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Abstract

RNA silencing mechanisms are conserved throughout eukaryotic evolution, possibly due to their importance in viral
resistance and other aspects of cell biology. Here, we explored the Citrus EST (CitEST) database in search of se-
quences related to the most important known genes involved in RNA silencing. Transcripts strongly matching
Argonaute (AGO), Dicer-like (DCL), Hua enhancer (HEN), and RNA-dependent RNA Polymerase (RdRP) were
found in many of the citrus libraries. The reads were clustered and quantified. This shows that post-transcriptional
gene silencing apparatus is active in citrus. It seems plausible that a better understanding of the players of RNA si-
lencing in Citrus spp. and related genera may help create new tools to defeat the viral diseases that affect the citrus
industry. Functional analyses of these citrus genes would enable the pursuit of this hypothesis.
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RNA silencing is a ubiquitous and highly conserved

phenomenon throughout the evolution of eukaryotes (Met-

te et al., 2000; Baulcombe, 2004). It plays a role in cellular

defense against viruses (Waterhouse et al., 2001) and trans-

posons (Bennetzen, 2000), as well as in chromatin remod-

eling (Chandler and Vaucheret, 2001) and developmental

regulation (Kidner and Martienssen, 2005). Three major

mechanisms are recognized by which RNA can be silenced

in plant cells: i) Post-Transcriptional Gene Silencing

(PTGS) mediated by small interfering RNAs (siRNAs); ii)

microRNAs (miRNAs) that finely regulate gene expression

through mRNA degradation or translation arrest; and iii)

Transcriptional Gene Silencing (TGS), which drives

chromatin remodeling (via DNA and histone methylation)

also through siRNAs (Baulcombe, 2004; Qi and Hannon,

2005). The trans-acting siRNA (tasiRNAs) pathway cou-

ples two of these mechanisms: a miRNA targeting an inter-

mediate transcript (tasiRNA) that will produce siRNAs to

silence target genes (Vazquez et al., 2004). These processes

are related and collectively called RNA silencing. They de-

pend upon cellular recognition of double-stranded RNAs

(dsRNAs), originated, for example, during virus replica-

tion, hairpin RNA or miRNA annealing to a complemen-

tary RNA transcript. Detection of dsRNA by cells will elicit

the appropriate machinery to degrade any transcripts simi-

lar to those found as dsRNA.

The current model of PTGS establishes that once a

dsRNA is recognized by the cell, an enzyme called Dicer

(coded by four DCL genes in Arabidopsis) cuts it into 21-23

nt (siRNAs) sections. These fragments are recognized by

the so-called RNA-Induced Silencing Complex (RISC),

which plays a surveillance role in finding similar tran-

scripts matching one strand of the fragmented RNA, fol-

lowed by cutting them down or, alternatively, by allowing

an RNA-dependent RNA Polymerase (RdRP) to use these

siRNAs as primers for extending the cognate transcript,

generating new dsRNA that, in turn, will be recognized by

Dicer, restoring the cycle in a reiterated process (Benedito

et al., 2004). Translation arrest of target transcripts can also

occur through this mechanism. Some virus genomes con-

tain genes to counter-attack, called Silencing-Suppressors,

which are involved in avoiding silencing mechanisms

through strategies, such as hindrance of the RISC assem-

bling or targeting, and avoidance of systemic spreading of

silencing signals (Qu and Morris, 2005).

The CitEST database, with 242,790 Expressed Se-

quence Tags (ESTs), is derived from 33 libraries of eight

Citrus and one Poncirus species (Targon et al., this issue),

and represents a valuable platform for analyzing the genetic

machinery involved in RNA silencing in citrus species.

Identifying RNA silencing will allow a more accurate anal-

ysis of these mechanisms, helping to unravel evolutionary

aspects. Moreover, mechanisms of gene silencing or silenc-
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ing suppression may be used in citrus molecular breeding,

since Citrus tristeza virus (CTV; Closterovirus), the most

important virus of citrus orchards worldwide, holds three

distinct silencing suppressors in its ~20-kb genome (Lu et

al., 2004). Suppression of endogenous RNA silencing ma-

chinery in host cells by multiple mechanisms may represent

the basis for virulence and infectivity success. Thus, tack-

ling CTV RNA silencing suppressors may also help to elu-

cidate and identify possible mechanisms of resistance.

