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An alternative procedure for the determination of the FLC
0
 value, the limit strain value 

corresponding to the plane strain mode of the Forming Limit Curves (FLC), a critical parameter in 
the sheet formability analysis, is suggested and compared with conventional Nakazima simulation 
tests. The procedure was tested using two different materials: interstitial-free quality steel (IF) and 
a spheroidized SAE 1050 steel. The intrinsic tensile test, in a near plane strain state, was performed 
using a small number of samples, with dimensions suggested by the literature. The results were 
checked against Nakazima test results using the same materials. The plane strain test was reliable in 
determining consistent FLC

0
 values and should be preferred since it is not affected by the geometric 

aspects and by friction, which do affect the Nakazima test. The reliability of the FLC
0
 values obtained 

by near plane strain was also corroborated through comparison with literature data.
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1.	 Introduction
The last decade saw an increasing interest in the 

understanding of the physical metallurgy associated with the 
evolution (during straining) of both microstructure (damage 
accumulation/microvoids evolution) and crystallographic 
texture, aiming at locating the yield point and, consequently, 
ductile fracture during sheet metal drawing1,2. This interest 
relies on the support of true stress  -  true strain curves, 
on using alternative flow criteria (quadratic and non-
quadratic) and on using Forming Limit Curves FLCs, i.e., 
on characteristics of the material to be drawn.

These Forming Limit Curves (FLCs) introduced by 
Lankford (1947), Keeler and Backofen and Goodwin3-5, 
allow a comprehensive representation of sheet formability 
and have been widely used as a criterion in the optimization 
of the drawing process and as an aid in die designing2,5-7.

The Nakazima simulation test (1968) has been 
commonly applied for the evaluation of the FLCs. This 
test is sensitive to the sheet thickness, surface conditions, 
lubricants, tool type and geometry2,5, besides influences 
inherent to the test itself, since the sample does not remain 
flat, but is increasingly curved during straining (i.e. the 
strain path is not entirely contained in the sheet plane)8. 
Further, it should be added that obtaining the FLC curves via 
Nakazima is time consuming and expensive, as it requires 
the preparation and testing of several samples of different 
geometries and dimensions. The minimum recommended 
number of samples from the industrial practice is 30 
samples. A typical setup consists of three replicas of each 

of the following dimension, in RD-(rolling direction-mm) 
× TD-(transverse direction-mm): 50 × 220; 80 × 220; 
100 × 220; 110 × 220; 120 × 220; 130 × 220; 140 × 220; 
160 × 220; 175 × 220; 220 × 220†**.

The methodology used in determining the FLC curves is 
based on the analysis of the deformation of sheet samples, 
which contains a circle grid printed over its surface. The 
samples are deformed in different conditions, in order to 
simulate different strain paths to which an actual part would 
be submitted during forming. The results of all sorts of tests 
designed for such purpose, being either intrinsic or simulated 
(regardless of friction) , consists in measuring the ellipses 
(i.e. the deformed circles of the printed circle grid) near the 
fracture region, calculating the largest principal strain (ε

1
) 

and smallest principal strain (ε
2
) in the sheet plane5,9-11. A 

plot of these points generates V-type curves, which allow 
defining the boundary of conformational limits of that sheet 
(ASTM E2218, ISO 12004-2:2008)12, 13 .This point is where 
local thinning starts (reduction of resisting section) and that, 
at the end, culminates with fracture (generating the fracture 
limit curves, FrLC).

The apparent transferability of the concept of the FLC 
is tempting, but it is known that the strain path (which is 
not always a straight line) in formed parts influences the 
position of the FLC9,10,14,15. This path can be described by 
the strain ratio β = ε

2
/ε

1
. A path corresponding to biaxial 

tension (stretching) occurs for β ~ 1. A path close to plane 

† ** B. D. Chivites – personal communication – USIMINAS testing center, 
Cubatão, Brazil, may 2012.*e-mail: schoen@usp.br
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strain is associated with ε
2
~0 (equivalent to β=0). A path 

corresponding to deep drawing situations find values in the 
region -1<β<-0.5[7]. Studies conducted in several types of 
automobile parts5,15,16 show that over 80% of formed pieces 
usually fail under conditions of near plane strain (β~0), 
which is also the minimum of the obtained FLCs.

