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Abstract

Pattern recognition is an important process for gene localization in genomes. The ribosome binding sites are signals
that can help in the identification of a gene. It is difficult to find these signals in the genome through conventional
methods because they are highly degenerated. Artificial Neural Networks is the approach used in this work to
address this problem.
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Introduction

Pattern recognition is an important process for local-
ization of functional sequences in genomes, such as genes,
promoters, or regulators (for example, SOS boxes' and Lux
boxes”). For many reasons, it is difficult to find some of
these patterns in a genome, but generally this is because
there is a great variation in the composition or localization
of these sequences, or because there is not enough knowl-
edge about them. Pattern recognition methods can be used
to overcome these problems. The Ribosome Binding Site
(RBS) is one of those important signals for the identifica-
tion of genes in a DNA sequence, since almost every bacte-
rial mRNA (messenger RNA) has an RBS, to the
polypeptidical product to be produced.

The RBS is the region where the ribosome binds to an
mRNA to begin the translation of the mRNA into a protein.
In the literature it is possible to find a large variety of defini-
tions for RBS, but some characteristics can be pointed out
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(Shultzberger et al., 2001; Alberts, 1994) (Lodish, 2000;
Lewin, 1999). These are shown in Figure 1.

* RBS sequences are rich in purine bases, i.e., rich in
Adenine (A) and Guanine (G);

* They are localized from three to 14 base pairs up-
stream from the beginning of a gene’;

* Their size vary from three to nine base pairs;
* Their consensus sequence is “A G G A G”;

« The RBS sequences are complementary” to the py-
rimidine-rich sequence found in the rRNA in the 16S unit
of the ribosome (end 3’ -HO-AUUCCUCCACUAG
-57).

The RBS sequence is highly degenerated, and may
have a great variation in its base composition and localiza-
tion in the genome, as shown in Figure 2. Due to this great
flexibility, the conventional methods generally used to rec-
ognize RBS’s might have a very high error rate in their pre-
dictions.

In this work, a Machine Learning approach (Mitchell,
1997; Carvalho, 2001) was used, due to its capability of
dealing with this kind of problem, where there is little infor-
mation or highly imprecise data to be analyzed.

1 These are sequences that may indicate that a gene belongs to the SOS Regulation System, that is activated when there is a damage to

the DNA.

2 These are sequences that may indicate that a gene belongs to the Quorum Sensing System, which is responsible for “counting” the

number of individuals of the same species.

w

In the beginning of a gene usually there is a sequence of adenine-thymine-guanine bases (ATG), known as a start codon.

4 Inthe DNA structure, the bases complement each other in the form of: A-T and G-C.
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E. coli ribosome binding sites

Figure 1 - Sequence Logo built using 149 selected sequences of the E. coli
genome. The RBS pattern can be seen between the positions -13 and -6,
where there is a high concentration of purine bases. Figure taken from
Schneider (1990).

Phage QJA protein— CUG AGU AUA AGA GGA CAURUG|CCU AAA
Phage Qf coat CUU UGG GUC AAU UUG AUC|AUG|GCA AAA
Phage yCro ——— AUG UAC UAA GGA GGU UGUAU GAA CAA
Phage fi coat UUU AAU GGA AAC UUC CUCAUGIAAA AAG
Phage 9 X174 A* — CUU UGG GUC AAU UUG AUCJAUG|GCA AAA

Lipoprotein ————— AUC UAG AGG GUA UUA AUANUGIAA GCU
RecA GGC AUG ACA GGA GUA AAAAUGIGCU AUC
GalE AGC CUA AUG GAG CGAAUUAUGIAGA GUU
GalT CCC GAU UAA GGAACG ACCIAUGIACG CAA
Ribosomal L10 —— CAU CAA GGA GCAAAG CUARUGIGCU UUA

start codon

Figure 2 - Selected parts of the E. coli genome. The RBS sequences are
underlined, and the names of the genes they correspond to are on the left.
Adapted Figure from Alberts (1994) page 401.

