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Abstract

This work aimed to evaluate the symbiotic compatibility and nodulation efficiency of rhizobia isolated from
Desmodium incanum, Lotus corniculatus, L. subbiflorus, L. uliginosus and L. glaber plants by cross-inoculation.
Twelve reference strains and 21 native isolates of rhizobia were genetically analyzed by the BOX-PCR technique,
which showed a high genetic diversity among the rhizobia studied. The isolates were also characterized based on
their production of indolic compounds and siderophores, as well as on their tolerance to salinity. Fifteen of the 33
rhizobia analyzed were able to produce indolic compounds, whereas 13 produced siderophores. All the tested
rhizobia were sensitive to high salinity, although some were able to grow in solutions of up to 2% NaCl. Most of the
native rhizobia isolated from L. uliginosus were able to induce nodulation in all plant species studied. In a greenhouse
experiment using both D. incanum and L. corniculatus plants, the rhizobia isolate UFRGS Lu2 promoted the greatest
plant growth. The results demonstrate that there are native rhizobia in the soils of southern Brazil that have low host
specificity and are able to induce nodulation and form active nodules in several plant species.
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Introduction

In southern Brazil there are large areas dominated by

grasslands. These areas are a highly diverse forage re-

source, and most farms use this forage as a single food

source for animals (Overbeck et al., 2007). Native legumi-

nous plants, such as those belonging to the genus

Desmodium, are frequently found in these areas (Overbeck

et al., 2007) and, due to the symbiosis between these plants

and rhizobial species, are responsible for an increase in the

nitrogen content of the soil-plant system via the mechanism

of biological nitrogen fixation (BNF) (Tarré et al., 2001).

The introduction of new leguminous species is an alterna-

tive approach to maximizing the nitrogen input in these ar-

eas (Howieson et al., 2011) and increasing the protein

content of pastures.

Although Lotus species are non-native plants in the

south of Brazil they can be recommended as forage plants

in these areas (Dalmarco et al., 2010). Species like L.

corniculatus, L. subbiflorus, L. uliginosus and L. glaber

present favorable adaptation ability in regions with temper-

ate climate (Díaz et al., 2005). Lotus species present a high

nutritional value as forage plants and, like Desmodium,

they also use the benefit of BNF through the symbiosis with

bacteria belonging to rhizobia genera (Howieson et al.,

2011).

Rhizobial species are considered legume endosym-

bionts that are able to promote plant growth by BNF (Mas-

son-Boivin et al., 2009). In general, the associations

between legumes and rhizobia are very specific (Bauer,

1981). There are, however, rhizobial isolates that show low

specificity to the host plant and induce nodule formation in

several legume species. Hernandez et al. (2005) found that

rhizobial strains, which presented with intermediary

growth rates, were able to induce nodule formation in L.

corniculatus and L. glaber. In the same work, strains with

slow growth rates belonging to the genus Bradyrhizobium
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were able to induce nodule formation in L. subbiflorus and

L. uliginosus.

BNF by symbiotic rhizobial species is not the only

characteristic that aids plant growth and adaptation (Hayat

et al., 2010; Granada et al., 2014). Symbiotic rhizobia on

non-native plants can induce plant adaptation through both

indirect effects, including decreases in plant disease sever-

ity and enhancements in mutualistic bacterial interactions,

and direct effects, including alterations in ecological and

ecosystem processes (Kempel et al., 2012), hormone pro-

duction and soil nutrient solubilization (Costa et al., 2013;

Granada et al., 2013).

The aims of this work were: (1) to analyze the genetic

diversity of rhizobial isolates symbiont of D. incanum, L.

corniculatus, L. subbiflorus, L. uliginosus and L. glaber

plants; (2) to verify, by cross-inoculation, the symbiotic

compatibility between these bacterial isolates and the five

plants species; and (3) to identify, in a greenhouse experi-

ment, a rhizobium isolate efficient in promoting the growth

of both L. corniculatus and D. incanum plants.

Material and Methods

Bacterial isolation

Plants of D. incanum were collected at the UFRGS

Agronomic Experimental Station (30°05’22” S and

51°39’08” W) in the south of Brazil. Root nodules were de-

tached and their surfaces sterilized by washing in 70% etha-

nol for 2 min, followed by washing with 2% sodium hypo-

chlorite (v/v) for 2 min and five serial rinses with sterilized

distilled water. Rhizobia were isolated according to Soma-

segaram and Hoben (1985). Pure colonies were grown in

yeast mannitol medium (YM) (Vincent, 1970) for 72 h at

28 °C and stored at -20 °C in 50% glycerol.