This propensity for failure under near plane strain 
conditions and the previously mentioned disadvantages 
of the Nakazima test17 brought out the intrinsic tensile test 
under the condition of plastic deformation near to the plane 
strain5,15,16 condition. In this case, the full determination of 
the FLC is avoided and all analysis is based on the FLC

0
 

point, which corresponds to the minimum (lowest point) of 
the FLC curve under plane strain, i.e., for the condition for 
which the smallest principal strain in the plane of the sheet 
vanishes: ε

2
 → 0.

The objective of this work is to evaluate the possibility 
of replacing Nakazima tests by a fast and safe determination 
of the FLC

0
 value through tensile tests that will lead to near 

plane strain deformation, using a smaller number of samples.

2.	 Material and Methods

2.1.	 Material

Two kinds of blanks were used in the present 
work:  a  0 .75 mm thick  In ters t i t ia l  Free  ( IF) 
steel sheet and a 1.48 mm thick spheroidized SAE 
1050 carbon steel sheet. Chemical compositions, as 
furnished by the suppliers, and mechanical properties 
(according to ABNT NBR 16284; ASTM E 517) 18,19 are 
given, respectively, in Tables  1 and 2. The first steel is 
ductile and widely used in drawing industries, especially by 
automobile manufacturers and by home appliance industries, 
while the latter has higher mechanical strength, which 
usually impairs formability. The microstructure (ferrite 
matrix containing spheroidal cementite) somewhat decreases 
this drawback and the steel is mainly used in applications 
such as toecaps for safety boots.

Steel formability may be evaluated by a series of 
mechanical properties, derived from a conventional tensile 
test, these are: yield stress (σ

y
), ultimate tensile stress 

(UTS), elongation for a gauge length of 80 mm (ε
f
), plastic 

anisotropy ratio (rα, where α refers to the angle between 
rolling direction and tensile sample loading direction) and 
the parameters of Hollomon's equation, defined by

n= Kσ ε 	 (1)

The values of these parameters for both steels, provided 
by the supplier, are given in Table 2.

2.2.	 Samples and testing methods

The geometries of the samples used specifically for 
plane strain (tensile) tests are shown in Figure  1. The 
dimensions were based on Wagoner’s previous studies20.

The technique called serigraphy was used for recording 
a set of circles on the metallic samples. It is a simple process 
which provides good sharpness for measurements of the 
circles. It relies on the transfer of drawings onto serigraphy 

chromes and from them onto the metal sheet surfaces, via 
ink tanks.

The sequential steps of serigraphy refer to the production 
of the chrome; choice of the serigraphy tissue; preparation 
of frames (degreasing, drying, emulsification, drying, 
additional emulsification, drying, exposure to ultraviolet 
light; development; drying) and applying ink onto the 
surface.

The methodology used for the tensile tests under 
condition of plastic near plane strain, was the following:

•	 Pre-recording of a net of circles of d
0
 = 2 mm on the 

sample surface;
•	 Loading of the samples, leading them to necking/

Figure 1. Sample geometry, used in the uniaxial tensile tests.

Table 1. Analyzed composition of the investigated steels.

Steel IF SAE 1050

wt.%C 0.0015 0.4980

wt.%Si 0 0.1700

wt.%Mn 0.1170 0.6400

wt.%P 0.0100 0.0190

wt.%S 0.0072 0.0020

wt.%Al 0.0320 0.0102

wt.%Ti 0.0530 -

Table 2. Base mechanical properties of the investigated steels.