More specifically, a Multi-Layer Neural Network
(MLNN), with the Backpropagation learning algorithm
(Haykin, 1998 Wu, 2000), were employed. The MLNN
was chosen because the knowledge can be taught to the net-
work through exposure to examples, in a learning process.
In this work, the concept of the RBS will be learned from a
set of nucleic bases sequences that represent the problem
adequately; this will be shown in the next section. Indeed,
the Backpropagation algorithm figures among the simplest
ones in the Artificial Neural Network universe. Because of
this, it was chosen for an initial work in this issue.

As a special contribution, this work emphasizes the
need for the creation of biological data mining tools capa-
ble of capturing both imprecision and ambiguity present in
biological data.

Material and Methods

We carried out this work through successive steps, in
order to construct a neural network capable of learning the
RBS concept, quite independently from the enormous data
quantity generated by genome sequencing. For each step, a
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different model was designed for both architecture and data
codification.

Three models of MLNN were built and, for each one,
tests were performed with several different parameters,
such as training strategy, learning step, and maximum error
rate. For each of the models the best results are shown, and
one network from each model is indicated as having the
best performance. This performance is calculated using
these values:

* True Positive (TP): percentage of instances that the
network correctly classified a RBS sequence;

* True Negative (TN): percentage of instances that the
network correctly classified as not being a RBS sequence;

* False Positive (FP): percentage of instances that are
not RBS sequences, but the network classified as a RBS se-
quence;

» False Negative (FN): percentage of instances that
are RBS sequences, but the network classified as not being
a RBS sequence.

First model

The training of the first model was done using exam-
ples of sequences, which were taken from a well-known
software for RBS identification: the RBSFinder (Suzek,
2001), whose default output is five bases length sequences.
Therefore, this will be the size of the input of the networks
of this model.

The codification used in this work is a normalized Bi-
nary Four Digit One (known as BIN4) (see Table 1), which
in Wu (2000) is the most recommended for Bioinformatics
applications.

The networks were built with 20 units in the input
layer. The number of neurons in the hidden layer, the learn-
ing step, and the maximum error rate were empirically de-
termined.

To assemble the output layer, it is interesting to know
how the sequences are presented in the decision space
formed by the network. The codification also has an influ-
ence on the determination of the number of units in the out-
put layer. For evaluating the effects of the codification over
the network’s decision space, we used a clustering algo-
rithm, known as an “Elastic Algorithm” (Salvini, 2000).

We have presented the codified sequences to the Elas-
tic Algorithm, which answered with four sequence clusters.
The fact that the Elastic Algorithm separated these se-
quences into different clusters does not necessarily mean
that there are different kinds of RBS. It just suggests that
the codification chosen separates the sequences in four

Table 1 - Nucleic bases codification.

0.90.10.10.1 Adenine
0.10.90.10.1 Thymine
0.10.10.90.1 Guanine
0.10.10.10.9 Cytosine




646

clusters, indicating that there are four patterns to be recog-
nized. So, the output layer was built with four units, one for
each cluster. Each of these units has an output value of be-
tween 0.1 and 0.9. The highest output value among the four
units indicates which cluster the sequence belongs to, and
this value has to be greater than a 0.5 threshold. If the four
units answer values are lower than this threshold, it is con-
sidered a negative answer, i.e., the tested sequence is not
part of any RBS cluster.

From the 49 sequences presented to the Elastic Algo-
rithm, 10 were chosen to constitute the training set, because
these are more representative of the four clusters. These se-
quences are the positive examples. The negative examples
of the training set were built by making the complement of
the positive set. For example, a positive sequence A G G A
G will generate the sequence T C C T C as a negative exam-
ple.

From those sequences that were not chosen to be the
positive examples of the training set, 12 were chosen for the
test set. Their complements were built to be the negative ex-
amples of the training set.

As we will argue in more detail in the Discussion,
both training and test sets had to be structured under some
restrictions. The number of examples available were rather
limited and we decided, with this model, to keep the
RBSFinder data format in order to make comparisons as re-
liable as possible with well recognized software which ad-
dresses the same issue.

The results of the three best networks for this model
can be seen in Table 2. The best performance for the first
model was the 20-4-4-architecture network.

Second model

In this model we used the same codification as pre-
sented in the first one, so there were no changes in the input
layer. But as a different training strategy was implemented,
the hidden and output layers, as well as the learning step
and the maximum error rate were altered.

