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Abstract

High heterogeneity of lung adenocarcinoma (LUAD) is a major clinical challenge. This study aims to characterize 
the molecular features of LUAD through classification based on metabolism-related genes. A total of 500 LUAD 
samples from The Cancer Genome Atlas (TCGA) and 612 from Gene Expression Omnibus (GEO) were integrated 
with 2,753 metabolism-related genes to determine the molecular classification. Systematic bioinformatics analysis 
was used to conduct correlation analysis between metabolism-related classification and molecular characteristics of 
LUAD. LUAD patients were divided into three molecular clusters (C1-C3). Survival analysis revealed that C1 and C2 
showed good and poor prognoses, respectively. Associational analysis of classification and molecular characteristics 
revealed that C1 was associated with low pathological stage, metabolic pathways, high metabolic process, active 
immune process and checkpoint, sensitive drug response, as well as a low genetic mutation. Nevertheless, C2 
was associated with high pathological stage, carcinogenic pathways, low metabolic process, inactive immune 
signatures, resistant drug response, and frequent genetic mutation. Eventually, a classifier with 60 metabolic 
genes was constructed, confirming the robustness of molecular classification on LUAD. Our findings promote the 
understanding of LUAD molecular characteristics, and the research data may be used for providing information be 
helpful for clinical diagnosis and treatment.
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Introduction
Lung cancer is a malignant tumor with the highest 

morbidity and mortality, and lung adenocarcinoma (LUAD) 
is its primary subtype (Torre et al., 2015). LUAD has a long 
incubation period, mild early symptoms, and a high degree of 
malignancy; besides, the affected patients are diagnosed at an 
advanced stage, hence missing the optimal time for treatment 
(Butnor, 2020). Research on the molecular mechanism of 
LUAD has advanced in the past decade; novel diagnostic 
methods, including targeting and immunotherapy, have caused 
substantial breakthroughs in clinical diagnosis and treatment 
(Collisson et al., 2014). Nonetheless, LUAD still faces hurdles, 
including postoperative recurrence, low drug sensitivity, and 
poor prognosis (Seguin et al., 2022); thus, there is an urgent 
need to improve the diagnostic level and treatment of LUAD. 
Notably, routine pathological staging determines treatment; 
however, there is a lack of multidisciplinary integration due to 
the radiological, pathological, and molecular heterogeneity of 
LUAD (Socinski et al., 2016). With the advent of sequencing 

technology, research and treatment of lung adenocarcinoma 
has expanded from purely histopathological subtype-based 
to molecular classification (Kashima et al., 2019). During the 
initiation and development of LUAD, different driver gene 
variants interact with each other to mediate tumor evolution; 
this is reflected in tumor heterogeneity (Inamura, 2018). 
Therefore, molecular classification of LUAD, integrated 
with clinicopathological characteristic analysis optimize the 
personalized treatment of LUAD patients.

Metabolic abnormality is a feature of tumor cells. 
Metabolic reprogramming in tumor cells maintains survival 
and infinite proliferation in a harsh microenvironment (Li 
and Zhang, 2016). Thus, abnormal metabolic pathways, 
regulatory molecules, and enzymes in tumor cells are vital 
targets for molecular classification (Khan et al., 2020). Based 
on the characteristics of glucose metabolism and immune cell 
infiltration in tumor microenvironment from transcriptome 
data of lung adenocarcinoma, Choi and Na (2018) divided 
LUAD patients into four clusters, showing different immune 
cell composition, tumor metabolism, and survival (Choi 
and Na, 2018). Goodwin et al. (2017) discovered distinct 
glycolytic metabolism-phenotype between lung squamous cell 
carcinoma (SqCC) and LUAD, with increased cellular glucose 
transporter molecules in SqCC at mRNA and protein levels 
but was lowest expressed in LUAD (Goodwin et al., 2017). 
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The above research suggests the possibility of performing 
LUAD classification from a metabolic perspective to identify 
distinct molecular characteristics and clinical features. Gene 
is a critical target for regulating metabolic reprogramming of 
tumor cells; it only participates in metabolic signaling pathways 
and regulates metabolic enzymes but is also regulated by 
non-coding RNA immune microenvironment and epigenetic 
modifications (Carrer and Wellen, 2015). Besides, the genes 
are prone to mutation and copy number variation (CNV) that 
constantly influences the metabolic process (Ried et al., 2019). 
In this work, we collected the metabolism-related genes from 
previous research and integrated them with LUAD samples 
for molecular classification. 

