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Abstract

One of the major developments that resulted from the human genome sequencing projects was a better understand-
ing of the role of non-coding RNAs (ncRNAs). NcRNAs are divided into several different categories according to size
and function; however, one shared feature is that they are not translated into proteins. In this review, we will discuss
relevant aspects of ncRNAs, focusing on two main types: i) microRNAs, which negatively regulate gene expression
either by translational repression or target mRNA degradation, and ii) small interfering RNAs (siRNAs), which are in-
volved in the biological process of RNA interference (RNAi). Our knowledge regarding these two types of ncRNAs
has increased dramatically over the past decade, and they have a great potential to become therapeutic alternatives
for a variety of human conditions.
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Introduction

One of the main goals of the Human Genome Project

was to identify all human genes (Collins et al., 1998). It was

estimated that the human genome contained approximately

100,000-150,000 genes. However, only nearly 20,000

genes could be identified at the end of the project; therefore,

protein-coding sequences represent only 1.5% of the hu-

man genome. The rest of the genome, approximately 98%,

was considered junk DNA because it is composed of se-

quences that are not translated into proteins. These se-

quences were believed to be mainly part of regulatory

regions or non-coding regions that did not play an impor-

tant role in cell function (Lander et al., 2001). These con-

clusions were based on the central dogma of molecular

biology (Crick, 1958), which considers that all relevant in-

formation contained in the DNA will be transcribed into

messenger RNA (mRNA) molecules that will be subse-

quently translated into proteins, which are the important

molecular players in cell function (including the regulation

of gene expression). The concept of two main classes of

RNA molecules already existed: i) RNAs which were

translated into proteins, i.e., mRNAs, and ii) the group of

non-coding RNAs (ncRNAs), mainly comprising transfer

RNAs (tRNAs) and ribosomal RNAs (rRNAs). However,

as additional studies were performed, it became clear that

ncRNAs were much more abundant than expected, and

they were present in several different organisms, with a par-

ticularly high abundance in Homo sapiens (Hüttenhofer et

al., 2005). These findings prompted the development of a

new specific field in molecular biology, the study of

ncRNAs, which has become increasingly relevant in the

past decade. As knowledge advances, it becomes clear that

discoveries in the field of ncRNAs are likely to make sig-

nificant contributions to the biomedical sciences, including

the possibility of novel therapeutic alternatives for a variety

of human conditions.

Non-coding RNAs

The length of ncRNAs can vary from 21 to several

thousand nucleotides (nt) and these molecules are divided

into i) long or large RNAs, such as transfer RNA, ribosomal

RNA and X-inactive specific transcript RNA (XIST RNA),

and ii) small ncRNAs, such as microRNAs (miRNAs),

small interfering RNAs (siRNAs), repeat associated small

interfering RNAs (rasiRNAs), small nucleolar RNAs

(snoRNAs), small nuclear RNAs (snRNAs), piwi-

interacting RNAs (piRNAs) and others (Gavazzo et al.,

2013). Table 1 summarizes the different types of ncRNAs

described, as well as some of their main characteristics.
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siRNAs are approximately 21nt in length and are produced

from the processing of double-stranded RNA molecules by

the enzyme Dicer. SiRNAs are involved in gene regulation,

as well as viral defense and transposon activity (Ghildiyal

and Zamore, 2009; Malone and Hannon, 2009). rasiRNAs

are approximately 24-27 nt long and play a role in hetero-

chromatin orientation during the formation of centromeres

(Theurkauf et al., 2006; Josse et al., 2007). snoRNAs con-

sist of approximately 80 nt and are believed to be involved

in the guidance of uridylation and/or site-specific methyl-

ation during ribosomal RNA maturation (Dieci et al., 2009;

Taft et al., 2009); in addition, there is evidence that

snoRNAs can also play a role in the regulation of gene ex-

pression (Matera et al., 2007). snRNAs have been shown to

be part of the spliceosome complex (Peters and Robson,

2008; Tazi et al., 2009) and are important for removing

introns from immature mRNAs (Valadkhan, 2005).

piRNAs are approximately 26 to 30 nt in length, are re-

stricted to germ line cells and function with AGO and PIWI

proteins to regulate transposon activity and chromatin

states (Ghildiyal and Zamore, 2009; Malone and Hannon,

2009). PiRNAs are also highly expressed in mammalian

cells at the pachytene stage (Megosh et al., 2006).