For the isolation of rhizobia from the root nodules of

L. glaber Mill (cv Pampa INTA), L. subbiflorus Lag (cv El

Rincon), L. corniculatus (cv São Gabriel), and L.

uliginosus Schkuhr (cv Maku) plants, the trap plant tech-

nique was employed. Seeds of these four Lotus species

were surface sterilized as described above for D. icanum

root nodules. Subsequently, these seeds were cropped in

500 mL plastic pots containing the same soil from where

the D. incanum plants had been collected. The pots were

kept in a greenhouse for 60 days. Soil moisture was verified

daily, and plants were harvested after 45 days. For plants

that demonstrated natural nodulation, rhizobia were iso-

lated and stored according to the same methodology de-

scribed above.

Rhizobia reference strains recommended for inocu-

lant production in Brazil (belonging to the SEMIA collec-

tion) were provided by FEPAGRO (RS, Brazil). Rhizobia

reference strains EEL698 and EEL8084 were provided by

Dr. Elemar Brose from Estação Experimental de Lages

(EEL, SC, Brazil). Strain U510, which is recommended for

inoculant production in Uruguay, was provided by Dr.

Carlos Labandera from Ministerio de Ganadería Agricul-

tura e Pesca (MGAP, Uruguay).

Genetic diversity of rhizobial isolates

Each rhizobial strain studied was grown in YM me-

dium before DNA was extracted according to Sambrook

and Russel (2001). DNA was amplified by polymerase

chain reaction (PCR) using the enterobacterial repetitive

sequences BOX A1 primer (CTACGGCAAGGCGACG

CTGACG) (Versalovicj et al., 1994). Reactions were per-

formed according to Giongo et al. (2010). The resulting

DNA fingerprints were transformed into a binary matrix

and subjected to a clustering analysis using the UPGMA al-

gorithm and the Jaccard coefficient using PAST software

(Hammer et al., 2001).

Cross-inoculation experiment

The ability of the rhizobial isolates and reference

strains to form nodules capable of efficiently fixing nitro-

gen in D. incanum, L. corniculatus, L. subbiflorus, L.

glaber and L. uliginosus plants was evaluated by

cross-inoculation using an in vitro inoculation technique.

This technique consisted of adding 5 mL of Sarruge nutri-

tive solution (Sarruge 1975) (25% diluted, without nitro-

gen) to a test-tube with a germitest paper tape on the inner

side. Seeds of these five plant species were surface steril-

ized as above described and were then pre-germinated at 28

°C for three days. Individually, seedlings were placed on

the germitest paper and inoculated with 2 mL of culture of

one bacterial isolate grown in YM medium (with 108

cfu mL-1). Each treatment group consisted of three repli-

cates. The seedlings were maintained in a growth chamber

with a photoperiod of 12 h of light for 45 days. After this

period, the nodulation ability of each bacterial isolate in

each plant species was evaluated. If plants presented nod-

ules and leaves with dark green coloration after 45 days, the

bacterial isolate was considered able to form efficient (ac-

tive) nodules in the host plant, and, consequently, was de-

fined as a nitrogen fixer.

Evaluation of siderophores and indolic compound
production and saline resistance

Rhizobial strains were grown in YM medium supple-

mented with tryptophan (2.4 x 10-3 M) for 48 h at 28 °C at

120 rpm. Indolic compounda (IC) production was analyzed

according to Glickmann and Dessaux (1995). Siderophore

production was evaluated by the inoculation of 10 �L of

each bacterial culture (as previously described) in agar

(1.5%) King B medium (Glickmann and Dessaux, 1995).

The medium was five-fold diluted and supplemented with

CAS dye (Schwyn and Neilands, 1987). The evaluation of

these abilities was only qualitative, and the rhizobial iso-

lates were classified as either producers or non-producers

of indolic compounds and/or siderophores.

Granada et al. 397



Saline tolerance was evaluated by the inoculation of

20 �L of each bacterial culture (as previously described) in

agar YM plates, to which 1, 2 or 3% NaCl had been added.

If a bacterial isolate was able to grow at a particular salt

concentration, it was classified as salt-resistant.

