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Abstract

Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria
(PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can
occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens
throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to patho-
gen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic
resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where
the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance ren-
der uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance
through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant
for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic ef-
fects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulat-
ing new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol

strategies to improve cropping systems.
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Plant-Associated Bacteria - A General
Introduction

The rhizosphere is the narrow zone of soil specifically
influenced by the root system (Dobbelaere et al., 2003).
This zone is rich in nutrients when compared with the bulk
soil due to the accumulation of a variety of plant exudates,
such as amino acids and sugars, providing a rich source of
energy and nutrients for bacteria (Gray and Smith, 2005).
This situation is reflected by the number of bacteria that are
found around the roots of plants, generally 10 to 100 times
higher than that in the bulk soil (Weller and Thomashow,
1994). The rhizosphere is populated by a diverse range of
microorganisms and the bacteria colonizing this habitat are
called rhizobacteria (Schroth and Hancock, 1982).

Plant-associated bacteria can be classified into bene-
ficial, deleterious and neutral groups on the basis of their
effects on plant growth (Dobbelaere et al., 2003). Benefi-
cial free-living soil bacteria are usually referred to as plant
growth-promoting rhizobacteria (PGPR, Kloepper ef al.,
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1989). Independent of the mechanisms of vegetal growth
promotion, PGPRs colonize the rhizosphere, the rhizo-
plane (root surface), or the root itself (within radicular tis-
sues) (Gray and Smith, 2005). It is well established that
only 1 to 2% of bacteria promote plant growth in the
rhizosphere (Antoun and Kloepper, 2001). Bacteria of di-
verse genera have been identified as PGPR, of which Ba-
cillus and Pseudomonas spp. are predominant (Podile and
Kishore, 2006).

PGPR affect plant growth in two different ways, indi-
rectly or directly. The direct promotion of plant growth by
PGPR entails either providing the plant with a compound
that is synthesized by the bacterium, for example phyto-
hormones, or facilitating the uptake of certain nutrients
from the environment (Glick, 1995). The indirect promo-
tion of plant growth occurs when PGPR lessen or prevent
the deleterious effects of one or more phytopathogenic or-
ganisms. This can happen by producing antagonistic sub-
stances or by inducing resistance to pathogens (Glick,
1995). A particular PGPR may affect plant growth and de-
velopment by using any one, or more, of these mechanisms.
PGPR, as biocontrol agents, can act through various mech-
anisms, regardless of their role in direct growth promotion,
such as by known production of auxin phytohormone (Pat-
ten and Glick, 2002), decrease of plant ethylene levels
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(Glick et al., 2007) or nitrogen fixing associated with roots
(Ddobereiner, 1992).

PGPR and their interactions with plants are exploited
commercially (Podile and Kishore, 2006) and hold great
promise for sustainable agriculture. Applications of these
associations have been investigated in maize, wheat, oat,
barley, peas, canola, soy, potatoes, tomatoes, lentils, radi-
cchio and cucumber (Gray and Smith, 2005).

In this review, we will consider the mechanisms of
action of biocontrol agents and describe some successful
examples of these rhizobacteria controlling plant dis-
eases.

Microbial Antagonism

According to Beattie (2006), bacteria that reduce the
incidence or severity of plant diseases are often referred to
as biocontrol agents whereas those that exhibit antagonis-
tic activity toward a pathogen are defined as antagonists.
The following rhizospheric environment and bacterial an-
tagonistic activities can be highlighted: (1) synthesis of
hydrolytic enzymes, such as chitinases, glucanases, pro-
teases, and lipases, that can lyse pathogenic fungal cells
(Neeraja et al. 2010; Maksimov et al. 2011), (2) competi-
tion for nutrients and suitable colonization of niches at the
root surface (Stephens ef al., 1993; Kamilova ef al. 2005;
Validov S, 2007, PhD thesis, Leiden University, The
Netherlands), (3) regulation of plant ethylene levels
through the ACC-deaminase enzyme, which can act to
modulate the level of ethylene in a plant in response to
stress imposed by the infection (Glick and Bashan, 1997;
Van Loon, 2007), and (4) production of siderophores and
antibiotics.

