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Abstract

The use of post-alignment procedures has been suggested to prevent the identification of false-positives in massive 
DNA sequencing data. Insertions and deletions are most likely to be misinterpreted by variant calling algorithms. 
Using known genetic variants as references for post-processing pipelines can minimize mismatches. They allow 
reads to be correctly realigned and recalibrated, resulting in more parsimonious variant calling. In this work, we aim 
to investigate the impact of using different sets of common variants as references to facilitate variant calling from 
whole-exome sequencing data. We selected reference variants from common insertions and deletions available 
within the 1K Genomes project data and from databases from the Latin American Database of Genetic Variation 
(LatinGen). We used the Genome Analysis Toolkit to perform post-processing procedures like local realignment, 
quality recalibration procedures, and variant calling in whole exome samples. We identified an increased number of 
variants from the call set for all groups when no post-processing procedure was performed. We found that there was 
a higher concordance rate between variants called using 1K Genomes and LatinGen. Therefore, we believe that the 
increased number of rare variants identified in the analysis without realignment or quality recalibration indicated that 
they were likely false-positives. 
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Introduction
Advances in sequencing methods have made it possible 

to interrogate the genome in its most basic components at 
an affordable price and in a timely manner (Goodwin et al., 
2016). A single sequencing reaction generates reads that, 
after processing, make it possible to compare the resulting 
assembly against a given reference genome (Li and Durbin, 
2009; DePristo et al., 2011). Based on these achievements, 
the rapid adoption of such techniques are being directly 
applied to medicine, inaugurating the new era of genome 
medicine (Karczewski, 2013). Nonetheless, understanding 
the pathogenicity of a given variant is not a straightforward 
task and it demands prior knowledge or biological and in-
silico validation (Thusberg et al., 2011). In this perspective, 
databases containing variants previously related to disease 
have an unquestionable role while linking phenotypes to 
genotypes (Landrum et al., 2018).

The common variants from a given population are 
also relevant to clinical diagnosis, while evidencing that 
normal alterations are not necessarily linked to disease 
(International HapMap Consortium, 2010; 1000 Genomes 
Project Consortium, 2015). Many such projects have been 
implemented by initiatives across the globe, providing a 

much richer picture of human variation across regions and/
or populations (Haga, 2017; Wijmenga and Zhernakova, 
2018; Stark et al., 2019). In Latin America, one of the first 
initiatives was the Brazilian Initiative on Precision Medicine 
(BIPMed), which expanded into additional projects in the 
Latin American Database of Genomic Variation (LatinGen), 
aiming to assist with genomic data sharing in Latin America. 
Currently, despite being an initiative that encompasses all 
of Latin America, only two databases are contributing to 
genetic variation from the reference population (or healthy 
individuals), from the Brazilian population. Thus, LatinGen 
materializes what many studies reinforce, the need for a better 
understanding of the admixture in Latin American populations, 
as well as other underrepresented populations, in large scale 
sequencing studies (Ruiz-Linares et al., 2014; Petrovski and 
Goldstein 2016; Popejoy and Fullerton, 2016; van Rooij et 
al., 2017). 

The use of post-alignment bioinformatics procedures 
has been suggested to reduce false-positive discovery rates 
in massive DNA sequencing data (McKenna et al., 2010). 
Insertions and deletions are most likely to be misinterpreted 
by the alignment algorithms, which may produce several false 
single-nucleotide variants in the call-set. The use of high-
quality, commonly-known variants tends to minimize such 
mismatching and allows reads to be correctly realigned and 
recalibrated. This procedure tends to increase the number of 
true genetic variants identified (Vo and Phan, 2018). In this 
work, we aim to investigate the impact of using different 
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sets of common variants as a reference to enhance variant 
discovery in whole-exome sequencing data.

Material and Methods

Common variant sites for local realignment and 
quality recalibration

Targets were selected for local realignment and quality 
recalibration from common insertions and deletions included 
within the 1K Genomes Project data and common variants 
in reference population datasets deposited in the LatinGen 
Databases. 