Symbiotic efficiency experiment between rhizobial
isolates and D. incanum and L. corniculatus plants

Six rhizobial isolates were able to nodulate both L.

corniculatus and D. incanum plants (UFRGS Lu2, UFRGS

Lu13, UFRGS Ls1, UFRGS Lc336, UFRGS Di9 and EEL

698). These bacterial isolates presented different growth

promotion abilities and were selected for the plant inocula-

tion experiment.

This in vivo assay was conducted in Leonard jars with

sterile substrate composed of vermiculate and sand (3:1) on

the top and Sarruge nutritive solution (25% diluted) with-

out nitrogen on the bottom. Each treatment was composed

of three replicates of two plants of D. incanum (native vari-

ety) or L. corniculatus (cv São Gabriel) per Leonard jar in-

oculated with one rhizobial isolate (5 mL of rhizobia

culture with 108 cfu mL-1). Two control treatments were

performed: one without nitrogen (negative control, N-) and

another with 25 mg of nitrogen, in the form of NH4NO3, per

jar (positive control, N+). The strain recommended for in-

oculation of L. corniculatus plants, SEMIA 816, was also

included. The experiment was conducted for a period of

90 days in a completely randomized design. At the end of

this period, plants were harvested, and the root nodules

were removed and counted. Plants were dried at 60 °C until

they reached a constant weight, and root and shoot dry mat-

ters were determined. Additionally, in the experiment with

L. corniculatus plants, the nodule dry matter and the

amount of nitrogen accumulated in the shoots were also es-

timated (Jones et al., 1991). Statistical analyses were per-

formed by ANOVA test, with means compared by the

Scott-Knott test (p < 0.01) using the Assistat 7.6 beta pro-

gram (Silva and Azevedo, 2002).

Results

Twenty-one native rhizobia were isolated from the

root nodules of D. incanum or Lotus spp. Twelve rhizobial

reference strains were also included in the analysis. The na-

tive rhizobial and reference strains, their host plants,

indolic compound and siderophore production capabilities

and resistance to increasing salt concentrations are dis-

played in Table 1. With exception of SEMIA 830, all of the

rhizobial reference strains (belonging to the SEMIA collec-

tion) were able to produce indolic compounds, whereas

among the native rhizobia isolated from D. incanum and L.

uliginosus only the isolate UFRGS Lu2 was able to do so.

Approximately 39% of the rhizobia studied were able to

produce siderophores. All rhizobial isolates were able to

grow in up to a 1% salt substrate. Only the native rhizobial

isolates UFRGS Ls1 and UFRGS Lu2 grew in up to 2%

salt, and none was able to grow in up to 3% salt.

The diversity of the 33 rhizobia studied was accessed

by BOX-PCR analysis (Figure 1). These bacterial isolates

were highly diverse, and with the exception of reference

strains SEMIA 808 and SEMIA 806, which formed one

group with approximately 80% similarity, and the native

isolates UFRGS Lu13 and UFRGS Lu8, which presented

100% similarity, there was less than 70% similarity be-

tween the bacterial isolates. Bacterial strains isolated from

the same plant did not form groups with high genetic simi-

larity.

The ability of the bacterial isolates to form nodules

able to fix nitrogen (active) in the five plant species studied

was also highly diverse (Table 2). Most of the native rhizo-

bial isolates and reference strains studied were able to form

active nodules in their host plant. One rhizobium isolated

from D. incanum, UFRGS Di9, also nodulated L.

corniculatus. The reference strains SEMIA 6208 and

SEMIA 6209, recommended for the inoculation of D.

ovalifolium, and SEMIA 656, recommended for the inocu-

lation of Desmodium sp., were unable to nodulate any of the

five plant species studied. Five of the 11 bacterial isolates

from L. corniculatus also nodulated L. uliginosus and one

of them, UFRGS Lc336, was capable of forming active

nodules in both plants. The rhizobia isolated from L.

glaber, in addition to nodulating their host plant, also nodu-

lated L. uliginosus plants. The majority of native rhizobial

isolates from L. subbiflorus and L. uliginosus formed active

nodules in at least three of the five plant species analyzed.

Among these rhizobia, we highlight the isolates UFRGS

Ls1, UFRGS Ls69 and UFRGS Lu13, which nodulated all

five plant species analyzed, and the isolate UFRGS Lu2,

which was also able to form active nodules in all plant spe-

cies analyzed.