Ribosome binding site recognition using neural networks

As stated above, RBS sequences have a high concen-
tration of purine bases (A and G), which can be easily seen
in the output of the RBSFinder in its analysis over the E.
coli genome. Based on this information, we decided to
model this concept explicitly, through the sequences used
to train the network. So, the training set was built with only
four sequences: A A AA A and GG G G G, representing
the purines as positive examples; and CCCCCand TT T
T T, representing the pyrimidines as negative examples.

This approach for addressing a pattern recognition
problem is quite different from what it is currently found in
Artificial Neural Network applications. Indeed, it was our
aim to develop a way of representing a RBS concept as sim-
ply as possible, based upon its biological characteristics.

One observation concerns the negative examples:
these were represented by the complement of the positive
ones because in most of the cases they indeed are their com-
plement. The results showed that this strategy can be a good
choice.

Only one unit, with answer values varying between
0.1 to0 0.9 , was chosen to compose the output layer. Output
values close to 0.1 are considered negative answers, and
those close to 0.9 are considered positive answers, with a
0.5 threshold. The other parameters were chosen empiri-
cally, as in the previous model.

In this model we used the same test set of the first
model to evaluate the performance. The best architectures
for this model can be seen in Table 3, and the one indicated
as having the best performance is the 20-2-1.

Third model

In the third model, the codification was modified to
address the concept that RBS are sequences rich in purine
bases using a different strategy. Table 4 shows the codifica-
tion used.

This codification does not distinguish bases of a same
family; instead it groups them in purines (A and G) and py-
rimidines (C and T). The training set is the same as the one

Table 2 - Comparison between the first model networks. The column Architecture(x-y-z) indicates the number of units in the input, hidden, and output
layers, respectively. The column MC (Misclassified) indicates that the network correctly classified a sequence as a RBS, but in the wrong cluster.

Architecture (x-y-z)  Learning step Max. error rate TP(%) TN(%) FP(%) FN(%) MC(%)
20-2-4 0.3 0.001 334 16.6 33.4 00.0 16.6
20-3-4 0.1 0.01 334 33.4 16.6 4.1 12.5
20-4-4 0.2 0.001 375 41.7 8.3 00.0 12.5

Table 3 - Comparison between the second model networks. The column Architecture(x-y-z) indicates the number of units in the input, hidden, and output

layers, respectively.

Architecture (x-y-z) ~ Learning step Max. error rate TP(%) TN(%) FP(%) FN(%)
20-1-1 0.2 0.001 459 50.0 00.0 4.1
20-2-1 0.1 0.01 50.0 50.0 00.0 00.0
20-3-1 0.1 0.001 459 50.0 00.0 4.1
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Table 4 - Nucleic base codification.

0.9 Adenine
0.1 Thymine
0.9 Guanine
0.1 Cytosine

used in the second model, reinforcing the concept of purine
rich sequences.

As the codification size is now one digit for each base
(instead of the four digits used in the previous models), the
quantity of units in the input layer was reduced to five, one
for each base of the sequences that will be presented to this
layer.

As in the second model, there is only one unit in the
output layer to classify a sequence as positive or negative.
The threshold remains 0.5.

The number of units in the hidden layer, the learning
step and the maximum error rate were chosen empirically,
as in the previous models. In this model we used the same
test set of the previous models to evaluate the performance,
and the outcome can be seen in Table 5.

The same questions involving training and test sets,
as was mentioned for the second model in the previous
subsection, will be examined more in depth in the Discus-
sion.

Model validation

As mentioned before, the neural networks were
trained with variations in parameters, such as learning and
error rates. The condition for learning interruption was
based on the error rate. The values of learning parameters
presented by the best neural networks may be observed in
Tables 2, 3 and 5. Therefore, each neural network presented
a particular performance measured by its numbers of right
and wrong answers, when applied over the test set.

Observing the recognition ability of the three archi-
tectures, the one indicated as having the best performance
was the 5-2-1-architecture network, for this one had its an-
swer values closer to the goal values (i.e., positive answers
closer to 0.9, and negative answers closer to 0.1).