Datasets from the Gene Expression Omnibus (GEO) 
and The Cancer Genome Atlas (TCGA) databases were 
used to divide LUAD samples into a molecular classification 
based on metabolism-related genes; the LUAD samples were 
classified into three clusters (C1-C3) with significantly variant 
molecular characteristics and clinical features. Integrative 
analysis between three clusters and molecular characteristics 
revealed that C1 with good prognosis was associated with 
low pathological stage, metabolic pathways, high metabolic 
process, active immune process and checkpoint, sensitive 
drug response, and low genetic mutation. However, C2 
with poor prognosis was related to high pathological stage, 
carcinogenic pathways, low metabolic process, low immune 
signatures, resistant drug response, and frequent genetic 
mutation. Moreover, a 60 metabolism-related genes classifier 
was established to confirm the classification efficacy. Our 
study suggests the possibility of classifying LUAD patients 
into three clusters based on metabolism-related gene subtypes. 
These three clusters may provide information be helpful for 
clinical diagnosis and treatment. 

Methods 

Data selection and preprocessing

Raw data with clinical information was extracted from 
multiple databases, including The Cancer Genome Atlas 
(TCGA), Gene Expression Omnibus (GEO), on April 23, 2021. 
The processing process of GEO as following: CEL files with 
GSE19188, GSE29013, GSE30219, GSE31210, GSE37745, 
GSE50081 were downloaded from the GEO database, which 
retained samples of the above six datasets in GPL570 chip 
([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array). Then, the RMA (Robust Multi-Array Average 
expression measure) function was used to process the profiling 
data by affy R package. Subsequently, the expression profile 
of the dataset was obtained through normalization. After 
eliminating the batch effects by the combat function of the sva 
R package, the six datasets were merged into one database, 
i.e., GSEdat. Principal components analysis (PCA) was used 
to access the elimination of batch effects across datasets. We 
converted the Annotation file probe of the merged datasets 
was converted to gene symbol based on GPL570. When 
multiple probes corresponded to the same gene symbol, the 
median value was considered the expression profile of the gene 
symbol, whereas the probe expression was eliminated when a 
probe corresponded to multiple gene symbols. The processing 

process of RNA-sequence from TCGA database as following: 
the FPKM expression spectrum data of primary tumor samples 
were downloaded from TCGA Data. The downloaded data 
were standardized read counts, and then converted into TPM 
with the code written by myself, followed by log2 conversion 
of the data. The single nucleotide variants from [MuTect2. 
Variant0. Maf] were obtained from TCGA. For clinical data, 
samples without survival time and status were excluded; as a 
result, 500 LUAD samples from TCGA and 612 from GEO 
were obtained for further analysis. The study was approved by 
the People’s Hospital of Longhua, Shenzhen. The statistical 
information of the filtered samples is shown in Table S1. The 
research flow chart is shown in Figure S1. 

Metabolism-related genes classification of LUAD

In total, 2,752 previously reported metabolism- related 
genes involved in all metabolic processes were used in 
molecular classification analysis (Possemato et al., 2011). 
First, 2,752 metabolism-related genes with median absolute 
deviation (MAD) values (MAD≤0.5) were excluded from 
TCGA LUAD samples. Thereafter, univariate Cox analysis 
on metabolism-related genes was conducted using the coxph 
function of survival R package; p <0.05 was considered the 
threshold for filtering. Genes with significant prognostic 
value and MAD>0.5 were selected for classified analysis. 
Consequently, 408 metabolism-related genes were obtained for 
molecular typing (Table S2). Molecular typing was conducted 
using the ConsensusClusterplus R package to select the 
classification number; the k value determined the optimal 
number of clusters. Then, the mRNA expression data of these 
metabolism-related genes were used to confirm the subtype 
allocation using the T-distribution-based random neighbor 
embedding (T-SNE) algorithm. Meanwhile, LUAD samples 
from GSEdat were used to perform molecular classification 
analysis via similar methods. Gene Pattern category mapping 
(Submap) algorithm, a method evaluating the similarity 
between molecular classes based on expression profiles of 
independent sample cohorts, was conducted to ascertain 
whether the molecular typing of TCGA was similar to that 
of GSEdat. 

Functional analysis of LUAD classification

The Limma R package was used to calculate differential 
expressed genes (DEGs) across all the subtypes, and false 
discovery rate (FDR) < 0.05 and an absolute value of fold 
change (FC) > 1.5 were set as the threshold to determine the 
significant DEGs. Subsequently, functional analysis of DEGs 
was conducted through Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis using clusterprofiler R package 
with a significance threshold of FDR<0.05. 

