas [L.] Lam.). Horticulturae, v.2, p.1-22, 2020. http://dx.doi.org/10.3390/horticulturae6040099
http://dx.doi.org/10.3390/horticulturae6...
).

Table 2
Pearson’s correlation between gas exchange variables and leaf fresh matter yield in kale fertigated with calcium nitrate concentrations in salinized nutrient solutions

The Ci was moderately correlated with WUEi and very strongly correlated with CEi. The variables WUEi and CEi showed a strong and positive correlation among themselves (Table 2), thus demonstrating that stomatal opening is efficient for these variables, since it showed a CO2 fixation in the leaf mesophyll without causing H2O loss (Coutinho et al., 2020Coutinho, P. W. R.; Echer, M. M.; Guimarães, V. F.; Lana, M. do C.; Inagaki, A. M.; Brito, T. S.; Alves, T. N. Photosynthetic efficiency of tomato plants submitted to calcium silicate application. Revista de Agricultura Neotropical, v.7, p.49-58, 2020.).

The yield of kale has a positive correlation, ranging from moderate to strong, with the variables A, gs, E, WUEi, and CEi (Table 2). Thus, the effect of the environmental conditions to which the plants are subjected on gas exchange directly affects the production of plant biomass (Navarro et al., 2022Navarro, F. E. C.; Santos Júnior, J. A.; Martins, J. B.; Cruz, R. I. F.; Silva, M. M. da; Medeiros, S. de S. Physiological aspects and production of coriander using nutrient solutions prepared in different brackish waters. Revista Brasileira de Engenharia Agrícola e Ambiental, v.26, p.831-839, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p831-839
http://dx.doi.org/10.1590/1807-1929/agri...
).

Although calcium nitrate reduced the effect of salinity on some gas exchange variables, this response did not occur in kale yield, indicating that under salt stress conditions with electrical conductivity above 7.0 dS m-1, the supplementation with Ca2+ is not justified. However, the results presented demonstrate the need for more studies that allow a better understanding of calcium nutrition in vegetables under salt stress lower than that adopted in the present study.

Conclusions

  1. The use of saline water in the nutrient solution reduces the leaf gas exchange, leaf area, and leaf fresh matter yield in kale.

  2. Ca(NO3)2 concentrations ranging from 1,000 to 1,300 mg L-1 were efficient in reducing the effect of salt stress on gas exchanges.

  3. The concentrations of Ca(NO3)2 applied did not mitigate the deleterious effect of salt stress on the leaf fresh matter yield of kale.