Next, we will present additional information about

miRNAs and siRNAs, because these are better character-

ized in terms of their functions and their impact in human

health and disease.

microRNAs

MicroRNAs (miRNAs) are small endogenous

ncRNAs that regulate gene expression post- transcriptio-

nally in a sequence-specific manner (Bartel, 2004). In

1993, Victor Ambros and colleagues observed a mutant

strain of Caenorhabditis elegans that exhibited develop-

mental abnormalities, such as the inability to form the vulva

(Lee et al., 1993). These authors observed that the gene re-

sponsible for these phenotypes, lin-4, had two transcripts:

one, which was more abundant and 61 nt in length and a

second 21 nt transcript that was not translated. lin-14 was

shown to encode a nuclear protein that participates in the

regulation of the transition from the first (L1) to the second

(L2) larval stages in C. elegans (Ruvkun and Giusto, 1989;

Lee et al., 1993). Subsequent studies revealed that the 21 nt

transcript is complementary to the 3’ untranslated region

(3’UTR) of lin-14 and, most interestingly, negatively regu-

lates the expression of lin-14 (Lee et al., 1993). Initially,

these findings were not adequately appreciated by the sci-

entific community, because it was believed to be a rare pro-

cess occurring only in C. elegans. However, in 2000,

another such 22 nt non-coding RNA, let-7, was identified in

C. elegans (Reinhart et al., 2000). Surprisingly, it was also

found to be complementary to the 3’UTR of another gene,

lin-41, promoting its translational knockdown. In addition,

the let-7 sequence was shown to be highly conserved in

most organisms, including non-nematodes (Pasquinelli et

al., 2000). These findings officially started a new field of

investigation in small ncRNAs, more specifically,

miRNAs. Currently, the existence of miRNAs has been ex-

tensively shown in insects and mammals (Ambros, 2001;

Ambros et al., 2003; Lagos-Quintana et al., 2003; Mattick

and Makunin, 2005), and the database of miRNAs has reg-

istered approximately 25,000 sequences found in 32 organ-

isms representing vertebrates, invertebrates, plants and

viruses (http://www.mirbase.org/).

miRNA biogenesis

Most miRNAs described to date are transcribed from

sequences present in intergenic regions (Lagos-Quintana et

al., 2001; Lau et al., 2001), but 25% of human miRNAs

identified are located in intronic regions and are transcribed

in the same direction as the pre-messenger RNA, leading to

the hypothesis that these miRNAs may use the promoter re-

gion of mRNAs for their transcription (Aravin et al., 2003;

Lai et al., 2003).

miRNAs are transcribed by RNA polymerase II from

what are called MIR genes. The first intermediate tran-

scripts are ‘hairpin’ molecules called pri-miR. Similar to

mRNAs, these transcripts undergo capping and

polyadenylation at the 5’ and 3’ ends of the transcript, re-

spectively (Lee et al., 2002; Cai et al., 2004; Kim, 2005).
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Table 1 - Different types, main characteristics and functions of non-coding RNAs.

Mean size Function

Long ncRNA Ribosomal RNA ~1.9 kb Essential for protein synthesis

XIST RNA ~17 kb Chromosome X inactivation

Other lncRNA > 200 nt Involved in epigenetic modification, post-transcriptional processing, modulation

of chromatin structure, etc.

Small ncRNA miRNAs 18-21 nt Gene regulation

siRNA ~21 nt Gene regulation; defense against viruses and transposon activity

rasiRNA 24-27 nt Orientation of heterochromatin in the formation of centromeres

snoRNA 60-300 nt Methylation and pseudo uridylation of other RNAs

snRNA 100-300 nt Involved in spliceosome complex

piRNA 26-30 nt Regulation of transposon activity and chromatin state



Unlike mRNAs, miRNA maturation begins in the nucleus

and finishes in the cytoplasm. In animals, the nuclear pro-

cessing is performed by DROSHA, an RNase type III en-

zyme with endonucleolytic activity, which, in combination

with PASHA (Lee et al., 2003), recognizes the ‘hairpin’

structure of the pri-miR and cleaves it. This generates a

pre-miR of approximately 60-70 nt in length. Pre-miRs are

transported to the cytoplasm by exportin-5 and the cofactor

Ran-GTP (Yi et al., 2003; Lund et al., 2004; Shibata et al.,

2006). Once in the cytoplasm, pre-miRs are processed by

the enzyme DICER, thus generating dimeric

miRNA:miRNA* molecules approximately 22 nt in length

(Hutvagner et al., 2001). Whereas mammals typically en-

code a single DICER that can generate several classes of

small RNAs, Drosophila and C. elegans have two types of

Dicer (Lee et al., 2004). Plants require multiple types of

Dicers; four and six different classes of DICER-like (DCL)