The neural networks which obtained the best perfor-
mances were chosen for later refinement. The best one for
each strategy, after refinement, was employed for compari-
sons between the three models and for validation with E.
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coli data extracted from Regulon DB (Colado-Vides,
1998).

Here, two additional test phases will be shown: first,
the networks were validated using sequences previously
experimentally tested; later, the networks were tested over
the entire E. coli genome. For these two test phases, only
the networks chosen in each model as having the best per-
formance were used.

In order to read and present the nucleic sequences to
the MLNN, we used a sliding window. This window con-
sists of an array of nucleic bases that will be read at once
(from the experimental data, or from the E. coli genome),
codified, and then presented to the MLNN’s input layer.
Then, this window slides to the next base, and this new se-
quence is read and codified until this window slides
through the entire selected area.

The Escherichia coli K-12 MGI1655 genome
(U00096) was used to evaluate and compare the three mod-
els. To validate the models, we used a database containing
137 sequences that were experimentally tested from the E.
coli genome, taken from the Regulon DB (Collado-Vides,
1998). The sequences are 30 bases length, as displayed in
Figure 3.

For estimating the number of true positives and false
negatives, we created a set of positive sequences, using the
10 bases from region “a” in Figure 3 of the 137 Regulon DB
sequences. In order to obtain just one answer for each gene,
only the highest output of the networks was considered for
each start codon coordinate.

For the set of negative sequences construction, in or-
der to calculate the true negative and false positive cases,
1470 sequences were extracted from the 20 bases of the re-
gions “b” as in Figure 3.

Results

We analyzed several different thresholds for each net-
work, until we obtained the values shown in Tables 6, 7 and
8. The threshold tests began with the value 0.5, as this

XXXXXXXXXXSSSSSSSSSSxxxxxxxxxx
\ AN AN S

b a b

Figure 3 - The sequences extracted from the Regulon DB database have
this format: the region “b” on the left and on the right are 10 bases length;
region “a” is also 10 bases length, and the RBS sequence is within these
bases.

Table 5 - Comparison between the second model networks. The column Architecture (x-y-z) indicates the number of units in the input, hidden, and output

layers, respectively.

Architecture (x-y-z) ~ Learning step Max. error rate TP(%) TN(%) FP(%) FN(%)
5-1-1 0.3 0.001 50.0 50.0 00.0 00.0
5-2-1 0.1 0.001 50.0 50.0 00.0 00.0
5-3-1 0.3 0.001 50.0 50.0 00.0 00.0
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Table 6 - Performance evaluation for model 1.

Threshold
0.71 0.72 0.73
Positive TP (%) 99.27 99.27 98.54
instances:  p\f (o) 0.73 0.73% 1.46
Negative TN (%) 79.25 80.00 82.11
instances:  pp (o) 20.75 20.00 17.89
Table 7 - Performance evaluation for model 2.
Threshold
0.70 0.71 0.72
Positive TP (%) 99.27 99.27 98.54
instances:  pny (o) 0.73 0.73 1.46
Negative TN (%) 78.37 80.27 81.97
instances:  pp (o) 21.63 19.73 18.03
Table 8 - Performance evaluation for model 3.
Threshold
0.73 0.74 0.75
Positive TP (%) 100.00 100.00 98.54
instances:  pn (o) 0.00 0.00 1.46
Negative TN (%) 68.91 72.79 80.00
instances:  pp (o) 31.09 2721 20.00

threshold was used in all the models previously described.
The tests were done from this value to 0.8, with a 0.1 step,
and from the data obtained it was possible to see that the
best outcomes were between 0.7 and 0.8. So, additional
tests were done, starting with 0.7, using a 0.01 step.

Due to the highly degenerated characteristic of the
RBS sequences, the MLNN were trained to allow general-
ization at high levels, increasing the maximum error rate
accepted. It causes a reduction in the difference between the
values of positive and negative answers, as can be seen in
the comparison of the behavior of the models with different
threshold values.

We chose a best threshold for each network analyzing
the data in the Tables 6, 7 and 8. This choice was con-
strained by the fact that we want to reduce the false positive
quantity, without increasing the false negative quantity.
The best thresholds for each model are: 0.72 for the first
model; 0.71 for the second model; and 0.74 for the third
model.