The six rhizobial isolates that were able to nodulate

D. incanum and L. corniculatus plants were selected for a

greenhouse inoculation experiment with these two plants.

Data from D. incanum plants demonstrated that, with the

exception of bacterial isolate UFRGS Lu2, the highest

yields of shoot dry matter were produced by rhizobial iso-

lates with lower numbers of nodules per plant (Table 3).

Data from root dry matter were similar to those from treat-

ment with nitrogen addition (N+). The most promising

rhizobial isolates were EEL698, UFRGS Ls1, UFRGS Lu2

and UFRGS Lu13. Data from L. corniculatus plants

(Table 4) demonstrated that plants inoculated with the

rhizobial reference strain SEMIA 816 showed the highest

number of nodules and, consequently, the highest value of

nodule dry matter. Plants inoculated with the rhizobial

strains SEMIA 816, UFRGS Lu2 and EEL698 showed the

highest values of shoot dry matter. The highest values of

shoot nitrogen content were observed in those plants inocu-

lated with the rhizobial strains SEMIA 816 and UFRGS

Lu2.
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The native rhizobial isolate UFRGS Lu2, isolated

from L. uliginosus plants, was able to produce indolic com-

pounds and was the most promising bacterial isolate for use

in facilitating the adaptation of L. corniculatus plants and

the growth promotion of this plant and D. incanum plants.

Furthermore, it behaved promiscuously because in the in

vitro nodulation test, it was able to form active nodules in

all the five plants studied in this work. The greenhouse ex-

periment with D. incanum and L. corniculatus plants con-

firmed the agronomical potential of this isolate, because

plants inoculated with UFRGS Lu2 showed the best results

for the evaluated parameters.

Discussion

Bacterial isolates from the same microbial species

can be evaluated for intraspecific diversity based on an

analysis of repetitive nucleotide sequences, including the

BOX motif (Binde et al., 2009; Ishii and Sadowsky, 2009;

Li et al., 2009, Díaz et al., 2013). The 33 rhizobial isolates
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Table 1 - Native rhizobial isolates and reference strains. Their host plants and an evaluation of indolic compound and siderophore production and resis-

tance to high salt concentrations are displayed.

Host plant Rhizobial isolate Indolic compound production Siderophore production Salt concentration (NaCl)

1% 2% 3%

Desmodium incanum UFRGS Di6 - + + - -

UFRGS Di7 - - + - -

UFRGS Di9 - - + - -

UFRGS Di10 - - + - -

SEMIA 6208 + - + - -

SEMIA 6209 + + + - -

SEMIA 656 + + + - -

Lotus corniculatus UFRGS Lc10 + - + - -

UFRGS Lc14 - + + - -

UFRGS Lc22 - + + - -

UFRGS Lc36 - + + - -

UFRGS Lc322 - + + - -

UFRGS Lc336 + - + - -

UFRGS Lc340 - - + - -

SEMIA806 + - + - -

SEMIA808 + + + - -

SEMIA816 + + + - -

U 510 + - + - -

Lotus glaber UFRGS Lg109 - - + - -

UFRGS Lg111 + - + - -

SEMIA830 - - + - -

Lotus subbiflorus UFRGS Ls1 - + + + -

UFRGS Ls8 + - + - -

UFRGS Ls62 - - + - -

UFRGS Ls69 - + + - -

SEMIA848 + + + - -

EEL 698 - - + - -

Lotus uliginosus UFRGS Lu2 + - + + -

UFRGS Lu8 - - + - -

UFRGS Lu13 - - + - -

UFRGS Lu19 - - + - -

SEMIA822 + + + - -

EEL8084 + - + - -

+ = Native rhizobial isolate or reference strain able to produce indolic compounds or siderophores and/or resistant to a high salt concentration. - = Native

rhizobial isolate or reference strain unable to produce indolic compounds or siderophores and/or not resistant to a high salt concentration.



studied in this work were highly diverse. These data were

expected because the rhizobia studied were obtained from

different host plant species (Kennedy, 1999; Garbeva et al.,

2004) and presented different growth promotion character-

istics. This high variability appears to be very common in

studies with native rhizobia. Giongo et al. (2008), in their

study of Bradyrhizobium spp. symbiosis with Glycine max

plants, and Vargas et al. (2009), studying rhizobia symbio-

sis with clover, demonstrated high genetic diversity using

the same technique utilized in this work (BOX-PCR). Gu et
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Figure 1 - Dendrogram of genetic similarity based on UPGMA cluster analysis using the Jaccard coefficient (PAST software). Data were obtained

through BOX-PCR analysis of 21 rhizobia isolated from the root nodules of D. incanum, L. corniculatus, L. subbiflorus, L. uliginosus, L. glaber and 12

rhizobia reference strains.



al. (2007), in their study of rhizobial symbionts of

Desmodium spp. in China, also found a high level of vari-

ability in the tested isolates using the PCR-RFLP tech-

nique.