In plants, RNA silencing is better understood in

model species, such as Arabidopsis thaliana, than in crops,

and even less in perennial species, such as Citrus spp. Some

aspects of PTGS have, nevertheless, been investigated in a

few woody species, such as Eucalyptus (Sassaki et al.,

2005), plum (Scorza et al., 2001; Hily et al., 2005) and Cit-

rus (Domínguez et al., 2002; Lu et al., 2004; Fagoaga et al.,

2006). The CTV coat protein gene p25 was shown to be si-

lenced under non-selective conditions in a transgenic Mex-

ican lime (Citrus aurantifolia) (Domínguez et al., 2002),

indicating that the silencing surveillance system is active in

this species. More recently, PTGS of the CTV silencing

suppressor p23 was revealed to confer CTV resistance in

Mexican lime (Fagoaga et al., 2006), implying how useful

this system can be for molecular breeding in order to over-

come one of the greatest constraints of the citrus industry

worldwide.

This work explored the CitEST database to find genes

involved in RNA silencing; transcriptional profiles of Cit-

rus and Poncirus species were contrasted to establish prin-

ciples to further functionally investigate this mechanism in

citrus. Searches to identify genes that putatively code for

proteins known to participate in RNA silencing were

carried out using the CitEST database from the Citrus Bio-

technology Laboratory at the Instituto Agronômico de

Campinas (IAC), Brazil. For this study, 29 libraries encom-

passing 162,902 reads were used. Searches were performed

by tBLASTx using as query protein sequences already

characterized and an Evalue < 10-10 as threshold. Reads were

scrutinized individually and clustered using the CAP3 soft-

ware (Huang and Madan, 1999) with default parameters

such as an overlap length cutoff of 40 and an overlap length

identity cutoff of 80%. Reads composing each tentative

consensus (TC) were quantified in selected CitEST librar-

ies and grouped by species and tissues. Since each library

presented a different number of reads, the results were nor-

malized to 10,000 reads. Information on construction of the

libraries can be found at Targon et aI. (this issue).

We found significant matches in the CitEST database

for Argonaute (AGO), Dicer-like (DCL), Hua Enhancer

(HEN), and the RNA-dependent RNA Polymerase Sup-

pressor of Gene Silencing (SGS3). No significant matches

were found for SDE2, SDE3, SDE4, SGS1 or SGS2. Quan-

tification of reads assembled into TCs of selected tissues

and species can be viewed in Tables 1 and 2, respectively.

Table 3 displays sequence similarities among the most

abundant citrus TCs and their putative orthologues in

Arabidopsis.

ARGONAUTE is a family of RNA binding proteins,

with a conserved PAZ domain which is implicated in cleav-

ing target RNA through the RNA-induced silencing com-

plex (RISC; Baumberger and Baulcombe, 2005). There are

10 AGO paralogues in Arabidopsis (Carmell et al., 2002;

Morel et al., 2002), and so far, some have been associated

with distinct pathways of gene silencing. AGO1 appeared

to act with miRNA (Fagard et al., 2000; Vaucheret et al.,

2004), whilst AGO4 acted on epigenetic silencing (Zil-

berman et al., 2003, 2004), and AGO7 and AGO10 on de-

velopmental processes (Moussian et al., 1998; Lynn et al.,

1999; Hunter et al., 2003). We identified 129 reads signifi-

cantly similar to Arabidopsis AGO paralogues that were

grouped into 13 TCs and 18 singlets. Transcriptional modu-

lation of AGO TCs within species and tissues was noted.

TC1-4 was more actively transcribed than the other clus-

ters; however, detention of differential transcription in tis-

sues or species was limited by the relatively low number of

reads in some libraries. It is interesting to note, though, that

leaves showed higher expressions of TC1 and TC4,

whereas TC2 was the most active in fruit tissues.

Twenty-five transcripts with high similarity to

Dicer-like proteins (DCL1-4) in the Arabidopsis genome

(Gasciolli et al., 2005) were grouped into three TCs and

seven singlets. A more accurate quantification of gene ex-

pression of putative DCL paralogues in citrus is required to

understand transcriptional modulation in tissues, and envi-

ronmental and developmental conditions within species,

but since the Dicer enzyme is a critical component in RNA

silencing mechanisms, this study might raise some special

features critical for viral defense.