Metabolic characteristics of LUAD classification

A total of 113 metabolism-related signatures were 
obtained from previous research (Rosario et al., 2018); 
the GSVA R package and GSEABase were used to 
investigate metabolism characteristics of 113 metabolism-
related signatures. Consequently, 113 metabolic signatures 
corresponded to 120 scores within each sample. Specific 
metabolism-related process signatures in the corresponding 
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subtypes were defined by comparing 113 metabolic scores 
across all the subtypes using the Limma R package. The 
Kruskal-Wallis test was used to compare the scores of 
metabolic scores between subtypes.

Immune infiltration of LUAD classification

A total of five bioinformatics algorithms, including 
microenvironment cell population-counter (MCPcounter) 
(Becht et al., 2016), TIMER (Li et al., 2017), ESTIMATE 
(Yoshihara et al., 2013), CIBERSORT (Newman et al., 2015), 
and ssGSEA (Charoentong et al., 2017) were used to investigate 
immune infiltration characteristic of LUAD classification based 
on metabolism-related genes. Notably, MCPcounter enables 
robust quantitation of eight immune cell populations (T cells, 
CD8 T cells, cytotoxic lymphocytes, B lineage, NK cells, 
monocytic lineage, myeloid dendritic cells, and neutrophils) 
in heterogeneous tissues from transcriptome data. TIMER is 
a component analysis software for tumor-infiltrating immune 
cells, supporting the analysis of six types of immune cells, 
including B cell, T cell CD4+, T cell CD8+, neutrophil, 
macrophage, and myeloid dendritic cell. The ESTIMATE 
algorithm was used to evaluate stromal and immune cells in 
malignant tissue based on expression data. Based on the 28 
immune cell markers, ssGSEA analysis was conducted to 
compare the differences in immune scores between different 
subtypes (Charoentong et al., 2017). Of note, CIBERSORT 
is an effective tool for deconvolving the expression matrix 
of human immune cell subtypes based on the linear support 
vector regression. After five bioinformatics algorithms on 
metabolism-related genes of LUAD classification, the Kruskal-
Wallis test was performed to compare the scores of immune 
cell infiltration between subtypes. 

Association of LUAD classification with mutation

MafTools R package was used to analyze and visualize 
the mutation data between molecular classification. Genes 
with the highest mutation frequency in LUAD were selected, 
and a chi-square test was used to confirm the mutation 
distribution across different molecular classifications. 
Meanwhile, we calculated the tumor mutation burden (TMB) 
of each sample and compared the distribution difference of 
TMB in molecular subtypes.

Classifier generation based on metabolism-related 
genes

The differentially expressed metabolism-related 
genes with absolute FC>1.5 and FDR<0.05 were defined as 
statistically significant. Then, the significant differentially 
expressed genes across all the classifications were used to 
construct the classifier. The top 20 genes within each subtype 
(only genes with FC>1 were selected) were achieved for the 
construction of the classifier. The nearest template prediction 
(NTP) algorithm was used for subclass predictions based on 
significant differentially expressed genes on GSEdat; the 
predicted results were compared with the above TCGA LUAD 
samples classification via ConsensusClusterplus R package. 

Prediction of immune and targeted therapy on LUAD 
classification

Existing data on immunotherapy (programmed cell 
death protein-1 (PD-1) immune checkpoint inhibitor or 
cytotoxic T-lymphocyte-associated protein-4 (CTLA-4)) for 
47 melanoma patients were indirectly used to predict the 
efficacy of our classification of immunotherapy (Roh et al., 
2017). A submap algorithm was used to identify whether the 
immune therapy of our classification based on metabolism-
related genes was similar to melanoma patients. Besides, the 
pRRophetic R package was applied to value IC50 sensitivity of 
targeted drugs (bexarotene, doxorubicin, embelin, etoposide, 
gemcitabine, mitomycin C, vinorelbine, and cisplatin) in 
molecular classification.

Statistical analysis

Survival analysis was conducted using the Kaplan-Meier 
(KM) method, and a log-rank test was used for comparison. 
Chi-square analysis was used to evaluate the relationship 
between LUAD classification and clinical features. Unpaired 
Student’s t-test and Mann–Whitney U-test were used to 
comparing two groups with normally distributed variables 
and non-normally distributed variables, respectively. One-way 
analysis of variance of parametric and Kruskal–Wallis tests 
of nonparametric variance were used to compare the three 
groups. Univariate COX and multivariable Cox regression 
were conducted to evaluate the molecular clusters and classifier 
using the clinical signatures as concomitant variable (Table S2).  
All analyses were conducted using R software (version 3.5.1) 
and SPSS software (version 24). A two-tailed p-value <0.05 
was considered statistically significant. 