Siderophores, bacteriocins, and antibiotics
production as antagonistic activities

The ability of rhizobacteria to produce siderophores
and metabolites contributing to antibiosis has been the fo-
cus of many studies dedicated to investigating PGPR
(Maksimov et al., 2011). The uptake of ferric ion via side-
rophore is largely used by pathogenic and non-pathogenic
microorganisms from the soil, human body and marine en-
vironments. The importance of siderophore is closely re-
lated to iron, which is an essential element for different
biological processes (Crosa and Walsh, 2002). On the other
hand, bacteria can produce a wide variety of compounds
with antimicrobial activity used as defense systems. These
include broad-spectrum antibiotics, lactic acid produced by
lactobacilli, lytic agents such as lysozymes, numerous
types of exotoxins and bacteriocins, which also have a bac-
tericidal mode of action (Riley and Wertz, 2002). Sidero-
phores, bacteriocins and antibiotics are three of the most
effective and well known mechanisms that an antagonist
can employ to minimize or prevent phytopathogenic prolif-
eration.
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Siderophores

To satisfy nutritional requirements of iron, microor-
ganisms have evolved highly specific pathways that em-
ploy low molecular weight iron chelators termed side-
rophores. Siderophores are secreted to solubilize iron from
their surrounding environments, forming a complex fer-
ric-siderophore that can move by diffusion and be returned
to the cell surface (Andrews et al., 2003). The active trans-
port system through the membrane begins with the recogni-
tion of the ferric-siderophore by specific membrane recep-
tors of Gram-negative and Gram-positive bacteria
(Boukhalfa and Crumbliss, 2002). Siderophores can che-
late ferric ion with high affinity, allowing its solubilization
and extraction from most mineral or organic complexes
(Wandersman and Delepelaire, 2004). In aerobic condi-
tions at physiological pH, the reduced ferrous (Fe*") form is
unstable and is readily oxidized to the oxidized ferric (Fe*")
form, which normally occurs as a poorly soluble iron hy-
droxide basically unavailable to biological systems
(Krewulak and Vogel, 2008; Osorio et al., 2008).

Siderophores can be defined as small peptidic mole-
cules containing side chains and functional groups that can
provide a high-affinity set of ligands to coordinate ferric
ions (Crosa and Walsh, 2002). Based on their iron-coordi-
nating functional groups, structural features and types of
ligands, bacterial siderophores have been classified into
four main classes (carboxylate, hydroxamates, phenol cate-
cholates and pyoverdines) (Crowley, 2006). Hundreds of
siderophores have been identified and reported for cultiva-
ble microorganisms, some of which are widely recognized
and used by different microorganisms, while others are spe-
cies-specific (Crowley, 2006; Sandy and Butler, 2009).

In soil, siderophore production activity plays a central
role in determining the ability of different microorganisms
to improve plant development. Microbial siderophores en-
hance iron uptake by plants that are able to recognize the
bacterial ferric-siderophore complex (Masalha et al. 2000;
Katiyar and Goel, 2004; Dimkpa et al., 2009) and are also
important in the iron uptake by plants in the presence of
other metals such as nickel and cadmium (Burd ez al., 1998;
Dimkpa et al., 2008). However, it is still unclear if bacterial
siderophore complexes can significantly contribute to the
iron requirements of the plant.

Siderophore production confers competitive advan-
tages to PGPR that can colonize roots and exclude other mi-
croorganisms from this ecological niche (Haas and Défago,
2005). Under highly competitive conditions, the ability to
acquire iron via siderophores may determine the outcome
of competition for different carbon sources that are avail-
able as a result of root exudation or rhizodeposition
(Crowley, 2006). Among most of the bacterial sideropho-
res studied, those produced by pseudomonads are known
for their high affinity to the ferric ion. The potent side-
rophore, pyoverdin, for example, can inhibit the growth of
bacteria and fungi that present less potent siderophores in
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iron-depleted media in vitro (Kloepper et al. 1980a). A
pseudobactin siderophore produced by P. putida B10 strain
was also able to suppress Fusarium oxysporum in soil defi-
cient in iron; this suppression was lost when the soil was re-
plenished with iron, a condition that represses the produc-
tion of iron chelators by microorganisms (Kloepper et al.,
1980b). Recent studies have demonstrated the suppression
of soil-borne fungal pathogens through the release of iron-
chelating siderophores by fluorescent pseudomonads, ren-
dering it unavailable to other organisms (Loper, 1988;
Paulitz and Loper, 1991; Dwivedi and Johri, 2003).