In Arabidopsis, HEN was shown to play a role in de-

velopment (Chen et al., 2002) and virus resistance (Mour-

rain et al., 2000, 2002). Recently, HEN1 was biochemically

characterized and revealed to methylate duplexes of

miRNAs or siRNAs to prepare primers for RdRP sequence

extension for the following cycle of gene silencing (Yang et

al., 2006). Only 14 reads similar to the Arabidopsis HEN

were retrieved from the CitEST database, corresponding to

five TCs and one singlet. Two TCs were formed only by

reads from C. sinensis (TC1 and 4). Some less represented

libraries of specific tissues (such as root, flower and seed)

did not show any transcription of HEN-related RNA, nei-

ther did libraries of some species such as C. aurantifolia, C.

limonia, and C. latifolia. Analysis of transcriptional modu-

lation of HEN-related sequences seemed to be limited due

to the small number of reads found in the CitEST database.

Host RdRPs are thought to act as sensors of foreign

RNA, turning them into dsRNAs to enter the silencing

pathway (Zamore, 2002). Forty-four reads matching the

Arabidopsis RNA-dependent RNA polymerase SGS2/

SDE1/RDR6 were retrieved from the CitEST database and

they formed six TCs and six singlets. TC1 returned 25
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reads, being by far the most transcribed group, with great

activity in C. aurantifolia. Such a high expression of RdRP

in C. aurantifolia is surprising since it is very susceptible to

viruses such as CTV in contrast to a relatively low expres-

sion in P. trifoliata (given the number of reads in this spe-

cies is not underrepresented), which implies that RdRP in

citrus might not be required at high levels to guarantee virus

resistance through RNA silencing. Notwithstanding, this

enzyme was found to be a key component in antiviral de-

fense mechanisms in plants. The RdRP from Nicotiana

benthamiana accounted for the high virus susceptibility in

this species when its gene was compared with orthologues

of close relatives (Yang et al., 2004). Plants of N.

benthamiana with reduced expression of RdRPs were

shown to be more susceptible to viruses with even a greater

effect at high temperatures (Qu et al., 2005; Schwach et al.,

2005). It is noteworthy, however, that in C. aurantifolia,

tristeza effects are more pronounced in cool climates, and
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Table 1 - Abundance of reads grouped into tentative consensi (TC) of genes involved in RNA silencing pathways per tissue in selected libraries from the

CitEST databasea. Frequency is given per 10,000 transcripts and absolute numbers of valid reads are shown in parentheses.

Leaf Bark Fruit Root Flower Seed mean (Σ)

AGO-TC1 1.91 (15) 3.17 (4) 0.81 (5) - 2.31 (1) - 1.53 (25)

AGO-TC2 0.76 (6) 1.59 (2) 2.74 (17) - - 2.97 (1) 1.60 (26)

AGO-TC3 0.64 (5) - 1.29 (8) 9.64 (2) - - 0.92 (15)

AGO-TC4 1.40 (11) - 1.45 (9) - - - 1.23 (20)

AGO-TC5 0.38 (3) 0.79 (1) - - - - 0.25 (4)

AGO-TC6 0.13 (1) - 0.16 (1) - - - 0.12 (2)

AGO-TC7 0.13 (1) - 0.48 (3) - - - 0.25 (4)

AGO-TC8 0.13 (1) - 0.16 (1) - - - 0.12 (2)

AGO-TC9 0.13 (1) 2.38 (3) - - - - 0.25 (4)

AGO-TC10 - - 0.32 (2) - - - 0.12 (2)

AGO-TC11 0.13 (1) - 0.32 (2) - - - 0.18 (3)

AGO-TC12 0.13 (1) - - 4.82 (1) - - 0.12 (2)

AGO-TC13 0.25 (2) - - - - - 0.12 (2)

Σ 6.12 (48) 7.93 (10) 7.73 (48) 14.46 (3) 2.31 (1) 2.97 (1) 6.81 (111)