For common insertions and deletions from the 1K 
Genomes Project, variants from the Broad Institute resource 
bundle were used and was considered the best set of known 
indels for optimizing local realignments (“What’s in the 
resource bundle and how can I get it?” 2020). This data was 
comprised of 3,989,738 indels from 1K Genomes Project 
Phase I and an additional 831,742 gold-standard, double-hit 
indels, which totaled 4,570,615 unique entries.

Data from the Latin-American Database of Genomic 
Variation (LatinGen) was composed of three databases. Two 
were from the Brazilian Initiative on Precision Medicine 
(BIPMed-Array-db and BIPMed-WES-db) (Secolin et al., 
2019; BIPMed genomic databases, 2020) and one was from the 
Online Archive of Brazilian Mutations (AbraOM) (Naslavsky 
et al., 2017).

The Brazilian Initiative on Precision Medicine (BIPMed) 
was composed of two databases, which contained pooled 
variant information from subjects from the Brazilian reference 
population collected in Campinas, Brazil (BIPMed-WES-db). 
Whole-exome sequencing (WES) experiments were composed 
of 258 subjects and a BIPMed-Array-db containing data that 
were derived from microarray-based experiments involving 
264 individuals (Affymetrix GenomeWide SNP 6.0 array). 
The BIPMed-WES-db was composed of 851,109 variants. 
Of these, 1282 variants (0.15%) were selected with a minor 
allele frequency (MAF) > 0.5, quality greater than 30, a depth 
of coverage higher than 10 fold, and with 90% or more of all 
possible alleles covered. The BIPMed-Array-db contained 
906,600 variants, of which we selected 447618 (49.4%). 

The Online Archive of Brazilian Mutations (AbraOM) 
repository contained WES variants from 609 elderly individuals 
from the city of Sao Paulo, Brazil and included a total of 
2,382,574 variants. Of these, we selected 1574 (0.07%) high-
quality insertions or deletions that were present in more than 
50% of the alleles (MAF > 0.5) examined. As quality filters, 
variants with substantial evidence of being true-positives were 
selected, flagged as “very strong” probability of being true 
and PASS, and detailed in the project website (Naslavsky et 
al., 2017). By merging the three databases, 450,474 unique 
entries were identified.

Variants from the Online Archive of Brazilian Mutations 
(AbraOM) are available through the projects’ website. Variants 
from BIPMed are available under a Research Data Use 
Agreement. The datasets analyzed from the 1000 Genomes 
Project are available through the projects’ repository. This 
study was approved by the Research Ethics Committee 
of the University of Campinas (UNICAMP), CAAE 

#12112913.3.0000.5404, and written informed consent was 
obtained from each participant of the BIPMed datasets.

Whole exome data selected for variant calling

WES data from 122 unrelated Brazilian individuals 
who were initially recruited for the investigation of genetic 
epilepsies (Group BR) were selected. In this dataset, WES 
was performed following the recommended protocol provided 
by the manufacturer of the SureSelectXT Human All Exons 
V6 kit (Agilent Technologies). All 122 samples were 
quantified, qualified, diluted, and sent for library preparation 
and sequencing using an Illumina Hiseq 2500 platform in 
which a paired-end sequencing reaction with 101 x 2 cycles 
(3,605,583,845 sequences) was employed. All data generated 
from the BR group was disidentified, and therefore, treated 
as non-personal information (Lei Geral de Proteção de Dados 
Pessoais (LGPD), 2018, The European Parliament and of 
the Council, 2016). In addition, we also used 15 unrelated 
WES datasets, which were randomly selected from phase 
three of the 1K Genomes Project, which was sequenced 
at the same sequencing center (BGI, Beijing Genomics 
Institute). We chose five samples from each of the two South 
American populations represented in the 1K Genomes Project 
database, which included both Colombians from Medellin 
(Group CLM: HG01119, HG01142, HG01281, HG01363, 
HG01431, 732422573 sequences) and, Peruvians from Lima 
(Group PEL: HG02102, HG02150, HG02253, HG02262, 
HG02312, 540035325 sequences). An additional 5 European 
samples were selected from British populations in England 
and Scotland (Group GBR: HG00110, HG00121, HG00139, 
HG00254, HG00259, 634,824,750 sequences). We chose 
the number of samples studied considering the limitation of 
storage and processing capabilities, so that a balance in the 
number of sequenced bases was achieved. 