Results

Molecular classification of LUAD based  
on metabolism-related genes 

A total of six datasets (GSE19188, GSE29013, 
GSE30219, GSE31210, GSE37745, GSE50081) from the 
GEO database were subjected to PCA analysis. Consequently, 
the results revealed that data differentiation was significantly 
removed after batch effect, indicating no difference between 
datasets (Figure S2). After MAD and univariate Cox analyses, 
2,752 previously reported metabolism-related genes involved 
in all metabolic processes and 500 LUAD samples from TCGA 
were used to classified analysis through ConsensusClusterPlus; 
k= 3 was set as the optimal value of clusters (C1, C2, and C3). 
When k= 3, the consensus matrix heatmap still maintained 
a clear and sharp boundary, indicating a stable and robust 
clustering of samples.

T-SNE methods were used to reduce the dimension of 
the feature and supported the stratification of three clusters 
in LUAD samples (Figure 1A). Analyses of molecular 
classification on GSEdat were similar to the TCGA database 
(Figure 1B), further verifying the accuracy of three clusters 
in LUAD samples. Additionally, we performed Submap to 
confirm the relationship across the three clusters between 
TCGA and GSEdat. The results showed that C1, C2, and 
C3 in the TCGA were closely related to the corresponding 
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clusters in GSEdat (Figure 1C). Then, the LUAD samples 
across the three clusters were analyzed by the KM method, 
with the best survival for C1 and worst survival for C2 in 
TCGA (Figure 1D). The KM analysis was validated in GSEdat, 
and showed that C1 with best survival and C2 with worst 
survival, although C2 and C3 were indistinguishable with 
no statistically significance (P=0.42) in terms of patients’ 
prognosis (Figure 1E, Figure S3A), whiles the survival of 
C2 was better than C3, and the results were verified in the 
TCGA (P= 0.0013) (Figure S3B). Generally, C1 has the 
best prognosis and C2 has the worst prognosis. It could be 
further used for molecular typing analysis of LUAD based 
on metabolism.

Relationship analysis between three clusters  
and clinical characteristics

The clinical characteristic, including living status, 
topography-lymph node- metastasis (TNM) grade, stage, 
smoking, age, and gender, were associated with three clusters; 
the results revealed that the distribution of clinical information 
in the three clusters displayed a significant difference (Figure 
2A). The Chi-square test demonstrated that several clinical 
characteristics, including alive status, T, N, and stage, were 
significantly related to three clusters (Figure 2B). C1 was 
primarily enriched in alive status, T1, N0, and stage Ⅰ indicating 
a favorable living condition and low grade of the tumor; 
on the other hand, C2 correlated with dead status, T2 and 
T3, N1 and N2, as well as stage Ⅱ and Ⅲ; this indicates an 

unfavorable living condition and relatively high grade of the 
tumor. Furthermore, the survival differences of molecular 
clusters were independent of clinical factors, including T, N, 
and stage (Table S3). Therefore, the above findings indirectly 
demonstrate good survival of C1 and poor survival of C2.

Functional analysis of the three clusters

The biological function of the three clusters was analyzed 
to understand their molecular characteristics further. The 
metabolism-related genes, significantly different across all 
the clusters compared to FDR < 0.05 and an absolute value of 
FC>1.5, were considered for subtype-specific genes. A total 
of 1,869, 2,203, and 236 specific genes were identified for 
C1, C2, and C3, respectively. Then, clusterprofiler R package 
was used to analyze the biological function of KEGG of  
these specific genes on the three clusters. Consequently, the 
up-regulated genes of C1 were mainly enriched in the metabolic 
pathway, while the down-regulated genes were associated 
with a tumor-related pathway (Figure S4A). In contrast with 
C1, the enriched genes of C2 were reverse, with up-regulated 
genes primarily participating in tumor-related pathways while 
down-regulated genes were related to metabolic pathways 
(Figure S4B). These results suggest that C1 correlated with 
high metabolic biological process hence had a good survival. 
Nevertheless, C2 was associated with tumor-related pathways, 
indicating carcinogenesis with poor survival. The intermediate 
survival of C3 engaged in both tumor-related and metabolic 
pathways in up-and down-regulated genes (Figure S4C).