DCL-TC1 0.38 (3) 0.79 (1) 0.48 (3) - 2.31 (1) - 0.49 (8)

DCL-TC2 0.25 (2) 1.59 (2) 0.32 (2) - - - 0.37 (6)

DCL-TC3 0.25 (2) 0.79 (1) 0.16 (1) - - - 0.25 (4)

Σ 0.88 (7) 3.17 (4) 0.96 (6) 0.00 2.31 (1) 0.00 1.10 (18)

HEN-TC1 0.13 (1) - 0.48 (3) - - - 0.25 (4)

HEN-TC2 0.13 (1) 0.79 (1) - - - - 0.12 (2)

HEN-TC3 0.25 (2) - - - - - 0.12 (2)

HEN-TC4 - - 0.48 (3) - - - 0.18 (3)

HEN-TC5 0.25 (2) - - - - - 0.12 (2)

Σ 0.76 (6) 0.79 (1) 0.96 (6) 0.00 0.00 0.00 0.80 (13)

RdRP-TC1 1.40 (11) 1.59 (2) 1.77 (11) - - 2.97 (1) 1.54 (25)

RdRP-TC2 0.25 (2) - 0.16 (1) - - - 0.18 (3)

RdRP-TC3 0.13 (1) 0.79 (1) 0.16 (1) - - - 0.18 (3)

RdRP-TC4 0.13 (1) - 0.16 (1) - - - 0.12 (2)

RdRP-TC5 0.13 (1) - 0.32 (2) - - - 0.18 (3)

RdRP-TC6 0.25 (2) - - - - - 0.12 (2)

Σ 2.29 (18) 2.38 (3) 2.57 (16) 0.00 0.00 2.97 (1) 2.33 (38)

aLibraries considered in this table: Leaf (CA-26-C1-002, CG-32-C1-003, CR-05-C1-100, CR-05-C1-102, CR-05-C1-103, CS-00-C1-100, CS-00-C1-

101, CS-00-C1-102, CS-00-C1-401, CS-00-C1-650, CS-13-C1-001, LT-33-C1-003, PT-11-C1-900, PT-11-C1-901; 78,516 reads); bark (CS-00-C2-

003, PT-11-C2-300, PT-11-C2-301; 12,610 reads); fruit (CR-05-C3-700, CR-05-C3-701, CR-05-C3-702, CS-00-C3-700, CS-00-C3-701, CS-00-C3-

702, CS-00-C3-703, CS-00-C3-704, CS-00-C3-705; 62,003 reads); root (CL-06-C4-500; 2,075 reads); flower (CS-00-C5-003; 4,330 reads); seed

(PT-11-C9-005; 3,368 reads). Refer to Targon et al. (this issue) for explanation of library codes and total number of sequences in individual libraries.



disease symptoms may be suppressed at temperatures

above 30 °C (Roistacher et al., 1974; Mathews et al., 1997).

A comprehensive transcriptional profiling of genes

involved in RNA silencing pathways of citrus through the

CitEST project was sometimes impaired by the low number

of transcripts strongly resembling characterized genes in

other species.

Some efforts have been made in characterizing RNA

silencing in citrus, but no information has so far been re-

ported on genetic components in its mechanisms. This

work constitutes the first effort in finding the molecular

players involved in RNA silencing in citrus species and ex-

ploring their relationship with virus resistance. Functional

characterization of genes involved in RNA silencing pres-

ent in resistant and susceptible species to viruses such as
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Table 2 - Abundance of reads grouped by species into tentative consensus (TC) of genes involved in RNA silencing pathways in the CitEST databasea.

Frequency is given per 10,000 transcripts and absolute numbers of valid reads are shown in parentheses.