Recognition of ribosome binding sites in E. coli

The graph in Figure 4 shows the answer values for the
three models, for each sequence position analyzed up-
stream from the start codon. In the graph in Figure 4, it is

Ribosome binding site recognition using neural networks
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Figure 4 - Answer values from the networks for each position, for the
three models.

possible observing that the networks of the second and third
models presented higher answer values in the RBS region.
On the other hand, the first model network presented higher
answer values in many positions. The graph shows a posi-
tive outcome, for the networks identified RBS sequences
within the expected localization, though they were not
trained explicitly with information about the position up-
stream from the start codon.

In the individual evaluation of answers of networks
for each start codon, it was noted that there was a high level
of generalization, identifying many possible RBS se-
quences for a single gene. It was a predicted result due to
the training strategies chosen. In Figure 5 it is possible to
observe that, in some cases, the answer values increase as
the window slides towards the start codon, up to a certain
point. From this point on, the answer values begin to de-
crease. This might be due to the variation of the RBS’s size,
and because the network was not trained explicitly with in-

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-25 -20 -15 -10 -5 0

Figure 5 - All the answers to a single start codon, from one of the net-
works.
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formation, such as localization, for the RBS sequences. It is
expected that in the analysis of a RBS sequence longer than
the size of the window used, the networks should answer as
having identified more than one sequence as a RBS. In
those cases, the final answer was only the highest output for
each start codon.

Furthermore, some authors have observed that it is
not necessary that a RBS sequence has all its bases adja-
cent. There may be gaps from base to base, which requires
that the bases continue being the complement of the rRNA
of the 16S unit of the Ribosome. That also justifies the high
answer values in the region, suggesting that there is more
than one RBS sequence for a start codon. Together, these
suggest a RBS.

The E. coli genome has 4,279 genes; most of these
must have a RBS for its translation, but the exact number of
RBS sequences is not known. The three MLNN models, as
well as the RBSFinder, presented a close number of predic-
tions, with a large area of intersection between the results.

Table 9 shows the results over the entire E. coli ge-
nome for the three models and for the RBSFinder. On the
first line are the number of start codons to which a RBS was
predicted, and on the second line, the number of start
codons to which no RBS has been predicted. The thresholds
used for the models are the ones chosen in Future work.

In Table 9, it is possible to see that the RBSFinder has
classified 4,009 sequences as RBS, and left 270 start codons
without any suggestion of a possible RBS. In 969 of the
4,009 predictions, the software has altered the position of the
start codon, disregarding the positions previously annotated,;
and the position of 411 of the RBS sequences predicted were
more than 25 base pairs upstream from the start codon.

Discussion

It is important to emphasize that it is possible to use
Neural Network methods over a wide range of
Bioinformatics problems, even the ones that are already be-
ing treated through conventional methods.

The three models presented here had a very good per-
formance in the classification of positive sequences, with
99% prediction accuracy. The false positive predictions
were about 20%. However, this balance between the classi-
fication of true positives and false positives demonstrates
that some RBS sequences are not being located.

Another important fact was that the localization of
most of the RBS predictions was close to the expected identi-
fication interval. As the information about the localization of
RBS sequences was not used in the training of the models,
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that also indicates that the networks were able to “learn” to
distinguish the RBS sequences from the other ones.

For the first model, the emphasis goes to the study of
the codification and training set effect over the answer do-
main, using the Elastic Algorithm. This study has driven
the choice of the number of units in the output layer, and the
prediction that the hidden layer also had to have 4 units.

As seen in previous sections, the second and third
models allowed an economic representation of a highly de-
generated biological concept. In the second model, only
four extreme sequences were used to train the networks,
characterizing a non-conventional approach. In the third
model, this non-conventional approach also shows up in a
different codification, where the goal concept is directly
represented. In both models, the fundamental idea was to
use the learning processes of the networks to represent the
RBS concept, aiming to reduce drastically the training set.
In other words, from sequences like AAAAA and
GGGGG, and using a codification that better suits the prob-
lem (purine bases = 0.9 and pyrimidine bases = 0.1), it was
possible to model the information that an important charac-
teristic of the RBS sequences is that they are purine rich.
There was no need for a huge training set containing explic-
itly all possible examples. The generalization capacity of
the networks, together with those extreme sequences, al-
lowed a simple and biologically adequate approach.