enzymes have been identified in Arabidopsis thaliana and

rice, respectively. In Arabidopsis, DCL 2, 3 and 4 are in-

volved in the formation of different species of siRNAs,

whereas DCL 1 is exclusively responsible for the bio-

genesis of miRNAs (Bernstein et al., 2001). In addition, it

has been demonstrated that each Dicer produces siRNAs

with specific sizes: DCL2, DCL4 and DCL3 form siRNAs

with 22, 24 and 21 nt, respectively (Xie et al., 2005; Deleris

et al., 2006; Blevins et al., 2006). The cleavage performed

by DICER and Drosha will ultimately define the dimer

miRNA:miRNA* extremity; the strand with a lower free

energy at the 5’ end is incorporated by RISC (RNA-in-

duced silencing complex), while the other strand is de-

graded (Khvorova et al., 2003). The miRNA bound to the

RISC structure is guided to the complementary sequence of

the target mRNA. If the pairing is complete (100% se-

quence complementarity between the miRNA and mRNA),

the mRNA will be degraded; however, if the sequence is

only partially complementary, this will result in trans-

lational inhibition of the mRNA (Cannell et al., 2008).

One unique aspect of miRNA regulation is its com-

plexity. It has been observed that a single miRNA can regu-

late expression of different mRNAs. Additionally, one

mRNA can be regulated by multiple miRNAs (Yanaihara

et al., 2006). In C. elegans, the miRNA lin-4 regulates the

expression of the lin-14 gene as well as the heterochronic

gene lin-28. A homolog of lin-14 exists in animals, and in

mouse and human cells, it is regulated by miR-125a and

let-7b (Moss and Tang, 2003).

miRNAs can also be produced by an alternative path-

way. In this new model, sequences present in introns are ca-

pable of being transcribed as miRNAs. This hypothesis is

derived from experiments in which an analysis was per-

formed in pooled sequences from Drosophila S2 cells,

leading to the mapping of miR:miR* duplexes (Ruby et al.,

2007). It is believed that nearly 80% of animal miRNAs are

transcribed from introns, and these miRNAs are known as

mirtrons (; Rodriguez et al., 2004; Kim and Kim, 2007;

Okamura et al., 2007; Ruby et al., 2007). The formation of

mirtrons differs from classical miRNA biogenesis because

it does not require DROSHA proteins (Han et al., 2006;

Kim and Kim, 2007; Wang et al., 2007); instead, mirtrons

require AGO1 proteins for maturity (Okamura et al., 2007).

The pathway through which miRNAs regulate

mRNA translation involves the mechanism used by cells as

a defense against exogenous mRNA (such as in a viral in-

fection), called the post- transcriptional gene silencing

(PTGS) pathway (Fire et al., 1998). When used as a defense

mechanism, PTGS induces the cleavage of double-stranded

RNA (dsRNA) and allows for translational inhibition of ex-

ogenous mRNA (Hamilton and Baulcombe, 1999).

dsRNAs are cleaved into smaller molecules, small interfer-

ing RNAs (siRNAs), which are subsequently associated

with RISC, leading to gene silencing by RNA interference

(RNAi). This will be discussed in more detail in a later sec-

tion.

miRNA function

MiRNAs exhibit temporal- and tissue-specific ex-

pression (Lagos-Quintana et al., 2002; Lagos-Quintana et

al., 2003; Liu et al., 2005; Mehler and Mattick, 2006;

Schratt et al., 2006). One of the first functions associated

with miRNA was the temporal regulation of development

(Lee et al., 1993; Wightman et al., 1993). Negative post-

transcriptional regulation of lin-14 by the lin-4 miRNA is

essential for the formation of a temporal gradient of LIN

-14 protein to ensure correct transition between the larval

stages in C. elegans. The second miRNA discovered, let-7,

also proved to be a key driver in the temporal pattern of de-

velopment of C. elegans (Abrahante et al., 2003; Lin et al.,

2003; Grosshans et al., 2005).

To date, it has been shown that miRNAs regulate the

expression of at least 1/3 of all human genes, and these are

known to play an important role in several biological pro-

cesses, including cell cycle regulation, apoptosis, cell dif-

ferentiation, and embryonic development, etc. (Ketting et

al., 2001; Wienholds et al., 2003Ambros, 2004; Bartel,

2004; Lee et al., 2004; Wienholds and Plasterk, 2005). De-

regulation of miRNA expression is often associated with

human cancers (Volinia et al., 2006; Lu et al., 2008) and

can induce activation of oncogenes or inactivation of tumor

suppressor genes (Esquela-Kerscher and Slack, 2006).