Figure 1 – Molecular classification of LUAD based on metabolism-related genes. T-SNE analysis verified the classification of (A) TCGA and  
(B) GSEdat into 3 clusters. (C) Submap algorithm showing a close association between TCGA and GSEdat. KM analysis to determine the over survival 
of the 3 clusters in (D) TCGA and (E) GSEdat.
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Metabolic process signature of the three clusters

The molecular classification of LUAD samples was 
based on metabolism-related genes; thus, various metabolic 
processes signatures were investigated across the three clusters. 
Using the GSVA R package, ssGSEA quantification was 
performed on 113 metabolic processes on the TCGA dataset. 
Then, the metabolic process scores between the different 
subtypes were compared (Figure S5); as a consequence, C1 
had the greatest number (51) of metabolic processes, among 
them, drug metabolism by cytochrome P450, alpha−linoleic 
acid metabolism, and glutathione metabolism (Figure 3). 
C2 and C3 had 35 and 10 specific metabolism signatures, 
respectively (Figure S6A, B). The results reveal that C1 
exhibited the highest metabolic activity consistent with KEGG 
analysis, thereby indicating that C1 was associated with the 
active metabolic process. To further analyze the characteristic 
of the clusters, 19 biological features related to tumorigenesis 

were selected and quantified using the GS VA algorithm 
(Mariathasan et al., 2018). As a consequence, C1 had a lower 
score of biological features related to tumorigenesis than that 
of C2 and C3 (Figure S7). 

Immune infiltration of the clusters

The pathogenesis of tumorigenesis is caused by 
dysregulation of the immune system (Disis, 2010). Thus, 
the immune infiltration and immune checkpoint across the 
clusters were further analyzed to depict the immune landscape. 
In total, five immune score algorithms, including MCPcounter, 
TIMER, ESTIMATE, CIBERSORT, and ssGSEA, were used to 
assess the immune infiltration on the three clusters. Then, the 
differences in the scores of different immune cells in the three 
clusters were compared. We found that the immune infiltration 
score of C1 was relatively higher than that of C2 and C3; C2 
had a relatively lower immune infiltration score than C1 and 

Figure 2 – Association of clinical characteristics with the 3 clusters. (A) A cluster map showing association the of 3 clusters with clinical characteristics. 
(B) Comparison of distribution of clinical characteristics of different molecular subtypes. * p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001.
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C3 (Figure S8A,). Importantly, the evaluation outcomes of the 
immune infiltration score were consistent in all five algorithms 
(Figure 4, Figure S9A-D). Besides, immune checkpoint-related 
genes were identified from previous studies (Danilova et al.,  
2019), and the expression of these immune checkpoint 
genes were compared in the three clusters. Consequently, C1 
exhibited the highest expression of immune checkpoint genes, 
while C2 represented the lowest expression (Figure S8B). All 
the results indicated that C1 showed robust immunoactivity, 
high immune infiltration activity, and immune checkpoint 
function in LUAD. 

Further, six immune subtypes, including G1 (wound 
Healing), G2 (IFN-γ dominant), G3 (inflammatory), G4 
(lymphocyte Depleted), G5 (immunologically quiet), and 
G6 (TGF-β dominant) in cancer proposed by Thorsson et al.  
(2018), were used to characterize intratumoral immune states 
and identify modules of immune signature (Thorsson et al., 
2018). The three clusters were compared with six immune 

subtypes to confirm the accuracy of molecular classification 
of LUAD based metabolism-related genes. As a result, 
the distribution of six immune subtypes across the three 
clusters was significantly different (Figure 5A); C1 primarily 
comprised G3, while G1 and G2 were mainly distributed in 
C2 and C3. Kaplan Meier analysis revealed that G3 had the 
best prognosis, and G1 and G3 were intermediate prognostic 
(Figure 5B). G3 represented good survival; this was in 
line with the result of our research, where C1 with a large 
composition of G3 had the best prognosis in our molecular 
classification, confirming the accuracy of our molecular 
classification on LUAD patients. Besides, the six tumor-
related signatures (wound healing, IFN gamma response, 
TGF beta response, proliferation, leukocyte fraction, and 
SNV neoantigens) (Thorsson et al., 2018) were compared 
among the three clusters. Although there was no statistical 
difference, all expressions of the six signatures in C1 were 
lower than those in C2 and C3 (Figure 5D). 

Figure 3 – Comparison of metabolic processes across the 3 clusters. The scores of metabolic processes were higher in C1 than in C2 and C3.