Antibiotics

Besides siderophore production, the biocontrol abili-
ties of pseudomonad strains essentially depend on aggres-
sive root colonization, induction of systemic resistance in
the plant, and production of antifungal antibiotics (Haas
and Keel, 2003). The production of one or more antibiotics
is the mechanism most commonly associated with the abil-
ity of plant growth-promoting bacteria to act as antagonis-
tic agents against phytopathogens (Glick et al., 2007). The
basis of antibiosis, activity of biocontrol based on secretion
of molecules that kill or reduce the growth of the target
pathogen, has become better understood over the past two
decades (Dowling and O’Gara, 1994; Whipps, 2001;
Lugtenberg and Kamilova, 2009). Antibiotics encompass a
heterogeneous group of organic, low-molecular-weight
compounds that are deleterious to the growth or metabolic
activities of other microorganisms (Duffy, 2003).

According to Haas and Défago (2005), six classes of
antibiotic compounds (for which their modes of action are
partly understood) are better related to the biocontrol of
root diseases: phenazines, phloroglucinols, pyoluteorin,
pyrrolnitrin, cyclic lipopeptides (all of which are diffusible)
and hydrogen cyanide (HCN; which is volatile). More re-
cently, lipopeptide biosurfactants produced by Pseudomo-
nas and Bacillus species have been implied in biocontrol
due to their potential positive effect on competitive interac-
tions with organisms including bacteria, fungi, oomycetes,
protozoa, nematodes and plants (de Bruijn et al., 2007;
Raaijmakers et al., 2010).

Numerous types of antibiotics have been isolated from
fungal and bacterial strains and this diversity includes mech-
anisms of action that inhibit synthesis of pathogen cell walls,
influence membrane structures of cells and inhibit the forma-
tion of initiation complexes on the small subunit of the ribo-
some (Maksimov ez al., 2011). Pyrrolnitrin, the antibiotic
produced by the P. fluorescens BLI15 strain, is able to pre-
vent the damage of Rhizoctonia solani during damping-off
of cotton plants (Hill et al, 1994). The 24-dia-
cetylphloroglucinol (DAPG) produced by pseudomonads,
an effective and extensively studied antibiotic, causes mem-
brane damage to Pythium spp. and is particularly inhibitory
to zoospores of this oomycete (de Souza et al, 2003).
Phenazine, also produced by pseudomonads, possesses re-
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dox activity and can suppress pathogens of plants such as F.
oxysporum and Gaeumannomyces graminis (Chin-A-
Woeng et al., 2003). The P. chlororaphis PCL1391 strain,
isolated from roots of tomato plants, synthesizes phena-
zine-1-carboxamide, which is able to release soluble iron
from insoluble ferric oxides at neutral pH, raising the possi-
bility that phenazines might contribute to iron mobilization
in soils (Hernandez et al., 2004; Haas and Défago, 2005).

Antibiotics, such as polymyxin, circulin and colistin,
produced by the majority of Bacillus ssp. are active against
Gram-positive and Gram-negative bacteria, as well as
many pathogenic fungi (Maksimov et al., 2011). The B. ce-
reus UWSS5 strain, which suppresses oomycete pathogens
and produces the antibiotics zwittermicin A (aminopolyol)
and kanosamine (aminoglycoside), contributes to the bio-
control of alfalfa damping off (Silo-Suh et al., 1994; He et
al., 1994). Regarding bacteria as biocontrol agents to act as
a biological solution, some researchers have highlighted
the use of sporulating Gram-positive species such as Bacil-
lus and Paenibacillus spp., which can confer higher popu-
lation stability during formulation and storage of inoculant
products (Emmert and Handelsman, 1999; Kokalis-Burelle
et al., 2005).