The native rhizobial isolates UFRGS Lu13 and

UFRGS Lu8 exhibited 100% similarity, but they presented

different symbiotic characteristics. These data indicated

that bacterial isolates may differ in other genomic regions

than those amplified by the BOX A1 primer. Similar results

were obtained by Grange and Hungria (2004) and Granada

et al. (2014) leading to infer that bacterial strains with the

same DNA profile can display different growth promotion

and symbiotic characteristics.

The cross-inoculation of rhizobial isolates and four

Lotus species and D. incanum plants showed that some na-

tive rhizobial isolates were able to nodulate more than one

plant species studied. Some studies have already found re-

lated rhizobial species that were able to nodulate and/or

form active nodules in different plant species. Gossmann et

al. (2012), for example, found rhizobial isolates that nodu-
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Table 2 - Cross-inoculation results among the native rhizobial and reference strains and the five plant species studied in this work.

Desmodium incanum Lotus corniculatus Lotus glaber Lotus subbiflorus Lotus uliginosus

Rhizobial isolate Nod Fix Nod Fix Nod Fix Nod Fix Nod Fix

UFRGS Di6 + - - - - - - - - -

UFRGS Di7 + - - - - - - - - -

UFRGS Di9 + + + - - - - - - -

UFRGS Di10 + + - - - - - - - -

SEMIA6208 - - - - - - - - - -

SEMIA6209 - - - - - - - - - -

SEMIA656 - - - - - - - - - -

UFRGS Lc10 - - + + - - - - + -

UFRGS Lc14 - - + + - - - - - -

UFRGS Lc22 - - + + - - - - + -

UFRGS Lc36 - - + + - - - - + -

UFRGS Lc322 - - + + - - - - - -

UFRGS Lc336 + - + + - - - - + +

UFRGS Lc340 - - + + - - - - + -

U510 - - + + - - - - - -

SEMIA816 - - + + - - - - - -

SEMIA806 - - + + - - - - - -

SEMIA808 - - + + - - - - - -

UFRGS Lg109 - - - - + + - - + +

UFRGS Lg111 - - - - + + - - + +

SEMIA830 - - - - + + - - - -

UFRGS Ls1 + + + + + - + + + +

UFRGS Ls8 + + - - - - + + - -

UFRGS Ls62 + + + - - - + + - -

UFRGS Ls69 + + + - + - + - + -

EEL698 + + + + - - + + - -

SEMIA848 - - - - - - + + - -

UFRGS Lu2 + + + + + + + + + +

UFRGS Lu8 + + + - - - + + + +

UFRGS Lu13 + + + + + - + + + +

UFRGS Lu19 + + - - + - + - + +

EEL8084 - - + + - - - - + +

SEMIA822 - - - - - - - - + +

+ = Native rhizobial isolate or reference strain that was able to nodulate and/or fix atmospheric nitrogen in the leguminous plant studied. - = Native

rhizobial isolate or reference strain that was unable to nodulate and/or fix atmospheric nitrogen in the leguminous plant studied. Nod = Nodulation.

Fix = active nodules.



late and were efficient nitrogen fixers in five Lotus species

(L. japonicum, L. pedunculatus, L. filicaulis, L burttii and

L. glaber). Ruiz-Díez et al. (2012) studied cross-inocu-

lation with 12 traditional cultivated legumes, including pea

(Pisum sativum L.), lentil (Lens culinaris Medik.), chick-

pea (Cicer arietinum L.), vicia (Vicia spp.), clover

(Trifolium spp.), alfalfa (Medicago sativa L.) and lupin

(Lupinus spp.). The rhizobial isolates studied in this work

also showed a high variability in their nodulation patterns.