Figure 4 – Comparison of immune infiltration scores among the 3 clusters. Immune infiltration scores of the 3 clusters estimated using MCPcounter. 
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Genetic mutation of 3 clusters

Somatic variants of genetic mutation is a vital pathogenic 
mechanism of tumors; thus, the differences in frequencies 
of somatic variants were analyzed across the three clusters. 
MafTools R package was used to analyze and visualize the 
mutation data between molecular classification. A total of 20 
genes with the highest frequency for mutation visualization 
and the genetic mutation across different clusters were diverse, 
and each cluster of highly mutated genes was also different 
(Figure 6A). TMB analysis found that there were significant 
differences in TMB among the 3 clusters; especially, gene 
mutation frequency in C1 was generally less than that of C2 
and C3 (Figure 6B). A total of five mutation genes (TP53 
(Skoulidis and Heymach, 2019), KRAS (Ferrer et al., 2018), 
RYR2 (Yu et al., 2015), PCLO (Qiu et al., 2019), CSMD3 
(Zhang et al., 2019)) linked to the pathogenesis of lung 
cancer were selected to make a comparison between the 
three clusters. Generally, the mutation frequency of the five 

genes in C1 was lower than that in C2 and C3 (Figure 6C). 
Since KRAS mutation and other gene co-occurring mutations 
have poor effect of immunotherapy and poor prognosis; thus, 
we further analyzed the mutation and survival of KRAS in 
LUAD patients. As predicted, the mutation probability of 
KRAS in LUAD patients is higher than that of non-mutation 
(Figure S10A), and the prognosis of highly expressed KRAS 
in LUAD patients was poor although there was no statistical 
significance (Figure S10B). The above findings suggested 
that the molecular classification was associated with Genetic 
mutation and indicated the relationship with clinical prognosis. 

Generation of classifier 

Several differentially expressed metabolism-related 
genes were noted in the three clusters; specific informative 
cluster-related genes signature is necessary to construct the 
clinical classifier for potential utility. Considering the gene 
accuracy and clinical application potential, the top 20 genes 

Figure 5 – Comparison of 3 clusters with existing immune molecular subtypes in terms of metabolism-related genes. (A) Cyclic graph showing the 
comparison between 3 clusters and existing immune molecular subtypes. The outer layer shows our molecular subtype, the inner layer displays the existing 
immunotyping, and the inner gray shows samples without the existing immunotypes and no classification. (B) Analysis of the distribution of existing 
molecular subtypes among the 3 clusters. (C) KM analysis of the over survival of 6 existing molecular subtypes. (D) the expression of 6 tumor-related 
signatures in the 3 clusters. * p < 0.05, ** p < 0.01, *** p < 0.001.
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with FC value > 1 in each cluster were selected to develop 
the classifier. Thus, a classifier with 60 genes (Figure S11) 
was generated. Then, the classified prediction of GSEdat was 
repeated using the 60 gene classifier, and the agreement with 
the original prediction based on ConsensusClusterPlus was 
evaluated. The findings revealed that the consistency of the C1, 
C2, and C3 were 74%, 66%, and 58% (Figure 7A), suggesting 
the accuracy and repeatability of this 60 genes classifier. 
Furthermore, univariate COX regression analysis revealed 
that 60 genes classifier were independent of T, N, M, and stage  
(Table S4); and 60 genes classifier was an independent clinical 
factor by multivariable Cox regression analysis (Table S5).

Sensitivity of immune and targeted therapy  
on the clusters

The above results revealed distinctly diverse immune 
infiltration and checkpoint across the three clusters; we 
sought to understand whether the immune and targeted 

therapy between the three clusters was different. The 
expression profiles of the clusters (C1, C2, and C3) were 
compared with that of another published dataset (Roh et al.,  
2017) that included patients treated with nivolumab and 
pembrolizumab. Consequently, a significant relationship 
between C1 and nivolumab and pembrolizumab response 
was observed in the TCGA database (Figure 7B). Besides, 
C1 correlated with pembrolizumab response in the GSEdat 
database (Figure 7B). A comparison of the sensitivity of 
therapeutic targets was conducted across the clusters. In 
TCGA and GSEdat databases, the sensitivity of therapeutic 
targets in C1 was higher than that in C2 and C3 (Figure 7C); 
this indicates the high efficacy of therapeutic targets for C1.  
These findings indicate that the LUAD samples of C1 have 
good sensitivity and response of immune and targeted 
therapy, thereby indirectly suggesting a good survival of 
LUAD samples in C1.