Literature Cited

  • Ahmad, P.; Abd_Allah, E. F.; Alyemeni, M. N.; Wijaya, L.; Alam, P.; Bhardwaj, R.; Siddique, K. H. M. Exogenous application of calcium to 24-epibrassinosteroid pretreated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Scientific Reports, v.8, p.1-15, 2018. https://doi.org/10.1038/s41598-018-31917-1
    » https://doi.org/10.1038/s41598-018-31917-1
  • Ahmed, M. Z.; Hussain, T.; Gulzar, S.; Adnan, M. Y.; Khan, M. A. Calcium improves the leaf physiology of salt treated Limonium stocksii: A floriculture crop. Scientia Horticulturae, v.285, p.1-7, 2021. https://doi.org/10.1016/j.scienta.2021.110190
    » https://doi.org/10.1016/j.scienta.2021.110190
  • Ayers, R. S.; Westcot, D. W. A qualidade da água na agricultura. 2.ed. Campina Grande: UFPB, 1999. 153p. Estudos FAO Irrigação e Drenagem 45
  • Burbano-Erazo, E.; Cordero, C.; Pastrana, I.; Espitia, L.; Gomez, E.; Morales, A.; Pérez, J.; López, L.; Rosero, A. Interrelation of ecophysiological and morpho-agronomic parameters in low altitude evaluation of selected ecotypes of sweet potato (Ipomoea batatas [L.] Lam.). Horticulturae, v.2, p.1-22, 2020. http://dx.doi.org/10.3390/horticulturae6040099
    » http://dx.doi.org/10.3390/horticulturae6040099
  • Coutinho, P. W. R.; Echer, M. M.; Guimarães, V. F.; Lana, M. do C.; Inagaki, A. M.; Brito, T. S.; Alves, T. N. Photosynthetic efficiency of tomato plants submitted to calcium silicate application. Revista de Agricultura Neotropical, v.7, p.49-58, 2020.
  • Dantas, M. V.; Lima, G. S. de; Gheyi, H. R.; Pinheiro, F. W. A.; Silva, L. de A.; Fernandes, P. D. Summer squash morphophysiology under salt stress and exogenous application of H2O2 in hydroponic cultivation. Comunicata Scientiae, v.12, p.1-9, 2021. https://doi.org/10.14295/cs.v12.3464
    » https://doi.org/10.14295/cs.v12.3464
  • Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. Plos One, v.13, p.e0202090, 2018. https://doi.org/10.1371/journal.pone.0202090
    » https://doi.org/10.1371/journal.pone.0202090
  • Fernandes, O. B.; Pereira, F. H. F.; Andrade Júnior, W. P. de; Queiroga, R. C. F.; Queiroga, F. M. de. Efeito do nitrato de cálcio na redução do estresse salino no meloeiro. Revista Caatinga, v.23. p.93-103, 2010.
  • Ferreira, D. F. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, v.37, p.529-535, 2019. https://doi.org/10.28951/rbb.v37i4.450
    » https://doi.org/10.28951/rbb.v37i4.450
  • Furlani, P. R.; Silveira, L. C. P.; Bolognesi, D.; Faquim, V. Cultivo hidropônico de plantas. Campinas: IAC. 1999. 52p. Boletim Técnico, 180
  • Guimarães, F. V. A.; Lacerda, C. F. de; Marques, E. C.; Abreu, C. E B. de; Aquino, B. F de; Prisco, J. T.; Gomes-Filho, E. Supplemental Ca2+ does not improve growth but it affects nutrient uptake in NaCl-stressed cowpea plants. Brazilian Journal of Plant Physiology, v.24, p.9-18, 2012. https://doi.org/10.1590/S1677-04202012000100003
    » https://doi.org/10.1590/S1677-04202012000100003
  • He, L.; Yu, L.; Li, B.; Du, N.; Guo, S. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biology, v.18, p.180, 2018. https://doi.org/10.1186/s12870-018-1393-3
    » https://doi.org/10.1186/s12870-018-1393-3
  • Karagöz, F. P.; Dursun, A. Calcium nitrate on growth and ornamental traits at salt-stressed condition in ornamental kale (Brassica oleracea L. var. Acephala). Ornamental Horticulture, v.27, p.196-203, 2021. https://doi.org/10.1590/2447-536X.v27i2.2246
    » https://doi.org/10.1590/2447-536X.v27i2.2246
  • Liu, Y. F.; Han, X. R.; Zhan, X. M.; Yang, J. F.; Wang, Y. Z.; Song, Q. B.; Chen, X. Regulation of calcium on peanut photosynthesis under low night temperature stress. Journal of Integrative Agriculture, v.12, p.2172-2178, 2013. https://doi.org/10.1016/S2095-3119(13)60411-6
    » https://doi.org/10.1016/S2095-3119(13)60411-6
  • Marcolini, M. W.; Cecílio Filho, A. B.; Barbosa, J. C. Equações de regressão para a estimativa da área foliar de couve folha. Científica, v.33, p.192-198, 2005. https://doi.org/10.15361/1984-5529.2005v33n2p192%20-%20198
    » https://doi.org/10.15361/1984-5529.2005v33n2p192%20-%20198
  • Mastrogiannidou, E.; Chatzissavvidis, C.; Antonopoulou, C.; Tsabardoukas, V.; Giannakoula, A.; Therios, I. Response of pomegranate cv. Wonderful plants tο salinity. Journal of Soil Science and Plant Nutrition, v.16, p.621-636, 2016. https://doi.org/10.4067/S0718-95162016005000032
    » https://doi.org/10.4067/S0718-95162016005000032
  • Navarro, F. E. C.; Santos Júnior, J. A.; Martins, J. B.; Cruz, R. I. F.; Silva, M. M. da; Medeiros, S. de S. Physiological aspects and production of coriander using nutrient solutions prepared in different brackish waters. Revista Brasileira de Engenharia Agrícola e Ambiental, v.26, p.831-839, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p831-839
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p831-839