Bacteriocins

Other molecules used in microbial defense systems are
bacteriocins. According to a review by Riley and Wertz
(2002), bacteriocins differ from traditional antibiotics in one
critical way: they commonly have a relatively narrow killing
spectrum and are only toxic to bacteria closely related to the
producing strain. Almost all bacteria may make at least one
bacteriocin, and many bacteriocins isolated from
Gram-negative bacteria appear to have been created by re-
combination between existing bacteriocins (Riley, 1993).
The colicins, proteins produced by some strains of Esche-
richia coli that are lethal for related strains, are the most rep-
resentative  bacteriocins produced by Gram-negative
bacteria. Like colicin, a name derived from E. coli, other
bacteriocins have been thus defined and named, such as
pyocins from P. pyogenes strains, cloacins from
Enterobacter cloacae, marcescins from Serratia marcescens
and megacins from B. megaterium (Cascales et al., 2007).
Interestingly, bacteriocins from Bacillus spp. are increas-
ingly becoming more important due to their sometimes
broader spectra of inhibition (as compared with most lactic
bacterial bacteriocins), which may include Gram-negative
bacteria, yeasts or fungi, in addition to Gram-positive spe-
cies, some of which are known to be pathogenic to humans
and/or animals (Abriouel ef al., 2011).

Biocontrol Agents - Induced Resistance (ISR
and SAR)

Non-pathogenic rhizobacteria have been shown to
suppress disease by inducing a resistance mechanism in the
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plant called “Induced Systemic Resistance” (ISR) (Van
Loon et al., 1998). Induced resistance is the state of an en-
hanced defensive ability developed by plants when appro-
priately stimulated (Van Loon et al., 1998). ISR was
formerly described by Van Peer ef al. (1991) in carnation
plants that was systemically protected by the P. fluorescens
strain WCS417r against F. oxysporum f. sp. dianthi and by
Wei et al. (1991) in cucumber plants, where rhizobacterial
strains protected the leaves against anthracnose caused by
Colletotrichum orbiculare. The inducing rhizobacteria and
the pathogens were inoculated and remained confined and
spatially separated on the same plant so that microbial an-
tagonism was excluded and the protective effect was
plant-mediated.

Rhizobacteria-mediated ISR resembles pathogen-in-
duced systemic acquired resistance (SAR) in that both
types of induced resistance render uninfected plant parts
more resistant to plant pathogens (Van Wees et al., 1997,
Van Loon et al., 1998), including fungal, bacterial and viral
pathogens, as well as nematodes and insects (Zehnder et al.,
1997; Van Loon et al., 1998; Bent, 2006; Pozo and Azcon-
Aguilar, 2007). The same strain induces resistance against
several pathogens in the same plant (Somers ef al. 2004).
Specifically, Pseudomonas and Bacillus spp. are the rhizo-
bacteria most studied that trigger ISR (Kloepper et al.,
2004; Van Wees et al., 2008). Vleesschauwer and Hofte
(2009) proposed the terminology ISR to depict induced
systemic resistance promoted by non-pathogenic rhizobac-
teria or PGPR, irrespective of the signaling pathway in-
volved in this process, while the term SAR is used to
describe salicylic acid-dependent induced resistance trig-
gered by a localized infection.

ISR and SAR act through different signaling path-
ways. Induction of SAR is through salicylic acid (SA) and
ISR requires jasmonic acid (JA) and ethylene (ET) signal-
ing pathways (Van Loon et al., 1998). These accumulating
signaling molecules coordinate the defense responses and
when applied exogenously, are sufficient to induce resis-
tance (Ryals ef al., 1996). The protection mediated by ISR
is significantly less than that obtained by SAR (Van Loon ,
2000) and a degree of dependence on plant genotype is ob-
served in the generation of ISR (Bloemberg and Lugten-
berg, 2001). However, ISR and SAR together provide a
better protection than each of them alone, indicating that
they can act additively in inducing resistance to pathogens
(Van Wees et al., 2000).