DICER-deficient mice die because they lose their stem cell

pluripotency (Bernstein et al., 2003). Experiments with

mutant DICER-1 in Drosophila show that the miRNA

pathway is critical for cell division and for the passage from

the G1 phase to the S phase of the cell cycle (Hatfield et al.,

2005). There is also evidence of miRNA involvement in

metabolism as well as in the regulation of apoptosis. In

flies, the miRNA bantam accelerates proliferation and pre-

vents apoptosis by regulation of a proapoptotic gene, hid

(Brennecke et al., 2003). In vertebrates, miR-375 is ex-
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pressed in pancreatic islets and suppresses the secretion of

insulin induced by glucose (Poy et al., 2004).

miRNAs have also been shown to play an important

role in myogenesis and cardiogenesis. miR-1 is conserved

from worms to mammals and is highly expressed in human

muscle, fly muscle and the mouse heart (Aboobaker et al.,

2005; Zhao et al., 2005). Interestingly, knockdown of this

miRNA in Drosophila does not affect the formation and

function of muscles during the larval stages, but instead af-

fects the formation of muscles during growth in the adult

animal (Sokol and Ambros, 2005). These results clearly

show the role of miRNAs not only during development but

also for further growth and tissue maintenance.

The association between miRNA deregulation and

the development of pathological states was first discovered

through studies in the field of oncology. One of the initial

findings that showed that miRNAs indeed play a role in the

regulation of oncogenes came from studies in chronic lym-

phocytic leukemia (Calin et al., 2002). These studies

showed that several human miRNA transcription sites are

located in genomic regions involved in cancers, such as re-

gions of chromosomal breakpoints and fragile sites (Calin

et al., 2004). Further studies demonstrated that differential

expression of miRNAs is associated with tumor formation

(Michael et al., 2003; Calin et al., 2004, 2005; Lu et al.,

2005). In a few cases, a correlation between specific

miRNA expression patterns and cell type could be found

(Lu et al., 2005). In addition, most miRNAs are found to be

down-regulated in tumor tissue when compared with nor-

mal tissue, which may lead to loss of cell differentiation (Lu

et al., 2005).

Recent studies have demonstrated that some viruses

encode miRNAs (Pfeffer et al., 2004) and that in the Ep-

stein-Barr virus (EBV), a member of the herpesvirus fam-

ily, these miRNAs are encoded in intergenic regions at

specific clusters (Edwards et al., 2008; Feederle et al.,

2011). These virus-encoded miRNAs have been shown to

regulate their own genes (Barth et al., 2008; Umbach et al.,

2008), as well as genes involved in virus-cell interactions

(Murphy et al., 2008), leading to a modulation of the host

immune system (Stern-Ginossar et al., 2007). In this way, it

has been demonstrated that the BHRF1 miRNA cluster

plays an important role in the transition from the latent vi-

rus state by enhancing expansion of the virus reservoir and

reducing the viral antigenic load (Feederle et al., 2011).

Therefore, these features have the potential to facilitate per-

sistence of the virus in the infected host and can be used as

new therapeutic targets for the treatment of some EBV-

associated lymphomas (Feederle et al., 2011).

To better understand the function of miRNAs, it is

also important to know their regulatory targets (i.e., the

genes regulated by specific miRNAs). Because it has been

estimated that each miRNA could regulate a large number

of targets (Kim, 2005; Baek et al., 2008), bioinformatic al-

gorithms have become a powerful tool for identifying

miRNA-regulated genes and predicting gene function.

Therefore, a large number of predictive algorithms are

available, such as TargetScan (Lewis et al., 2003),

miRanda (John et al., 2004), PicTar (Krek et al., 2005),

RNA22 (Miranda, et al., 2006), PITA (Kertesz et al.,

2007), DIANA-microT (Maragkakis et al., 2009) and Tar-

base (Hsu et al., 2011). The main algorithm used to predict

miRNA:mRNA interactions involves pairing of the 5’ re-

gion of the miRNA - a 2-8 nt region known as the ‘seed re-

gion’ - to the 3’ untranslated region (3’-UTR) of the mRNA

(Thomson et al., 2011). However, evidence suggests that

the miRNA seed region pairing is not always a reliable pre-

dictor of miRNA:mRNA interactions (Didiano and Hobert,

2006). Indeed, precision of these algorithms is estimated to

be approximately 50% when tested against experimen-

tal-proven miRNA targets (Alexiou et al., 2009). There-

fore, it is highly suggested that additional experiments

should be performed to validate potential miRNA targets.

These may include, but are not limited to, reporter gene as-

says, evaluation of miRNA and target mRNA co-expres-

sion (e.g., northern blotting, qPCR or in situ hybridization)

and assessment of miRNA effects on target protein expres-

sion (e.g., ELISA, western blotting, immunohisto-

chemistry) (Kertesz et al., 2007; Kuhn, et al., 2008; Nuovo,

2010; Thomson et al., 2011 Hébert and Nelson, 2012;

Vergoulis et al., 2012).