  • Rashedy, A. A.; Abd-ElNafea, M. H.; Khedr, E. H. Co-application of proline or calcium and humic acid enhances productivity of salt stressed pomegranate by improving nutritional status and osmoregulation mechanisms. Scientific Reports , v.12, p.14285, 2022. https://doi.org/10.1038/s41598-022-17824-6
    » https://doi.org/10.1038/s41598-022-17824-6
  • Rios, J. J.; Agudelo, A.; Moreno, D. A.; Carvajal, M. Growing broccoli under salinity: the influence of cultivar and season on glucosinolates. Scientia Agricola, v.77, p.1-10, 2020. http://dx.doi.org/10.1590/1678-992X-2019-0028
    » http://dx.doi.org/10.1590/1678-992X-2019-0028
  • Salachna, P.; Piechocki, R.; Byczyńska, M. Plant growth of curly kale under salinity stress. Journal of Ecological Engineering, v.18, p.119-124, 2017. https://doi.org/10.12911/22998993/66247
    » https://doi.org/10.12911/22998993/66247
  • Šamec, D.; Linić, I.; Salopek-Sondi, B. Salinity stress as an elicitor for phytochemicals and minerals accumulation in selected leafy vegetables of Brassicaceae. Agronomy, v.11, p.362, 2021. https://doi.org/10.3390/agronomy11020361
    » https://doi.org/10.3390/agronomy11020361
  • Silva, J. S. da; Dias, N. da S.; Jales, G. D.; Reges, L. B. L.; Freitas, J. M. C. de; Umbelino, B. F.; Alves, T. R. C.; Silva, A. A. da; Fernandes, C. dos S.; Paiva, E. P. de; Morais, P. L. D. de; Melo, A. S. de; Brito, M. E. B.; Ferreira Neto, M.; Fernandes, P. D.; Sá, F. V. da S. Physiological responses and production of mini-watermelon irrigated with reject brine in hydroponic cultivation with substrates. Environmental Science and Pollution Research, v.29, p.11116-11129, 2022. https://doi.org/10.1007/s11356-021-16412-x
    » https://doi.org/10.1007/s11356-021-16412-x
  • Silva, J. S. da; Sá, F. V. da S.; Dias, N. da S.; Ferreira Neto, M.; Jales, G. D.; Fernandes, P. D. Morphophysiology of mini watermelon in hydroponic cultivation using reject brine and substrates. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.402-408, 2021. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n6p402-408
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v25n6p402-408
  • Soares, H. R. e; Silva, E. F. de F. e; Silva, G. F. da; Cruz, A. F. da S.; Santos Júnior, J. A.; Rolim, M. M. Salinity and flow rates of nutrient solution on cauliflower biometrics in NFT hydroponic system. Revista Brasileira de Engenharia Agrícola e Ambiental , v.24, p.258-265, 2020. https://doi.org/10.1590/1807-1929/agriambi.v24n4p258-265
    » https://doi.org/10.1590/1807-1929/agriambi.v24n4p258-265
  • Sousa, H. C.; Sousa, G. G. de; Cambissa, P. B. C.; Lessa, C. I. N.; Goes, G. F.; Silva, F. D. B. da; Abreu, F. da S.; Viana, T. V. de A. Gas exchange and growth of zucchini crop subjected to salt and water stress. Revista Brasileira de Engenharia Agrícola e Ambiental , v.26, p.815-822, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p815-822
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v26n11p815-822
  • Souza, C. A. de; Silva, A. O. da; Lacerda, C. F. de; Silva, E. F. de F. e; Bezerra, M. A. Physiological responses of watercress to brackish waters and different nutrient solution circulation times. Semina: Ciências Agrárias, Londrina, v.41, p.2555-2570, 2020. https://doi.org/10.5433/1679-0359.2020v41n6p2555
    » https://doi.org/10.5433/1679-0359.2020v41n6p2555
  • Tanveer, K.; Gilani, S.; Hussain, Z.; Ishaq, R.; Adeel, M.; Ilyas, N. Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition, v.43, p.28-35, 2020. https://doi.org/10.1080/01904167.2019.1659324
    » https://doi.org/10.1080/01904167.2019.1659324
  • Trani, P. E.; Tivelli, S. W.; Blat, S. F.; Prela-Pantano, A.; Teixeira, É. P.; Araújo, H. S. de; Feltran, J. C.; Passos, F. A.; Figueiredo, G. J. B. de; Novo, M. do C. de S. S. Couve de folha: do plantio à pós-colheita. Campinas: Instituto Agronômico, 36p. 2015.
  • Veloso, L. L. de S. A.; Silva, A. R. R. da; Lima, G. S. de; Azevedo, C. A. V. de; Gheyi, H. R.; Moreira, R. C. L. Growth and gas exchange of soursop under salt stress and hydrogen peroxide application. Revista Brasileira de Engenharia Agrícola e Ambiental , v.26, p.119-125, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n2p119-125
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v26n2p119-125
  • Zeiner, M.; Cindrić, I. J.; Nemet, I.; Franjković, K.; Sondi, B. S. Influence of soil salinity on selected element contents in different Brassica Species. Molecules, v.27, p.1878, 2022. https://doi.org/10.3390/molecules27061878
    » https://doi.org/10.3390/molecules27061878
  • 1 Research developed at Mossoró, RN, Brazil

Edited by

Editors: Geovani Soares de Lima & Hans Raj Gheyi

Publication Dates

  • Publication in this collection
    24 Oct 2022
  • Date of issue
    Feb 2023

History

  • Received
    30 June 2022
  • Accepted
    27 Sept 2022
  • Published
    11 Oct 2022
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com