Alignment, realignment, variant recalibration, and 
variant calling

Sequences were extracted from binary alignment files 
(BAM) provided by the 1K Genomes Project for CLM, PEL, 
and GBR groups, as well as those we generated for Group BR. 
A paired-sequence alignment of the four groups was performed 
using BWA-MEM (version 0.7.12) against the Human 
Reference Genome GRCh38 with default parameters (Li and 
Durbin, 2009; Schneider et al., 2017). We used Picard Tools 
(version 2.5.0) for marking duplicates and indexing (Picard 
web page, 2020). The variant calling process was carried 
out using three different strategies: (i) without performing 
realignment and quality recalibration steps against the 
realignment, using targets selected from (ii) the 1K Genomes 
and (iii) LatinGen. The Genome Analysis Toolkit (version 
3.6-0) was used to perform the local realignment, quality 
base recalibration, and variant calling steps (GATK modules: 
RealignerTargetCreator, IndelRealigner, BaseRecalibrator, 
PrintReads, and HaplotypeCaller) for both the LatinGen and 
1K Genomes Project targets. The HaplotypeCaller module 
was used for the call-set without realignment or quality 
recalibration. Variants with quality values lower than 30 and 
coverage lower than 10 times were filtered out. To annotate 
variants, the Variant Effect Predictor (VEP) program (version 
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94) was used to determine global minor allele frequencies 
(GMAF) of the 1K Genomes dataset with just one selected 
consequence per variant (McLaren et al., 2016).

The level of concordance among the variants called 
was established using the three following realignment 
and recalibration methodologies: (i) called in the absence 
of realignment and recalibration steps; ii) obtained from 
local realignment and quality recalibration steps using the 
1K Genomes Project data; and (iii) obtained from the local 
realignment and quality recalibration of common variants 
from LatinGen. To assess concordance, the data is presented 
using Venn diagrams, with absolute and percentage values 
shown (Figure 1). 

Three sets of variants were evaluated in a more detailed 
manner. The group that was not subjected to realignment or 
recalibration contained uniquely called variants when no 
realignment or recalibration occurred. Group 1K Genomes 
consisted of variants identified from the realignment 
and recalibration with the 1K Genomes targets that were 
absent when using variants from LatinGen. Finally, Group 
LatinGen contained variants identified from realignment and 
recalibration using LatinGen that were absent when using 
variants from 1K Genomes targets. We accessed whether 
variants were novel by searching for their presence or absence 
within the dbSNP database and GMAF and through variant 
annotation with VEP. 

To test whether there were differences between the 
distributions of variants identified using the three protocols 
proposed for our four different population groups, the paired 
Mann-Whitney U Test without continuity correction was 
applied. To test if there were no differences between the 
allele frequencies of independent groups, the unpaired Mann-
Whitney U test with the continuity correction was used. A 
p-value < 0.05 was considered statistically significant. All 
analyses were conducted using R statistical software (version 
3.4.3) (R Core Team, 2014). VennDiagram (1.6.0), ggplot2 
(2.2.1.9000), and plotly (4.7.1) packages were used to create 
the figures. 