Steel IF SAE 1050

σ
y
 [MPa] 178 333.4

UTS [MPa] 336 490

ε
f
 [%] 42.1 24.4

r
0

1.73 1.01

r
45

1.23 0.71

r
90

2.02 0.87

K [MPa] 584 803

n 0.22 0.18
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rupture through uniaxial tension. Three samples were 
used for each condition, with the major axis parallel 
either to the rolling direction (RD) of the original 
sheet or to the transverse (TD) direction;

•	 Measurement of the ellipses along the longitudinal 
axis of the plastically deformed samples, adjacent 
to the necking region, for the determination of the 
major and minor axes, d

1
 and d

2
, respectively, using 

an image analysis system (CAMSYS). Six ellipses 
were measured, three to the left and three to the right 
of the center line in the necked region. This system 
allows the automated reading of major and minor 
axes (d

1
 and d

2
) in the ellipses close to the thinning 

area. From these values, the true principal strains are 
calculated through:

1,2
1,2

0
ln

d
=

d
 

ε    	 (2)

The assessment of FLC
0 

values resulting from the 
unidirectional near plane strain plastic deformation is 
obtained by comparing results of the same parameter arising 
from a full determination of the respective FLCs using the 
Nakazima test, performed in the present work. Results are 
reported as true (i.e., not engineering) strains, according 
to Equation 2.

The equipment used for determining the FLC
0 
values in 

near plane strain (tensile test) are briefly described below:
•	 Projector of vertical profile: Objective lenses 10, 

20, 50 and 100x and digital reader with geometric 
processor;

•	 Universal Testing Machine with maximum capacity 
600 kN electromechanical drive and speed ranging 
from 0.01 to 300 mm/min. The tests were conducted 
under displacement control;

•	 Wire electro-erosion machine: to obtain low 
roughness in the cut face, hence preventing crack 
nucleation at this site during tensile testing.

The Nakazima simulation tests21 were carried out in 
a Erichsen press, with a 100mm-diameter punch. Sample 
sizes for the IF steel were 220 × 50, 220 × 80, 220 × 100, 
220 × 110, 220 × 120, 220 × 130, 220 × 140, 220 × 160, 
220 × 175 and 220 × 220 mm and 0.75 mm thickness. In the 

case of the AISI 1050, the same sample sizes were tested, 
but the samples with width smaller than 140 mm invariably 
broke in the blank holder, therefore results for this steel 
will be limited to 220 × 140, 220 × 160, 220 × 175 and 
220 × 220 mm samples, with thickness 1.48 mm. Both steels 
were investigated in the RD configuration only.

3.	 Results and Discussion
The critical strains for necking of the samples subject 

to Nakazima’s test are presented in Table  3. Each value 
represents the average of a large number of circles (also 
given in the table) and the standard deviation of the 
measurements is represented in parenthesis (referring to the 
value’s last digit). As expected, the IF steel presents superior 
drawability when compared to the AISI 1050 steel. Based 
on these results, the coordinates of FLC

0
 can be derived 

following the ASTM E2218 standard12, corresponding, 
respectively, to (0.52, 0.00) and (0.42, 0.00) for the IF and 
the 1050 steels. Although the result is compatible with the 
lower formability of the 1050 steel, analysis of the base 
properties of both steels (Table  2) would imply a worse 
behavior, suggesting that the FLC

0
 parameter, derived from 

Nakazima’s test, is overestimated (at least for the 1050 steel).
The results of the near plane strain tests are shown 

in Figure  2, together with the ones obtained from the 
Nakazima’s tests for both steels. As observed, the values 
of the near plane strain test are smaller than those expected 
from the traditional FLC curve. As discussed before, this 
outcome is expected, since Nakazima’s test is affected by 
friction and geometric factors related with the interaction 
between punch and the specimen.

The issue of the influence of geometrical and friction 
factors in the determination of Forming Limit Curves has 
been addressed already by several authors17,22. Charpentier, 
for example, showed, that samples deformed under 
curvilinear deformation paths (off the stretching plane) 
presented higher limit strains as compared with true biaxial 
tests under the same conditions22.

The discrepancy is more severe for the case of the AISI 
1050 steel. As already discussed, the base properties of this 
steel suggest a poor formability, which is reproduced in the 

Table 3. Results from Nakazima’s test. Limit strains are reported as true plastic strains (Equation 2) and were defined by measuring the 
ellipses adjacent to localized necking.