The reference strains SEMIA 808 and SEMIA 806

presented a highly similar pattern in the cross inoculation

and BOX analysis. The major characteristics that differen-

tiate these SEMIA strains were the abilities to produce

indolic compounds and siderophores. The same was ob-

served for isolates UFRGS Lu 8 and UFRGS Lu13, as they

presented similar plant grow promotion characteristics and

patterns in the BOX analysis, but they differ in the pattern

of cross inoculation. Binde et al. (2009) reported that BOX

analysis is a powerful fingerprinting tool, revealing strong

genetic diversity among rhizobial strains. It is, however,

necessary to use other techniques (such as a 16S rDNA se-

quencing) to achive the level of bacterial genus and species

identification (Binde et al., 2009; Ishii and Sadowsky,

2009, Granada et al., 2014).

As shown with our data, Parker et al. (2006) also sug-

gested that the success of plant invasions relies on symbi-

otic nitrogen-fixing bacteria. However, these bacteria pro-

mote plant growth and environmental adaptation not only

via their nitrogen fixation ability but also via their produc-

tion of hormones and solubilization of nutrients (Joseph et

al., 2007; Granada et al., 2014). The production of indolic

acetic acid by rhizobia can aid non-native plant species in

resisting both biotic and abiotic stresses (Bianco and Defez,

2007; Sziderics et al., 2007), because it is well documented

as an indispensable phytohormone with the ability to regu-

late many aspects of plant development (Teale et al., 2006;

Spaepen et al., 2007). In our work, among the studied plant

growth promotion characteristics, the production of indolic

compounds was the characteristic most common among the

rhizobial isolates, which may be reflected in the growth of

the studied plants. Furthermore, previous studies have re-

ported that phytohormones of the indolic group stimulate

seed germination, increase the rate of root formation, con-

trol processes of vegetative growth, tropism, florescence,

and fructification of plants, affect the biosynthesis of vari-

ous metabolites, and provide plant resistance to stress fac-

tors (Tsavkelova et al., 2005; Zahir et al., 2010; Bhatta-

charjee et al., 2012).
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Table 4 - Greenhouse experiment with the inoculation of L. corniculatus plants with rhizobial isolates or reference strains that are able to nodulate both L.

corniculatus and D. incanum plants.

Treatment Number of nodules

per plant

Nodules dry matter

(mg plant -1)

Root dry matter

(mg plant -1)

Shoot dry matter

(mg plant -1)

Nitrogen content

(mg plant -1)

N+ * - - 1065.5 � 193.5 a 1008.5 � 85.8 a 5.63 � 0.4 c

SEMIA 816 538.5 � 79.9 a 109.5 � 14.1 a 627.25 � 97.1 b 1120.25 � 134.0 a 14.22 � 2.3 a

EEL 698 290.25 � 93.1 b 71.5 � 29.8 b 365 � 70.9 c 875 � 118.3 a 10.1 � 2.5 b

UFRGS Ls1 231 � 97.2 b 51.5 � 6.2 c 189.25 � 31.8 c 332.5 � 93.0 b 2.63 � 1.1 d

UFRGS Lu2 280.5 � 79.8 b 83.5 � 33.0 b 335.25 � 72.8 c 992.75 115.3 a 12.53 � 0.6 a

UFRGS Lu13 334 � 32.6 b 53.25 � 13.3 c 221 � 54.8 c 454.75 � 81.5 b 2.48 � 0.6 d

UFRGS Di9 143.75 � 25.6 c 40.75 � 6.1 c 292.25 � 92.7 c 265 � 83.8 b 1.31 � 0.6 d

UFRGS Lc336 155 � 63.7 c 36 � 16.2 c 182.5 � 67.9 c 337.75 � 68.2 b 2.41 � 0.7 d

N- * - - 304.75 � 64.1 c 207.25 � 65.3 b 0.57 � 0.1 d

* Control treatments were performed without nitrogen (N-) or with 25 mg of nitrogen, as NH4NO3, per jar (N+). Each treatment was composed of three

replicates of two plants of L. corniculatus cv São Gabriel in each Leonard jar inoculated with one rhizobia culture (5 mL of one rhizobia culture with

108 cfu mL-1). Means followed by different letters in the same column differ by the Scott-Knott test (p < 0.01).

Table 3 - Greenhouse experiment with the inoculation of D. incanum

plants and rhizobial isolates or reference strains that are able to nodulate

both D. incanum and L. corniculatus plants.