Results
Three different pre-processing protocols were applied 

to WES data. First, variants were called in the absence of 
realignment and recalibration steps. Second, variants were 
called using local realignment and quality recalibration steps 
that employed common reference variants, insertions, and 
deletions deposited in the 1K Genomes Project database. 
Third, variants were called using local realignment and quality 
recalibration steps that employed common reference variants, 
insertions, and deletions deposited in the LatinGen database. 
Each of the protocols described above was applied to the 
four populations assessed, which included BR, PEL, CLM, 
and GBR. 

Overall, the results showed concordance levels that 
ranged from 93.32% to 97.48% among the three different 
variant-calling protocols and population groups. When 
data were discordant, we found that 1.38% to 5.30% of 
variants were identified exclusively when no realignment 
or recalibration was performed. Furthermore, when 
comparing all the variants within our call-set by using both 

reference databases, 0.04% to 0.05% of the variants were 
exclusively identified using data from 1K Genome Project 
and 0.02% to 0.04% of the variants were identified solely 
using LatinGen (Figure 1). Of the variants called using 
LatinGen as a reference, 0.38% to 0.64% were also identified 
using the 1K Genome Project as a reference, and were not 
detected when post-processing procedures were omitted. 
Furthermore, 0.42% to 0.59% of the variants called using 
LatinGen as a reference were also identified when post-
processing procedures were omitted but were not identified 
when the 1K Genome Project was used as a reference. Figure 
1 shows a summary of these findings using Venn diagrams to 
depict the results obtained using four different populations. 
There were no differences observed in the distribution of 
variants called using any of the three protocols for the four 
populations (p-values > 0.4). 

A more detailed analysis of the unique variants called 
using the three different protocols is included in Table 1. In 
general, most of the variants identified were annotated as 
known (an average of 90.54%). Notably, there were lesser 
known to novel variant ratios in all population groups when 
LatinGen variants were used as the reference for post-
processing procedures, which ranged from 3.79% to 6.18%. 
In addition, a lower number of novel variants were identified 
within the BR population and those known variants had lower 
GMAF values (mean of 0.16) than other populations (mean 
of 0.32; p-value<0.05 with pair-wise comparisons). Figure 2 
depicts these GMAF distributions using violin plots.

Discussion
Sequence aligners usually consider sequences 

individually as they are assembled to a reference genome (Li 
and Durbin, 2009; Pirooznia et al., 2014). By finding a broader 
positional context, the local realignment tends to minimize 
mismatches, which produces a better consensus for variant 
calling (Indelrealigner: Perform local realignment of reads 
around indels, 2020). The purpose of quality recalibration 
is to assign a realistic probability to each sequenced base 
using a statistical model that considers the variant itself and a 
series of contextual parameters that support the variant-calling 
process (Variantrecalibrator: Build a recalibration model 
to score variant quality for filtering purposes, 2020). Our 
results revealed that an increased number of exclusive variants 
were identified in the call-set when no alignment or quality 
recalibration was performed for all the populations studied 
(Figure 1). Many of these variants could be false-positives 
due to alignment artifacts (Gézsi et al., 2015; McCormick et 
al., 2015; Hwang et al., 2016). Indeed, to decrease these false-
positives, there is high demand for more precise sequencing 
methods providing longer reads and better aligners with 
appropriated post-alignment processing methodologies and 
an appropriated coverage (Fuentes Fajardo et al., 2012; Vo 
and Phan, 2018).