Figure 6 – Comparison of the gene mutations among the 3 clusters. (A) Distribution of mutation frequency among the top 20 genes in the 3 clusters.  
(B) Comparison of gene mutations by TMB among the 3 clusters. (C) Comparison of frequency of mutant genes in the 3 clusters. *** p < 0.001.
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Discussion
Molecular classification of LUAD tumors has been 

proposed in recent years, including subtypes based on 
immune infiltration, proteomics, non-coding RNA, and 
epigenetic modification (Borczuk, 2016; Chalela et al., 2017).  
Nevertheless, classification based on metabolism-related gene 
features has not been adequately investigated. Considering 
that tumorigenesis is a metabolic reprogramming process 
and that dysregulation of metabolic genes is vital for 
regulating tumorigenesis (Carrer and Wellen, 2015; Li and 
Zhang, 2016), we classified LUAD with metabolic genes to 
improve the understanding of molecular characteristics and 
specific classification of LUAD. Specifically, an integrative 
classification of the metabolism profile of LUAD samples 
was performed to divide the patients into three clusters. 
Then, the clinical features, metabolic signatures, immune 

infiltration, gene mutation, immunotherapy, and targeted 
drugs were used to associate the clusters. The focus of this 
study was molecular typing based on metabolic genes. The 
data information provided may complement the pathological 
typing to obtain information that was helpful for clinical 
diagnosis and treatment. Of course, our research was still 
preliminary and exploratory, the research data and information 
provided in this study may have reference value in the future. 
It was of certain significance to study the molecular typing of 
complementary metabolic genes in LUAD. We suggested that 
combining our molecular typing with the existing molecular 
typing (immunity, noncoding RNA, gene, etc.) has certain 
value for the precise treatment of LUAD.

Consequently, all the clusters exhibited different 
molecular characteristics, i.e., C1 correlated with good 
prognostic, high metabolic activity, high immune response, 

Figure 7 – Development of a classifier and comparison of immune and targeted therapy among the 3 clusters. (A) Left: Classification consistency between 
the 60 genes-classifier and the original prediction based on ConsensusClusterPlus. Right: The distribution between 60 genes-classifier and original 
prediction based on ConsensusClusterPlus. (B) Sensitivity analysis for responses to nivolumab and pembrolizumab in (left) TCGA and (right) GSEdat 
databases. (C) Sensitivity of IC50 for targeted drugs in the 3 clusters in (left) TCGA and (right) GSEdat databases. **** p < 0.0001.



Huang et al.10

﻿

low gene mutation frequency, high immunotherapy sensitivity, 
and targeted therapy. Meanwhile, C2 had a poor prognosis, 
displaying low metabolic activity, low immune response, high 
frequency of gene mutation, low sensitivity of immunotherapy, 
and targeted therapy which significantly conflicted C1 clusters. 
We systematically classified LUAD based on metabolism-
related genes and comprehensively depicted molecular 
characteristics of subtypes, which promoted the understanding 
of clinical individualization and precise therapy on LUAD 
patients. At present, some molecular typing has been applied 
in clinic and has brought great benefits to patients (Cooper 
et al., 2013). There have been relevant studies on molecular 
analysis of lung cancer (immunity, non-coding RNA, genes, 
etc.) (Sun et al., 2020), which has promoted the development of 
diagnosis and treatment of lung cancer. The biggest difference 
from their research was that this study was located in the 
metabolic field closely related to the pathogenesis of cancer. 
We used metabolic genes to carry out molecular typing of 
LUAD, which was rarely studied. Because the occurrence of 
lung cancer is closely related to metabolism (Stocke et al., 
2018), it may be of great significance to study the molecular 
typing based on lung cancer metabolic genes. My research 
may be combined with their existing achievements to provide 
more abundant research reference data.

The metabolic characteristics of LUAD classification 
showed that C1 is associated with numerous metabolic processes 
and functional analysis revealed that up-regulated genes of C1 
mainly participated in the metabolic pathway. Cell metabolic 
changes promote transformation and tumor progression; 
therefore, metabolic phenotypes of cancer can be used for 
tumor imaging, thereby providing prognostic information and 
cancer treatment (Vander Heiden and DeBerardinis, 2017).  
Cancer cells reprogram their metabolism to meet the 
biosynthetic needs of tumor growth and proliferation; besides, 
different metabolic pathways have different roles, including 
metabolic enhancement and inhibition (Luengo et al., 2017).  
Choi and Na (2018) discovered that the metabolic landscape 
across all cancers reveals prognostic pathways, poor prognostic 
metabolic signatures, including pyrimidine and purine 
metabolism, whereas good prognostic signatures include lipid 
and fatty acid oxidation metabolism (Choi and Na, 2018); this 
was according to the abundant lipid and fatty metabolism in 
C1 with good prognostic and adequate pyrimidine and purine 
metabolism in C2 with poor prognostic. Wang et al. (2019) 
revealed that lower UDP-glucose metabolism was closely 
associated with metastasis and recurrence of lung cancer; this 
indicates that lower UDP-glucose metabolism implies poor 
prognosis (Wang et al., 2019). Herein, the glycolysis-related 
metabolism process was enriched in C1 with a good prognosis. 
The development of tumors through high metabolism has been 
reported; however, specific metabolic activities can directly 
be implicated in transformation processes or inhibit biological 
processes of tumor growth (Vander Heiden and DeBerardinis, 
2017); this may be the reason for the favorable prognosis of 
tumors with hypermetabolism. Further, we found that the 
C1 hypermetabolism group had a good prognosis, thereby 
providing a basis for further research on tumor pathogenesis. 
Importantly, for the sake of research integrity and repeatability, 
we have set up two datasets, of which GEO also included six 