As for the size of the RBS sequence, the approach
through sliding windows allowed the needed flexibility for
the prediction of a region where the extension is imprecise.

Finally, in a complex environment with the task of bi-
ological data mining, where there is an inherent lack of spe-
cific knowledge about the problem or degeneration of
information, the Neural Networks were an efficient method
for pattern recognition in genomes.

One of the most important ideas to be emphasized
here concerns flexibility: biological data mining techniques
must incorporate functions capable of capturing biological
ambiguity and imprecision. That is the real challenge to mi-
grate techniques developed for very exact pattern recogni-
tion purposes for such a specialized, imprecise field as
Biology.

Therefore, one of the main motivations for develop-
ing this work was the investigation of Artificial Neural Net-
work characteristics that could help solve problems which
cannot be adequately attacked by traditional
Bioinformatics tools.

It became quite clear for us that very interesting new
possibilities emerge when Artificial Neural Networks are

Table 9 - Number of RBS sequences predicted by the 3 models and the RBS Finder.

Model 1 threshold: 0.72  Model 2 threshold: 0.71  Model 3 threshold: 0.74 RBSFinder
Number of start codons with RBS 4253 4170 4137 4009
Number of start codons without RBS 26 109 142 270
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applied to model biological data, in a way which is much
different from that employed in Engineering applications.

Certainly, some points concerning data sets may be
analyzed carefully and they will be addressed with more at-
tention here.

Because of its strong degeneration, a very particular
RBS characteristic, such biological patterns could not be
treated as exact, precise, non-biological patterns. So, only
the first model construction, considered the most conven-
tional, was based on sequences recognized by the
RBSFinder. By virtue of the proposal originality, there was
an implicit need for beginning with the construction of a
network whose performance was directly comparable to
that of traditional software.

Other reasons, however, underlined this strategy: a
difficulty in directly manipulating RBS sequences which
originated from experimental data and reliability of data
generated by recognized software, employed in the major
Genome Projects.

Apparently, the training set size does not seem
enough if analyzed under more conventional Artificial
Neural Network learning criteria. The lack of specific ex-
amples in the literature also disallowed an efficient classi-
cal training, and, moreover, the experimental data available
did not indicate precisely where a RBS sequence could be
found.

Regardless, the first model performance is not limited
by that of the RBSFinder: even using RBSFinder’s outputs,
the neural network could be trained so that its answers
gained more flexibility than those of the RBSFinder. In-
deed, the RBSFinder lacks some RBS sequences for the
rather rigid treatment it applies to biological ambiguity.

On the other hand, as was mentioned earlier, the clear
purpose of this work was to construct a neural network
based on the following RBS characteristic: a sequence,
around five bases long, plain of purines (adenines and
guanines). This objective was achieved. As shown by our
results, the second and third models learned to represent a
concept situated between the extreme-sequences AAAAA
and GGGGG. Such an approach, based highly on biologi-
cal criterion, weakened the need for using a bigger data set.
Consequently, the RBS concept as a purine enriched re-
gion, by itself, indicated its negative correspondent - a poor
purine region, plain of pyrimidines.

Finally, it is important to note that this strategy is
valid once employed with a policy that defines the RBS
search region. In this study, this was achieved by the sliding
windows which were restricted to a limited region in accor-
dance with the literature.

Future work

Possible future works may be to test different training
strategies, for example, the addition of explicit information
about the RBS sequence distance upstream from the start
codon. This may help the network to be more accurate in

Ribosome binding site recognition using neural networks

the classification of sequences, even though there are varia-
tions in the distance between the RBS and the start codon.

It is also possible to test different kinds of Neural Net-
works that are able to deal with inputs that have an indeter-
minate size (like the RBS sequences).

On the other hand, it would be of great interest to
compare performances between other Neural Network par-
adigms, as Self Organizing Maps (SOM) or Adaptive Reso-
nance Theory (ART). It would also be nice to apply some
recognized pattern recognition techniques, such as Regres-
sion Analysis or Decision Trees, to the RBS recognition
problem.
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