Small Interfering RNAs and RNA Interference

RNAi is frequently used as a technique to promote ef-

fective and specific post-transcriptional gene silencing

through the administration of double-stranded RNAs

(dsRNAs). Although the phenomenon was first observed in

plants and fungi, the clear triggering mechanism was origi-

nally reported in the nematode C. elegans (Fire et al.,

1998). In this work, the authors observed that after injecting

long dsRNA molecules into the worm’s gonad, the match-

ing target mRNA was destroyed and a corresponding

phenotypical change could be subsequently observed (Fire

et al., 1998).

After the initial description, RNAi was shown to be

functional in nearly all eukaryotic species tested so far.

Inded, RNAi has been shown to be widely present, from vi-

ruses, unicellular organisms, fungi, plants and other ani-

mals. The technology promoted a revolution in molecular

biology and medical sciences because it can be used to

identify gene function or to silence essential genes present

in a pathogen. The impact of RNAi is such that less than a

decade after the seminal report, the discoverers were

awarded the Nobel Prize. Investors also noted the immense

potential behind this technique. As a result, several biotech-

nology start-ups emerged, devoted to the development of

RNAi-based therapies (Check, 2004; Bonetta, 2007; Os-

borne, 2007).

RNAi can be triggered by two main types of double

stranded RNA molecules. The first class encompasses long
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molecules, approximately 300-800 base pairs (bp) in

length, which may be produced by several processes, such

as: i) RT-PCR followed by in vitro transcription (Goto et

al., 2003), ii) expression from a cDNA cloned in special

vectors (Kamath et al., 2001) or iii) a transgenic cassette

(Chuang and Meyerowitz, 2000). These long dsRNAs are

the molecules of choice when using the technology in

non-mammalian models. Because dsRNAs longer than

30 bp promote lethal effects in mammalian cells, 21nt RNA

duplexes, known as siRNAs, are the molecule of choice for

use in mammals (Elbashir et al., 2001). siRNAs can also be

used in non-mammalian cells, but this molecule must be de-

signed for the target gene and its functionality must first be

tested in vitro.

RNAi can be used to create genetically modified ani-

mals in an attempt to recapitulate the null phenotype. More-

over, hypomorphic animals, i.e., displaying intermediate

levels of mRNA knockdown (from 0.1 to 99%), may also

be generated via RNAi, because the efficiency of silencing

can be controlled (Khvorova et al., 2003, Schwarz et al.,

2003). Such genetic constructions, presenting intermediary

phenotypes, may be of great biological value when the null

animal is not viable (Baker et al., 2004).

RNAi is frequently used as a strategy to identify gene

function, but there are many other possibilities: i) to combat

of several classes of pathogens (viruses, Palliser et al.,

2006; bacterial diseases, Escobar et al., 2001; parasites,

Pereira et al., 2008), ii) to generate plants and animals of in-

terest (Minton, 2004; Peng et al., 2006) and iii) to control

genetic diseases and tumors (Ptasznik et al., 2004; Raoul et

al., 2005). All these new developments have recently led to

the first published human clinical trials, with very promis-

ing results (Koldehoff et al., 2007; Koldehoff and Elma-

agacli, 2009; Davis et al,. 2010; DeVincenzo et al., 2010;

Leachman et al., 2010).

Future Directions

Progress in the area of ncRNAs seems to have oc-

curred faster than in any major biological discipline in re-

cent memory. The field has moved from virtual ignorance

about an abundant class of regulatory molecules to a rea-

sonably advanced understanding of the mechanisms of

miRNA biogenesis and an emerging consensus about the

numbers of miRNAs and their targets in several species, in-

cluding humans. Recently, miRNAs have been used as a

biomarker for several diseases. This is one of the most

promising approaches in the use of these molecules (Zho

and Wang, 2010; Cheng et al., 2011; Ohyashiki et al.,

2011).

RNAi has promoted an enormous advancement in the

field of molecular biology in the past decade. This tech-

nique allows a fast, cost-effective and simple alternative to

promote down-regulation of virtually any gene from many

species. RNAi-based drugs constitute the next big gamble

of pharmaceutical companies for two main reasons: i) the

promise of being highly specific, because RNAi relies on

total sequence complementarity, and ii) the fact that the as-

sociated pharmacodynamics may not be problematic, be-

cause RNA is a biological molecule. Therefore, it is very

likely that RNAi may lead to innovative medical treatments

in the near future.
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