Width [mm] IF Steel AISI 1050

Points ε1 ε2 Points ε1 ε2

220 108 0.80(2) 0.11(1) 64 0.72(1) 0.17(1)

175 97 0.68(1) 0.12(1) 93 0.69(1) 0.20(1)

160 66 0.59(2) 0.04(1) 67 0.77(1) 0.14(1)

140 81 0.64(1) –0.01(1) 92 0.52(2) 0.04(2)

130 113 0.70(1) –0.08(1) --- --- ---

120 88 0.94(1) –0.15(1) --- --- ---

110 114 1.03(1) –0.19(1) --- --- ---

100 99 1.07(1) –0.23(1) --- --- ---

80 67 1.10(1) –0.26(1) --- --- ---

50 88 1.20(1) –0.28(1) --- --- ---
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near plane strain tests. The evaluation of the forming limit 
curve, however limited, points out to a somewhat similar 
formability compared with the IF steel. The FLC

0 
parameter 

is known to increase when sheet thickness increases16. Thus, 
in principle, the formability of the spheroidized SAE 1050 
medium carbon steel could be made similar to that of an 
IF steel, by selecting the appropriate sheet thickness. In 
this instance, taking the larger thickness of the AISI 1050 
steel as basis, one could assume that the formability of 
both sheets would be approximated, justifying the results 
of the Nakazima’s test. The results of the near plane strain 
test indicate, however, that this hypothesis is questionable.

The results for the IF steel are consistent with published 
data on similar steels23. The near plane strain data are also 
smaller than the FLC

0
 value derived from Nakazima’s tests, 

but in this case the difference is smaller compared with the 
case of the AISI 1050 steel. These results are consistent with 
the ones obtained by Freitas et al.24 in a hot-dip galvanized 
IF steel, which were based on the conventional FLC 
determination (using Marciniak’s test). These authors report 
a high susceptibility of the test to the lubrication conditions.

We may also compare the obtained FLC
0
 (as an 

engineering strain) values with the ones predicted using an 
empirical relation derived by Keeler and Brazier25:

( ) ( )0 0.233 0.143t / 0.21FLC = + n 	 (3)

where t is the thickness, in mm, and n, the strain hardening 
exponent. Using the previously reported values for these 
parameters and converting to true plastic strains, this 

equation  predicts FLC
0
 to be ε

1
  =  0.297 for the IF steel 

and 0.347 for the 1050 steel. The results for the IF steel 
is consistent with the one determined in the near plane 
strain test (the small difference may be a result in using 
different strain rates for the test), and shows, again that 
the Nakazima’s test value overestimates the limit strain. 
In the case of the 1050 steel, the predicted value is much 
higher than the one determined using the nearplane strain 
test, butthis is expected, since Equation 3 was derived 
for microalloyed steels. The presence of cementite in the 
microstructure surely increases the propensity to necking 
comparedto a single phase ferritic matrix.

Finally, the comparison between the near plane strain 
results obtained from samples extracted along RD and TD 
show differences, but no trend can be identified, at least for 
these two steels. These differences will be further explored 
in a forthcoming work.

4.	 Conclusions
The results obtained in the present work allow drawing 

the following conclusions:
•	 The plane strain test showed to be suitable  for 

determining the value of the FLC
0 
and it is performed 

with a smaller number of samples than that required 
by the Nakazima method, i.e., 6 samples are required 
(3 samples for the RD direction and 3 samples for the 
TD direction) in the plane strain test, while at least 30 
samples are required in the Nakazima test for the full 
determination of a FLC (from which FLC

0
 is derived);

•	 The results obtained in the near plane strain tests are 
consistently smaller than the FLC

0
 values derived 

from Nakazima’s tests, which are performed out of 
plane and in contact with a punch, hence influenced 
by friction and by a non-plane deformation path. 
Since the near plane strain tests are not influenced 
by these factors, their results are believed to be more 
representative of the reality;

•	 Anisotropy of the sheet positively influences the 
critical strain for necking in the near plane strain tests, 
however, based only on the two steels investigated in 
the present work, no trend could be identified.
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Figure  2. Results from the Near Plane Strain tests (nps), solid 
symbols, compared with the traditional Nakazima’s test (N) results 
(empty symbols). The estimated FLC

0
 value for Nakazima’s test 

is indicated for both steels. The lines are drawn just as a guide to 
the eye.
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