Salicylic acid accumulation occurs both locally and,
at lower levels, systemically, in line with the development
of SAR. Application of exogenous SA also induces SAR in
many plant species (Van Loon et al., 1998). Development
of tissue necrosis used to be considered a common and nec-
essary feature for SAR activation (Vleesschauwer and
Hofte, 2009), but in many cases, SAR can also be triggered
without tissue necrosis as demonstrated in Arabidopsis
thaliana (Mishina and Zeier, 2007). In SAR, the first infec-
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tion predisposes the plant to resist further attacks. SA
activates specific sets of defense-related genes called
pathogenesis-related proteins (PRs). Generally, ISR is not
accompanied by the activation of PR genes. The enhanced
defensive capacity characteristic of SAR is always associ-
ated with the accumulation of PRs (Van Loon, 2007).
Treatment of tobacco roots with P. fluorescens CHAO trig-
gers accumulation of SA-inducible PR proteins in the
leaves (Maurhofer et al., 1994). These PRs serve as hall-
marks of SAR in several plant species and are thought to
contribute to the state of resistance attained (Vleesschau-
wer and Hofte, 2009). Some of these PRs are 1,3-glu-
canases and chitinases capable of hydrolyzing fungal cell
walls, while other PRs are poorly characterized. SAR-
associated PRs suggest an important contribution of these
proteins to the increased defensive capacity of induced tis-
sues (Van Loon et al., 1998).

The PR-1 gene or protein expression appears to be in-
ducible by SA and it is usually taken as a molecular marker
to indicate that SAR has been induced (Van Loon and
Bakker, 20006). Arabidopsis plants inoculated with the pa-
thogen P. syringae pv. tomato or sprayed with SA devel-
oped SAR and accumulated PR-1, -2 and -5 mRNAs
(Picterse et al., 1996) and inoculated with P. fluorescens
WCS417r or P. putida WCS358 developed ISR, but PR-
gene expression or accumulation of PRs was not detected
(Van Wees et al., 1997). ISR can be triggered in plants that
are unable to accumulate SA (NahG mutant plants). Based
on this, one can conclude that PRs are induced concomi-
tantly with SAR, whereas SA and the activation of PR
genes is not part of the pathway leading to ISR in
Arabidopsis (Pieterse et al., 1996).

Transduction of the SA signal requires the regulatory
(activator) protein NPR1 (or NIM1) that functions in the
terminal part of the signaling pathway of SAR (Van Loon et
al., 1998). In non-induced plants, NPR1 is present as a
multimer and during SAR induction, SA triggers the con-
version of NPR1 into a monomeric form (Verhagen et al.
2006). These monomers are translocated to the nucleus
(Kinkema et al. 2000), where they interact with members of
the TGA/OBEF subclass of basic-leucine-zipper (bZIP) tran-
scription factors that are involved in SA-dependent activa-
tion of PR genes (Fan and Dong, 2002; Zhang et al., 2003).
A direct interaction between NPR1 and a specific TGA
transcription factor is required for the binding of the com-
plex to elements within the promoter of the PR genes
(Després et al., 2000; Fan and Dong, 2002). Overexpres-
sion of the NPR1 gene leads to enhanced resistance to
pathogen attack (Cao et al., 1998; Friedrich ef al., 2001).

The Arabidopsis mutant nprl does not express PR
genes and does not exhibit SAR. Since rhizobacteria-
mediated ISR is independent of SA and not associated with
PRs, it is expected that ISR would still be expressed in this
mutant. However, the nprl mutant of Arabidopsis does not
display P. fluorescens WCS417r-mediated ISR. This
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implies that NPR 1 regulates defense responses mediated by
different signaling pathways that function beyond the ex-
pression of PR genes, indicating that SAR and ISR con-
verge at the last part of the signaling pathway (Van Loon et
al., 1998). Reports of Pieterse et al. (1996, 1998, 2000)
with the reference rhizobacterial strain P. fluorescens
WCS417r demonstrated that, at least in Arabidopsis,
WCS417r-mediated ISR functioned independently of SA,
depended on NPR1, but required components of the JA and
ethylene (ET) response pathways.