Citrus

aurantium

Citrus

aurantifolia

Citrus

limonia

Citrus

reticulata

Citrus

sinensis

Citrus

latifolia

Poncirus

trifoliata
mean (Σ)

AGO-TC1 1.68 (1) 3.02 (2) - 1.01 (4) 1.27 (10) - 3.28 (8) 1.53 (25)

AGO-TC2 - - - 2.03 (8) 1.90 (15) - 1.23 (3) 1.60 (26)

AGO-TC3 - 1.51 (1) 9.64 (2) - 1.39 (11) - 0.41 (1) 0.92 (15)

AGO-TC4 5.04 (3) - - 1.27 (5) 1.39 (11) 1.82 (1) - 1.23 (20)

AGO-TC5 - - - - - - 1.64 (4) 0.25 (4)

AGO-TC6 - - - 0.51 (2) - - - 0.12 (2)

AGO-TC7 - - - - 0.38 (3) - 0.41 (1) 0.25 (4)

AGO-TC8 1.68 (1) - - - 0.13 (1) - - 0.12 (2)

AGO-TC9 - - - 0.25 (1) - - 1.23 (3) 0.25 (4)

AGO-TC10 - - - 0.51 (2) - - - 0.12 (2)

AGO-TC11 - - - 0.51 (2) 0.13 (1) - - 0.18 (3)

AGO-TC12 - - 4.82 (1) 0.25 (1) - - - 0.12 (2)

AGO-TC13 - - - - 0.13 (1) 1.82 (1) - 0.12 (2)

Σ 8.40 (5) 4.53 (3) 14.46 (3) 6.34 (25) 6.72 (53) 3.64 (2) 8.20 (20) 6.81 (111)

DCL-TC1 - - - 0.25 (1) 0.63 (5) - 0.82 (2) 0.49 (8)

DCL-TC2 1.68 (1) - - 0.25 (1) 0.25 (2) - 0.82 (2) 0.37 (6)

DCL-TC3 - - - 0.25 (1) 0.38 (3) - - 0.25 (4)

Σ 1.68 (1) 0.00 0.00 0.75 (3) 1.26 (10) 0.00 1.64 (4) 1.10 (18)

HEN-TC1 - - - - 0.51 (4) - - 0.25 (4)

HEN-TC2 - - - - 0.13 (1) - 0.41 (1) 0.12 (2)

HEN-TC3 1.68 (1) - - - 0.13 (1) - - 0.12 (2)

HEN-TC4 - - - - 0.38 (3) - - 0.18 (3)

HEN-TC5 - - - 0.25 (1) 0.13 (1) - - 0.12 (2)

Σ 1.68 (1) 0.00 0.00 0.25 (1) 1.28 (10) 0.00 0.41 (1) 0.80 (13)

RdRP-TC1 - 6.04 (4) - 1.52 (6) 1.52 (12) 1.82 (1) 0.82 (2) 1.54 (25)

RdRP-TC2 - 1.51 (1) - 0.25 (1) 0.13 (1) - - 0.18 (3)

RdRP-TC3 - - - - 0.38 (3) - - 0.18 (3)

RdRP-TC4 - - - 0.25 (1) 0.13 (1) - - 0.12 (2)

RdRP-TC5 - - - 0.76 (3) - - - 0.18 (3)

RdRP-TC6 - - - - 0.25 (2) - - 0.12 (2)

Σ 0.00 7.55 (5) 0.00 2.78 (11) 2.41 (19) 1.82 (1) 0.82 (2) 2.33 (38)

aLibraries considered in this table: C. aurantium (CA-26-C1-002; 5,950 reads); C. aurantifolia (CG-32-C1-003; 6,621 reads); C. limonia (CL-06-C4-

500; 2,075 reads); C. reticulata (CR-05-C1-100, CR-05-C1-102, CR-05-C1-103, CR-05-C3-700, CR-05-C3-701, CR-05-C3-702; 39,481 reads); C.

sinensis (CS-00-C1-100, CS-00-C1-101, CS-00-C1-102, CS-00-C1-401, CS-00-C1-650, CS-13-C1-001, CS-00-C2-003, CS-00-C3-700, CS-00-C3-

701, CS-00-C3-702, CS-00-C3-703, CS-00-C3-704, CS-00-C3-705, CS-00-C5-003; 78,879 reads); C. latifolia (LT-33-C1-003; 5,484 reads); P. trifoli-

ata (PT-11-C1-900, PT-11-C1-901, PT-11-C2-300, PT-11-C2-301, PT-11-C9-005; 24,412 reads). Refer to Targon et al. (this issue) for explanation of li-

brary codes and total number of sequences in individual libraries.



CTV may promote the development of molecular tools to

overcome one of the most important problems of the citrus

industry.
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