subsets. Whether it was the accuracy of molecular typing of 
gene metabolism genes or the correlation between molecular 
typing and clinical information, the comparative analysis 
between the experimental group and the validation was set 
up, which could more accurately show the accuracy and 
repeatability of our experiment.

Recent efforts against cancer primarily focus on 
strengthening immune activation mechanisms to promote 
immune activation by regulating immune regulation and 
immune activation mechanisms (Fujii and Shimizu, 2019). This 
work found that C1 with a good prognosis exhibited robust 
immunoactivity. We conducted five algorithms (MCPcounter, 
TIMER, ESTIMATE, CIBERSORT, and ssGSEA) for detection 
to eliminate analysis errors and obtained similar outcomes, i.e., 
C1 had a high immune score. Based on previous research, lung 
cancer patients at low risk were strongly enriched for genes 
associated with immune response (Roepman et al., 2009).  
Nevertheless, systemic immune activation did not necessarily 
trigger cancer regression, specifically in treating patients 
with solid tumors. Since cancer cells did not progress fast to 
fight the immune response, they used various strategies to 
escape (Sanmamed and Chen, 2018). Novel approaches for 
the immune response to cancer, including programmed death 
receptor 1 (PD-1) or its ligand (PD-L1), should be included 
to block these immune escape mechanisms (Yi et al., 2018). 
Therefore, we also estimated the gene scores associated 
with the immune checkpoint and found that C1 was the 
highest cluster. CD40LG, with the highest expression in C1, 
potentially induces an immune response to kill tumor cells 
by recruiting and activating the enhanced immune effectors 
to overcome immune escape (Kuhn et al., 2019). Our study 
focuses on the immune system as a prognostic marker and 
novel target therapy for LUAD based on metabolism-related 
genes classification.

Regarding gene mutation, C1 with a good prognosis and 
C2 with a poor prognosis demonstrated a low and high frequency 
of gene mutation, respectively. Gene mutation in cancer cells 
provides a means for overexpressing cancer-promoting driver 
genes or suppressing anti-oncogene (Roepman et al., 2009).  
Several common tumor-related genes, including TP53 and 
KRAS, had lower expression in C1 than in the other two 
clusters. TP53 gene is a human tumor suppressor gene; its 
variants are associated with lung cancer risk, prognosis, and 
somatic mutations in lung tumors (Mechanic et al., 2007). 
C2 demonstrated high expression of TP53 mutation, thus 
exhibiting high risk and poor prognosis. Specifically, reports 
indicate that lung cancer with dual mutations in TP53 and other 
genes may have a worse prognosis (Hata et al., 2010). To our 
expectation, other common tumor-related genes, including 
KRAS, RYR2, PCLO, and CSMD3, had a lower expression 
in C1 than that in C2. We hypothesized that TP53 mutation 
could function with mutations in other genes to increase anti-
cancer resistance, representing a poor prognosis. Besides, we 
evaluated the sensitivity of immune and targeted therapy on 
the three clusters. C1 was associated with immune therapy and 
was related to targeted therapy, implying a good prognosis of 
C1. High metabolism, robust immune activity, and low genes 
mutations of C1 may benefit from immune and targeted therapy; 
this suggests a favorable prognosis.
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Conclusion
We classified LUAD into three clusters based on 

metabolism-related genes and characterized them with 
molecular characteristics. Consequently, the three clusters 
exhibited distinct features in metabolic signatures, immune 
processes and checkpoint, genetic mutation, sensitive drug 
response, and clinical characteristics. Our findings provide 
valuable information to improve the understanding of the 
molecular characteristics of LUAD and may help to improve 
the clinical management of LUAD. 
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