Infected plants increased their levels of JA and ET as
a sign of active defense (De Laat and Van Loon, 1982;
Gundlach et al., 1992; Mauch et al., 1994). These signaling
molecules coordinate the activation of a large set of defense
responses and when applied exogenously, can induce resis-
tance themselves (Pieterse ef al., 1998). The dependency of
ISR on JA and ethylene is based on enhanced sensitivity to
these hormones rather than on an increase in their produc-
tion (Pieterse ef al., 2000, 2001). The Arabidopsis JA re-
sponse mutant jar/ and the ET response mutant etr/ were
tested in the development of ISR. Both mutants were un-
able to develop ISR against P. syringae pv. tomato upon
colonization of the roots by WCS417r bacteria (Pieterse et
al., 1998), illustrating the dependency of ISR signaling on
these phytohormones. The signal-transduction pathways
leading to pathogen-induced SAR and rhizobacteria-
mediated ISR in Arabidopsis thaliana are summarized in
Figure 1.

Methyl jasmonate (MeJA) and the ethylene precursor
l-aminocyclopropane-1-carboxylate (ACC) also promote
resistance against P. syringae pv. tomato DC3000 in SA-
non-accumulating NahG plants. Besides that, MeJA-
induced protection is blocked in jarl-1, etrl-1 and npri-1
plants, whereas ACC-induced protection is affected in
etrl-1 and npri-1 plants, but not in jarl-1 plants. There-
fore, WCS417r-mediated ISR follows a signaling pathway

Plant - Rhizobacterium
interaction
Jasmonic Acid - response

Ethylene - response

CrD |

Plant - Pathogen
interaction

Salicylic Acid - response

|
Cr

Pathogenesis related proteins - PRs;
Enhanced defensive capacity

SAR |

Enhanced defensive capacity

( ISR )

Figure 1 - Signal transduction pathways leading to pathogen-induced sys-
temic acquired resistance (SAR) and rhizobacteria-mediated induced sys-
temic resistance (ISR) in Arabidopsis thaliana. Modified from: Van Loon
etal., 1998.
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in which components from the JA and ethylene response
pathways are successively engaged to trigger a defense re-
action that, like SAR, is regulated by NPR1 (Pieterse ef al.,
1998).

One or more bacterial determinant must be recog-
nized by specific plant receptors so that resistance is in-
duced. A variety of resistance-inducing molecules have
been described: lipopolysaccharides and siderophores,
including SA (Van Loon et al., 1998), flagella, biosurfac-
tants, N-acyl-homoserine lactones (AHL), N-alkylated
benzylamines, antibiotics and exopolysaccharides (EPS)
(Vleesschauwer and Hofte, 2009).

The ability to develop ISR in response to certain
rhizobacteria has been demonstrated in several species of
plants (Van Loon et al., 1998) and appears to depend on the
specificity of the interaction between rhizobacteria and
plants (Van Loon, 2007). Failure to elicit ISR in certain
hosts may be due to the absence of production of inducing
components in the rhizosphere or an inability of the particu-
lar plant species to perceive such compounds (Van Loon,
2007). The evidence support that it is necessary specific
recognition between the plant and the rhizobacteria for in-
duction of resistance. For instance, Pseudomonas putida
WCS358r and P. fluorescens WCS374r act in different
ways depending on the plant species: in Arabidopsis,
WCS358r elicits ISR, but not in radish and carnation plants
(Van Peer et al., 1991; Van Peer and Schippers, 1992; Lee-
man et al., 1995; Van Wees et al., 1997). In contrast, radish
plants are responsive to WCS374r, while Arabidopsis is not
(Leeman et al., 1995; Van Wees et al., 1997).

Conclusion

The ability of bacterial siderophores and antibiotics to
suppress phytopathogens could be of significant agronomic
importance. Both mechanisms have essential functions in
microbial antagonism but also are able to elicit induced re-
sistance. Resistance-inducing and antagonistic rhizobac-
teria might be useful in formulating new inoculants,
offering an attractive alternative of environmentally
friendly biological control of plant disease and improving
the cropping systems into which it can be most profitably
applied. These new PGPR will require a systematic strategy
designed to fully utilize all these beneficial factors, apply-
ing combinations of different mechanisms of action allow-
ing crop yields to be maintained or even increased while
chemical treatments are reduced.
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