Treatment Number of nod-

ules per plant

Root dry matter

(mg)

Shoot dry matter

(mg)

N+* - 12.56 � 1.8 a 26.33 � 4.9 a

EEL698 6 � 1.7 c 16.87 � 4.0 a 33.00 � 8.6 a

UFRGS Ls1 6.25 � 1.5 c 14.83 � 7.1 a 30.5 � 0.5 a

UFRGS Lu2 18.25 � 3.0 b 12.12 � 2.0 a 28.00 � 6.3 a

UFRGS Lu13 5.25 � 0.9 c 20.50 � 1.3 a 27.00 � 6.2 a

UFRGS Di9 26 � 4.3 a 13.62 � 4.2 a 22.75 � 2.4 b

UFRGS Lc336 6 � 2.0 c 11.00 � 3.0 a 17.75 � 6.0 b

N- * - 8.56 � 1.9 b 15.22 � 2.2 b

Control treatments were performed without nitrogen (N-) or with 25 mg of

nitrogen, as NH4NO3, per jar (N+). Each treatment was composed of three

replicates of two plants of D. incanum (native cultivar) in Leonard jars in-

oculated with one rhizobia culture (5 mL of one rhizobia culture with

108 cfu mL-1). Means followed by different letters in the same column dif-

fer by the Scott-Knott test (p < 0.01).



The salinization of soils constitutes one of the most

serious forms of edaphic degradation (Pisinaras et al.,

2010). Excess levels of salt have a negative effect on soil

rhizobial populations by both direct toxicity and osmotic

and ionic stress (Dhanapackiam and Muhammad-Ilyas,

2010). This soil condition affects the rhizobial infection

process by inhibiting root hair growth (Manchanda and

Garg, 2008). Rhizobial salt resistance may therefore help

plant development by allowing the establishment of an effi-

cient nitrogen fixation process (Bui, 2013). Trabelsi et al.

(2010) studied the diversity and salt tolerance of

Sinorhizobium populations isolated from Tunisian soils and

showed that some isolates were able to grow in concentra-

tions of up to 1.2% salt. The resistance to salt concentra-

tions up to 1.2% was also noted in studies by Singh et al.

(2008). The evaluation of rhizobial resistance to salt stress

in the present study demonstrated that only two rhizobial

isolates were able to grow in concentrations of up to 2%

NaCl (UFRGS Lu2 and UFRGS Ls1). It is worthy of note

that UFRGS Lu2 was the rhizobial isolate that presented

the best results regarding plant growth promotion parame-

ters as evaluated in the greenhouse experiment using both

D. incanum and L. corniculatus plants.

The greenhouse inoculation of D. incanum and L.

corniculatus with native rhizobia demonstrated that this in-

oculation can improve the growth of both plant species. Ro-

driguez-Echeverría et al. (2012) also reported that inocula-

tion of native and non-native plant species with native

rhizobia isolates is beneficial for both plants. Furthermore,

they highlight that inoculation with an exotic rhizobia

strain may disrupt the native rhizobia population, which in-

deed would be prejudicial to plant development.

Typically, rhizobial inoculation experiments in legu-

minous plants demonstrate that a larger number of nodules

in the roots results in a higher plant growth promotion ef-

fect (Shamseldin and Werner, 2005; Li et al., 2008). These

data agree with our results with L. corniculatus plants, be-

cause the plants inoculated with rhizobium reference strain

SEMIA 816 showed the highest number of nodules, the

highest yield of shoot dry matter and the highest nitrogen

content. However, our data with D. incanum plants was dif-

ferent: plants inoculated with the rhizobial isolate EEL 698

showed only few root nodules (six) but resulted in the high-

est shoot dry matter yield.

The ability to select rhizobia capable of nodulating

and efficiently fixing nitrogen in several leguminous plants

aids in the adaptation of non-native plant species (Barrett et

al., 2012; Knoth et al., 2012). When nitrogen fixation by in-

digenous rhizobia is limited, field inoculation with efficient

and competitive strains is an economically feasible way to

increase production. When the inoculant is composed by

native strains of rhizobia the success of inoculation should

be increased, since local strains are better adapted than

those present in commercial inoculants (Mnasri et al.,

2007). This adaptation should result in sustainable food and

energy crop production, which, in turn, yields high produc-

tivity while minimizing inputs that are both economically

and ecologically costly.
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