Our results show an increased number of unique variants 
identified when using recalibration and realignment targets from 
the 1K Genomes group, which could indicate an imbalanced 
ratio of false-positive variants when using this dataset in 
comparison to the targets from LatinGen. However, since there 
were fewer variants in LatinGen, these targets (450,474) may 
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Figure 1 – Venn diagrams for each variant calling approach: Local realignment and quality recalibration was performed using known, high-quality sites 
from the 1K Genomes Project and LatinGen data, which were applied to four populations: Brazilians (BR), Colombians (CLM), Peruvians (PEL), and 
British (GBR). The intersections of variants called were compared using three different realignment and recalibration methodologies, which included (i) 
variants called in the absence of realignment and recalibration steps, and those obtained using local realignment and quality recalibration using common 
insertions and deletions from (ii) the 1K Genomes Project, and (iii) the common variants from LatinGen. A comparison of the call-sets revealed a high 
degree of concordance. The increased number of variants identified exclusively when data was not subjected to realignment or recalibration may indicate 
that these variants are false-positives. The high degree of intersection between the call-sets that were realigned and recalibrated using 1K Genomes and 
LatinGen highlights the benefit of using this methodology. The implementation of local realignment and quality recalibration with an admixed population 
from LatinGen did not affect the four population groups considered.
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Figure 2 – Global minor allele frequency (GMAF) distributions. A comparison of GMAF distributions within subsets of variants produced by performing 
no realignment or recalibration steps and those identified after realignment and recalibration using 1K Genomes targets and LatinGen for four population 
groups: Brazilians (BR), Colombians (CLM), Peruvians (PEL), and British (GBR). The GMAF distribution within Group BR is lower than the other 
populations, indicating a small level of representation of the population in genomic databases. Table 1 shows mean values with standard deviations for 
each variant subset.

be less sensitive to the identification of true variants than 
1K Genomes (4,570,651 targets) (Table 1), a validation step 
would be necessary to confirm this hypothesis. Ensuring true-
positive genetic variants and establishing an association with 
a disease is not a straightforward task, especially for low-
frequency variants (Sham and Purcell, 2014; Jew and Sul, 
2019; Ross, 2020). In a call set, most of the variants tend to 
be benign, as unrelated samples possess normal genetic 
variation (Sherry, 2001; Li et al., 2010). However, low-
frequency variants could also have been caused by the 
variant-calling algorithm (Hwang et al., 2016; Bomba et al., 
2017). 

Furthermore, our results indicate that the use of post-
alignment steps may be advantageous for variant-calling and 
variant discovery, which are independent of the reference 
databases used for these procedures. Moreover, we 
observed a high level of concordance between variants 
called using the two methods for all four populations 
analyzed (Figure 1). Recent population growth and weak 
selection can increase the number of previously unknown 
and population-specific variants identified (Tennessen et 
al., 2012). However, many admixed populations, such as 
Latin American populations, have an incipient presence in 
most of the public genetic and genomic databases 
(Genovese et al., 2013; Sudmant et al., 2015). Thus, we 
used a Latin American reference database (LatinGen) to 
investigate whether the use of ethnically 

matched common variants for post-processing alignment 
and quality recalibration would improve variant-calling. We 
found that there was no significant difference between the 
number of variants called using LatinGen and those identified 
using the 1K Genomes databases (p-values > 0.4). However, 
based on our findings we suggest that there is a potential 
benefit in the use of data from the 1K Genomes databases 
in combination with the ethnically matched and admixed 
population represented in LatinGen. This approach would take 
advantage of an increased sample size as well as increased 
genetic variability that occurs in admixed populations.

It is important to note that our study has limitations, 
since the number of variants included in the 1K Genomes 
Project was substantially larger than the number included in 
LatinGen datasets. However, we identified variants (1782; 
0.03%) that were only called using exomes analyzed when 
LatinGen was used for local realignment and recalibration. 
Even though a biological validation of our findings, using 
a second technique such as Sanger sequencing, would be 
advisable, our results are robust. Thus, our findings should 
be viewed as an indication that using additional databases 
should be considered in the identification of genetic variants 
of interest when performing post-alignment steps in the 
analyses of massive DNA sequencing data.
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In conclusion, we present and discuss the impact of using 
high-quality, common variants from control individuals of 
diverse ethnic origin on variant discovery from whole-exome 
sequencing data. Our results indicate that these common 
variants played an important role within the post-processing 
analyses that were applied to samples of both populations 
with closely and distantly related genetic backgrounds, and 
likely minimized the identification of false-positives while 
enhancing the discovery of novel variants. 
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